Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.
This paper presents a method to classify colored textural images of skin tissues. Since medical images havehighly heterogeneity, the development of reliable skin-cancer detection process is difficult, and a mono fractaldimension is not sufficient to classify images of this nature. A multifractal-based feature vectors are suggested hereas an alternative and more effective tool. At the same time multiple color channels are used to get more descriptivefeatures.Two multifractal based set of features are suggested here. The first set measures the local roughness property, whilethe second set measure the local contrast property.A combination of all the extracted features from the three colormodels gives a highest classification accuracy with 99.4
... Show MoreThe basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreThis paper deals with the description of the system of formation and derivation of words in the Russian language. In this work, we will present recent trends in the study of the Russian language that deal with vocabulary formation. The lexical system of the Russian language is associated with a common (or opposite) meaning; similar (or opposite) in stylistic characteristics; united by a common type of word formation; related to a common descent and belonging to a vocabulary of much or little use, etc. The results of the most prominent linguists and specialists who dealt with this topic will be presented, in addition to presenting their different views on word formation. The words of the Russian language consist of mor vimat that participate
... Show MoreOrthodontic treatment is an inclusive treatment that includes growth adjustment of the craniofacial area and alveolar bone reconstruction that affects the movement of teeth. Apply orthodontic forces to correct teeth anomaly via alveolar bone remodeling includes a combination of cellular and molecular events in the gum. Orthodontic tooth movement is based on force induced periodontal ligament and alveolar bone remodeling. Mechanical motivation on a tooth causes an inflamed response in the gum tissue. Inflammatory immune markers stimulate the biological processes associated with alveolar bone resorption. The aim of this article is shedding light on the significance role inflammatory immune response in orthodontic treatment.
إن استخدام النظم الالكترونية في القطاع المصرفي وبالخصوص نظام مقاصة الصكوك الالكترونية (ACH) في عمليات التحويل الالكتروني للاموال بين المصارف تتضمن تحويلات مالية عالية القيمة بين المصارف المشاركة بهذا النظام, وان اي خلل قد يحدث بالنظام يؤدي الى حالات تلاعب في مقاصة الصكوك الالكترونية في المصارف المشاركة وبالتالي حدوث عملية اختلاس, ومن هذا المنطلق تبرز مشكلة البحث في اهمية توافر برنامج تدقيق مقترح ياخ
... Show MoreMefenamic acid was esterified with starchwith[1:1] Molar ratio, as drug substituted with natural polymer, to prolongthe period of hydrolysis of drug polymer with other advantages. The new prodrug starch was characterized by FT-IR and UV-Visible and 1H-NMR spectroscopies. The physical properties were studied and controlled drug release was studied in different pH values at 37oC. The stability of drug was carried out by measuring the absorbance of mefenamic starch which hydrolyzed in HCl solution of pH 1.1 (artificial gastric fluid) and phosphate buffer of pH 7.4 (simulating intestinal fluid SIF) at 37oC for several days. The thermal analysis such as DSC was studied.