Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.
Whenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreHighly plastic soils exhibit unfavorited properties upon saturation, which produce different defects in engineering structures. Attempts were made by researchers to proffer solutions to these defects by experimenting in practical ways. This included various materials that could possibly improve the soil engineering properties and reduce environmental hazards. This paper investigates the strength behavior of highly plastic clay stabilized with brick dust. The brick dust contents were 10%, 20%, and 30% by dry weight of soil. A series of linear shrinkage and unconfined compression tests were carried out to study the effect of brick dust on the quantitative amount of shrinkage experienced by highly plastic clay and the undra
... Show MoreOne of the most important problems facing the world today is the energy problem. The solution was in finding renewable energy sources such as solar energy. The solar energy applications in Iraq is facing many problems . One of the most important problems is the accumulation of dust on the solar panels surface which causes decreasing its performance sharply. In the present work, a new technique was presented by using two-axis solar tracking system to reduce the accumulated dust on the solar panel surface and compared it with the fixed solar panels which installed at tilt angles 30° and 45°. The results indicated that the maximum losses of the output power due to accumulation of dust on the fixed solar panels is about 31.4% and 23.1% res
... Show MoreUrban land uses are in a dynamic state that varies over time, the city of Karbala in Iraq has experienced functional changes over the past 100 years, as the city is characterized by the presence of significant tourist and socio-economic activity represented by religious tourism, and it occur due to various reasons such as urbanization. The purpose of this study is to apply a Markov model to analyze and predict the behavior of transforming the use of land in Karbala city over time. This can include the conversion of agricultural land, or other areas into residential, commercial, industrial land uses. The process of urbanization is typically driven by population growth, economic development, based on a set of probabilities and transitions bet
... Show MoreIn this paper, a new high-performance lossy compression technique based on DCT is proposed. The image is partitioned into blocks of a size of NxN (where N is multiple of 2), each block is categorized whether it is high frequency (uncorrelated block) or low frequency (correlated block) according to its spatial details, this done by calculating the energy of block by taking the absolute sum of differential pulse code modulation (DPCM) differences between pixels to determine the level of correlation by using a specified threshold value. The image blocks will be scanned and converted into 1D vectors using horizontal scan order. Then, 1D-DCT is applied for each vector to produce transform coefficients. The transformed coefficients will be qua
... Show MoreDust storms are a common ecological occurrence in many world‘s countries, mainly in dry and semi-dry parts. Dust storms tremendously influence human health, the environment, the climate, and numerous social aspects. In this paper, spatial and temporal analysis, metrological triggers, and trajectory, dust exporting areas of a severe dust storm that occurred in Iraq on May 16, 2022, were investigated. The dust storm's backward trajectory was determined using HYSPLIT model, which is then compared with MODIS and Meteosat satellite images. The weather is then analyzed using the NCEP/NCAR Reanalysis model, and the approximate area of these sources was determined using Landsat 8 satellite image classification method. The results revealed
... Show MoreThe monitoring weld quality is increasingly important because great financial savings are possible because of it, and this especially happens in manufacturing where defective welds lead to losses in production and necessitate time consuming and expensive repair. This research deals with the monitoring and controllability of the fusion arc welding process using Artificial Neural Network (ANN) model. The effect of weld parameters on the weld quality was studied by implementing the experimental results obtained from welding a non-Galvanized steel plate ASTM BN 1323 of 6 mm thickness in different weld parameters (current, voltage, and travel speed) monitored by electronic systems that are followed by destructive (Tensile and Bending) and non
... Show MoreSoftware Defined Networking (SDN) with centralized control provides a global view and achieves efficient network resources management. However, using centralized controllers has several limitations related to scalability and performance, especially with the exponential growth of 5G communication. This paper proposes a novel traffic scheduling algorithm to avoid congestion in the control plane. The Packet-In messages received from different 5G devices are classified into two classes: critical and non-critical 5G communication by adopting Dual-Spike Neural Networks (DSNN) classifier and implementing it on a Virtualized Network Function (VNF). Dual spikes identify each class to increase the reliability of the classification
... Show More