In all applications and specially in real time applications, image processing and compression plays in modern life a very important part in both storage and transmission over internet for example, but finding orthogonal matrices as a filter or transform in different sizes is very complex and importance to using in different applications like image processing and communications systems, at present, new method to find orthogonal matrices as transform filter then used for Mixed Transforms Generated by using a technique so-called Tensor Product based for Data Processing, these techniques are developed and utilized. Our aims at this paper are to evaluate and analyze this new mixed technique in Image Compression using the Discrete Wavelet Transfo
... Show MoreLet R be a ring with 1 and W is a left Module over R. A Submodule D of an R-Module W is small in W(D ≪ W) if whenever a Submodule V of W s.t W = D + V then V = W. A proper Submodule Y of an R-Module W is semismall in W(Y ≪_S W) if Y = 0 or Y/F ≪ W/F ∀ nonzero Submodules F of Y. A Submodule U of an R-Module E is essentially semismall(U ≪es E), if for every non zero semismall Submodule V of E, V∩U ≠ 0. An R-Module E is essentially semismall quasi-Dedekind(ESSQD) if Hom(E/W, E) = 0 ∀ W ≪es E. A ring R is ESSQD if R is an ESSQD R-Module. An R-Module E is a scalar R-Module if, ∀ , ∃ s.t V(e) = ze ∀ . In this paper, we study the relationship between ESSQD Modules with scalar and multiplication Modules. We show that
... Show MoreLet be a ring with 1 and D is a left module over . In this paper, we study the relationship between essentially small quasi-Dedekind modules with scalar and multiplication modules. We show that if D is a scalar small quasi-prime -module, thus D is an essentially small quasi-Dedekind -module. We also show that if D is a faithful multiplication -module, then D is an essentially small prime -module iff is an essentially small quasi-Dedekind ring.
The past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio
... Show MoreJPEG is most popular image compression and encoding, this technique is widely used in many applications (images, videos and 3D animations). Meanwhile, researchers are very interested to develop this massive technique to compress images at higher compression ratios with keeping image quality as much as possible. For this reason in this paper we introduce a developed JPEG based on fast DCT and removed most of zeros and keeps their positions in a transformed block. Additionally, arithmetic coding applied rather than Huffman coding. The results showed up, the proposed developed JPEG algorithm has better image quality than traditional JPEG techniques.
Raw satellite images are considered high in resolution, especially multispectral images captured by remote sensing satellites. Hence, choosing the suitable compression technique for such images should be carefully considered, especially on-board small satellites, due to the limited resources. This paper presents an overview and classification of the major and state-of-the-art compression techniques utilized in most space missions launched during the last few decades, such as the Discrete Cosine Transform (DCT) and the Discrete Wavelet Transform (DWT)-based compression techniques. The pros and cons of the onboard compression methods are presented, giving their specifications and showing the differences among them to provide uni
... Show MoreThe problems of modeling the signal and dispersion properties of a second order recursive section in the integer parameter space are considered. The formulation and solution of the section synthesis problem by selective and dispersive criteria using the methods of integer nonlinear mathematical programming are given. The availability of obtaining both positive and negative frequency dispersion of a signal in a recursive section, as well as the possibility of minimizing dispersion distortions in the system, is shown.
The linear non-polynomial spline is used here to solve the fractional partial differential equation (FPDE). The fractional derivatives are described in the Caputo sense. The tensor products are given for extending the one-dimensional linear non-polynomial spline to a two-dimensional spline to solve the heat equation. In this paper, the convergence theorem of the method used to the exact solution is proved and the numerical examples show the validity of the method. All computations are implemented by Mathcad15.