Azo ligand 11-(4-methoxyphenyl azo)-6-oxo-5,6-dihydro-benzo[4,5] imidazo[1,2-c] quinazoline-9-carboixylic acid was derived from 4-methoxyaniline and 6-oxo-5,6-dihydro-benzo[4,5]imidazo[1,2-c]quinazoline-9-carboxylic acid. The presence of azo dye was identified by elemental analysis and spectroscopic methods (FT-IR and UV-Vis). The compounds formed have been identified by using atomic absorption in flame, FT.IR, UV-Vis spectrometry magnetic susceptibility and conductivity. In order to evaluate the antibacterial efficiency of ligand and its complexes used in this study three species of bacteria were also examined. Ligand and its complexes showed good bacterial efficiencies. From the obtained data, an octahedral geometry was proposed for all prepared complexes.
Coupling reaction of m-and p- amino acetop henone and p-amino benzoic acid with (LHistidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass sp ectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M (L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the com
... Show MoreCoupling reaction of m-and p- amino acetophenone and p-amino benzoic acid with (L- Histidine) gave the new bidentate azo ligands (L1, L2 and L3). The prepared ligands were identified by FT-IR, UV-Vis, 1HNMR and GC- mass spectroscopic technique. Treatment of the prepared ligands with the following metal ions (CoII, NiII, CuII, ZnII, CdII and HgII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2 Cl2]. The prepared complexes were characterized by using flame atomic absorption, FT-IR, UV-Vis and 1HNMR spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). The nature of the c
... Show MoreFelodipine is a calcium-channel blocker with low aqueous solubility and bioavailability. Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the dispersibility problems of many drugs. Felodipine was formulated as a NE utilizing oleic acid as an oil phase, tween 80 and tween 60 as surfactants and ethanol as a co-surfactant. Eight formulas were prepared, and different tests were performed to ensure the stability of the NEs, such as particle size, polydispersity index, zeta potential, dilution test, drug content, viscosity and in-vitro drug release. Result
... Show MoreA novel series of mixed-ligand complexes of the type, [ML1(L2)3]Clx [M= Cr(III), Fe(III), Co(II),Ni(II), Cu(II), Cd(II) and Hg(II), n = 2, 3], was synthesized using Schiff base (HL1) as main ligand, nicotinamide (L2) as secondary ligand, and the corresponding metal ions in 1:3:1 molar ratio. The main ligand, HL1 was prepared by the interaction of ampicillin drug and 4-chlorobenzophenone. The synthesized mixed ligand complexes were characterized by elemental analysis, UV-Vis, FT-IR,1H-NMR,13C-NMR and TG/DTG studies. In the mixed-ligand complexes, the Schiff base ligand, HL1 showed coordination to the central metal ion in tridentate manner via azomethine nitrogen, β-lactam ring oxygen and deprotonated carboxylic oxygen atoms, whereas the sec
... Show MoreStable new derivative of L-ascorbic acid, 5,6-O-iso propylidene 2,3-O,O acetic acid-Lascorbic acid (L) was synthesized in good yield by the reaction of 5,6-O-isopropylidene-Lascorbic acid with chloroacetic acid in presence of potassium hydroxide. The new product (L) was characterized by 1H, 13C–NMR, mass spectrum and fourier transform infrared (FTIR). The reaction of the ligand (L) with metal bivalent ion., M+2 = (Co, Ni, Cu, Cd, Hg, Mg, Ca, Pb) synthesized and characterized by FTIR, UV-Visible, Molar conductance, Atomic absorption and the molar ratio (Ni+2, Cd+2) complexes. Spectroscopic evidence showed that the binding of the M(II) ions with (L) are through the (C–I=O) Lacton and O-2-CH2COO– as a bidentate manar re
... Show MoreA new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
The synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40 -bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30 -dimethyl-[1,10 -biphenyl]-4,40 -diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1 H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed
... Show More