This work, deals with Kumaraswamy distribution. Kumaraswamy (1976, 1978) showed well known probability distribution functions such as the normal, beta and log-normal but in (1980) Kumaraswamy developed a more general probability density function for double bounded random processes, which is known as Kumaraswamy’s distribution. Classical maximum likelihood and Bayes methods estimator are used to estimate the unknown shape parameter (b). Reliability function are obtained using symmetric loss functions by using three types of informative priors two single priors and one double prior. In addition, a comparison is made for the performance of these estimators with respect to the numerical solution which are found using expansion method. The
... Show MoreIn this work the diode planer magnetron sputtering device was
designed and fabricated. This device consists of two aluminum discs
(8cm) diameter and (5mm) thick. The distance between the two
electrodes is 2cm, 3cm, 4cm and 5cm.
Design and construction a double probe of tungsten wire with
(0.1mm) diameter and (1.2mm) length has been done to investigate
electron temperature, electron and ion density under different
distances between cathode and anode. The probes were situated in
the center of plasma between anode and cathode.
The results of this work show that, when the distance between
cathode and anode increased, the electron temperature decreased.
Also, the electron density increases with the increasing
Use of lower squares and restricted boxes
In the estimation of the first-order self-regression parameter
AR (1) (simulation study)
This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
Due to advancements in computer science and technology, impersonation has become more common. Today, biometrics technology is widely used in various aspects of people's lives. Iris recognition, known for its high accuracy and speed, is a significant and challenging field of study. As a result, iris recognition technology and biometric systems are utilized for security in numerous applications, including human-computer interaction and surveillance systems. It is crucial to develop advanced models to combat impersonation crimes. This study proposes sophisticated artificial intelligence models with high accuracy and speed to eliminate these crimes. The models use linear discriminant analysis (LDA) for feature extraction and mutual info
... Show MoreMixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show MoreFractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreIn this paper, we have employed a computation of three technique to reduce the computational complexity and bit rate for compressed image. These techniques are bit plane coding based on two absolute values, vector quantization VQ technique using Cache codebook and Weber's low condition. The experimental results show that the proposed techniques achieve reduce the storage size of bit plane and low computational complexity.
In this paper, we have generalized the concept of one dimensional Emad - Falih integral transform into two dimensional, namely, a double Emad - Falih integral transform. Further, some main properties and theorems related to the double Emad - Falih transform are established. To show the proposed transform's efficiency, high accuracy, and applicability, we have implemented the new integral transform for solving partial differential equations. Many researchers have used double integral transformations in solving partial differential equations and their applications. One of the most important uses of double integral transformations is how to solve partial differential equations and turning them into simple algebraic ones. The most important
... Show More