Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.
The need for participants’ performance assessments in academia and industry has been a growing concern. It has attendance, among other metrics, is a key factor in engendering a holistic approach to decision-making. For institutions or organizations where managing people is an important yet challenging task, attendance tracking and management could be employed to improve this seemingly time-consuming process while keeping an accurate attendance record. The manual/quasi-analog approach of taking attendance in some institutions could be unreliable and inefficient, leading to inaccurate computation of attendance rates and data loss. This work, therefore, proposes a system that employs embedded technology and a biometric/ w
... Show MoreThe rapid evolution of wireless networking technologies opens the door to the evolution of the Wireless Sensor Networks (WSNs) and their applications in different fields. The WSN consists of small energy sensor nodes used in a harsh environment. The energy needed to communicate between the sensors networks can be identified as one of the major challenges. It is essential to avoid massive loss, or loss of packets, as well as rapid energy depletion and grid injustice, which lead to lower node efficiency and higher packet delivery delays. For this purpose, it was very important to track the usage of energy by nodes in order to improve general network efficiency by the use of intelligent methods to reduce the energy
... Show MoreRecently, the Internet of Things has emerged as an encouraging technology that is scaling up new heights towards the modernization of real word physical objects into smarter devices in several domains. Internet of Things (IoT) based solutions in agriculture drives farming into a smart way through the proliferation of smart devices to enhanced production with minimal human involvement. This paper presents a comprehensive study of the role of IoT in prominent applications of farming, wireless communication protocols, and the role of sensors in precision farming. In this research article, the existing frameworks in IoT-based agriculture systems with relevant technologies are presented. Furthermore, the comparative analysis of the a
... Show MoreGovernmental establishments are maintaining historical data for job applicants for future analysis of predication, improvement of benefits, profits, and development of organizations and institutions. In e-government, a decision can be made about job seekers after mining in their information that will lead to a beneficial insight. This paper proposes the development and implementation of an applicant's appropriate job prediction system to suit his or her skills using web content classification algorithms (Logit Boost, j48, PART, Hoeffding Tree, Naive Bayes). Furthermore, the results of the classification algorithms are compared based on data sets called "job classification data" sets. Experimental results indicate
... Show MoreThis paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show MoreTo damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. A suitable PSS model was selected considering the low frequencies oscillation in the inter-area mode based on conventional PSS and Fuzzy Logic Controller. Two types of (FIS) Mamdani and suggeno were considered in this paper. The software of the methods was executed using MATLAB R2015a package.
Future wireless systems aim to provide higher transmission data rates, improved spectral efficiency and greater capacity. In this paper a spectral efficient two dimensional (2-D) parallel code division multiple access (CDMA) system is proposed for generating and transmitting (2-D CDMA) symbols through 2-D Inter-Symbol Interference (ISI) channel to increase the transmission speed. The 3D-Hadamard matrix is used to generate the 2-D spreading codes required to spread the two-dimensional data for each user row wise and column wise. The quadrature amplitude modulation (QAM) is used as a data mapping technique due to the increased spectral efficiency offered. The new structure simulated using MATLAB and a comparison of performance for ser
... Show MoreThe automatic liquid filling system is used in different applications such as production of detergents, liquid soaps, fruit juices, milk products, bottled water, etc. The automatic bottle filling system is highly expensive. Where, the common filling systems required to complex changes in hardware and software in order to modify volume of liquid. There are many important variables in the filling process such as volume of liquid, the filling time, etc. This paper presents a new approach to develop an automatic liquid filling system. The new proposed system consists of a conveyor subsystem, filling stations, and camera to detect the level of the liquid at any instant during the filling process. The camera can detect accurately the leve
... Show MoreThe Digital Elevation Model (DEM) has been known as a quantitative description of the surface of the Earth, which provides essential information about the terrain. DEMs are significant information sources for a number of practical applications that need surface elevation data. The open-source DEM datasets, such as the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), and the Advanced Land Observing Satellite (ALOS) usually have approximately low accuracy and coarser resolution. The errors in many datasets of DEMs have already been generally examined for their importance, where their quality could be affected within different aspects, including the types of sensors, algor
... Show More