Cryptography

LECTURE-1

Cryptology

Cryptology: the branch of mathematic encompassing both **cryptography** and **cryptanalysis**.

Cryptography and Cryptanalysis

- □ Cryptography: comes from Greek words kryptos meaning hidden or secret and graphos meaning writing.
 - **Cryptography** defines as the science and study of secret writing.
 - Cryptography enables you to store sensitive information or transmit it across insecure networks so that it cannot be read by anyone except the intended recipient.

cryptography is the science of using mathematics to encrypt and decrypt data.

Phil Zimmermann

Cryptography is the art and science of keeping messages secure.

Bruce Schneier

Cryptanalysis: the science and study of methods of breaking ciphers.

Terminologies

A message is **plaintext (sometimes called cleartext)**.

The process of disguising a message in such away as to hide its substance is **encryption**.

An encrypted message is **ciphertext**.

The process of turning ciphertext back into plaintext is **decryption**.

Cryptosystem

Cryptosystem: a method for encoding and decoding messages

A cryptosystem is also referred to as a cipher system

□The various components of a basic cryptosystem are as follows –

- Plaintext (P)
- Ciphertext (C).
- Encryption (E)
- Decryption (D)
- □*Keys (K):* controller for E and D.

Cryptography Services

Cryptography can be directly used to help ensure these security properties:

- Confidentiality: the information cannot be understood by anyone for whom it was unintended
- Integrity: the information cannot be altered in storage or transit between sender and intended receiver without the alteration being detected
- Non-repudiation : the creator/sender of the information cannot deny at a later stage his or her intentions in the creation or transmission of the information
- **Authentication:** verification of identity

Type of cryptography

The type of cryptography can be classified according to the number of keys used.

Symmetric or **single-key**: both sender and receiver use the same key.

Asymmetric or public key : if both sender and receiver each uses a different key

a. Symmetric-key cryptography

b. Asymmetric-key cryptography

Types of Cryptography

Cryptography can characterize by the type of operations used for transforming plaintext to ciphertext

Substitution

 involves the replacement of the letters by other letters and symbols to hide the actual meaning of the message.

Transposition

ELOHL

Transposition

- the plaintext characters of a message are systematically rearranged.
- After transposing a message, the same characters are still present, but the order of the letters is changed.
 Cipher Text

Product

involve multiple stages of substitutions and transpositions.

Types of Cryptography Block

Stream

processes the input one block of elements at a time, producing an output block for each input block.

processes the input elements continuously, producing output one element at a time, as it goes along.

Modular Arithmetic

- □ If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n. The integer n is called the **modulus.**
- Note that, the (mod *n*) operator maps all integers into the set of integers {0, 1, ..., (*n* 1)}.

 $11 \mod 7 = 4; \quad -11 \mod 7 = 3$

Example

Modulus 9

0 mod 9 = 0	9 mod 9 = 0
1 mod 9 = 1	10 mod 9 = 1
2 mod 9 = 2	11 mod 9 = 2
3 mod 9 = 3	12 mod 9 = 3
4 mod 9 = 4	13 mod 9 = 4
5 mod 9 = 5	14 mod 9 = 5
6 mod 9 = 6	15 mod 9 = 6
7 mod 9 = 7	16 mod 9 = 7
8 mod 9 = 8	17 mod 9 = 8

Example:

□ Addition, multiplication and subtraction mod 5

a+b	a = 0	1	2	3	4	a-b	a = 0	1	2	3	4	$a \times b$	a = 0	1	2	3	4
b = 0	0	1	2	3	4	b = 0	0	1	2	3	4	b = 0	0	0	0	0	0
1	1	2	3	4	0	1	4	0	1	2	3	1	0	1	2	3	4
2	2	3	4	0	1	2	3	4	0	1	2	2	0	2	4	1	3
3	3	4	0	1	2	3	2	3	4	0	1	3	0	3	1	4	2
4	4	0	1	2	3	4	1	2	3	4	0	4	0	4	3	2	1

For example, we have $3 \times 4 = 2$ because the remainder when we divide 3×4 by 5 is 2.

Congruent modulo

Two integers *a* and *b* are said to be congruent modulo *n*, if (a mod *n*) = (b mod *n*). This is written as $a \equiv b \pmod{n}$.

For instance, 1 and 13 and 25 and 37 are congruent mod 12 since they all leave the same remainder when divided by 12. We write this as $1 = 13 = 25 = 37 \mod 12$.

Example

12 = 2 (mod 10)	12 mod 10 = 2
107 = 207 (mod 10)	207 mod 10 = 7
7 = 3 (mod 2)	7 mod 2 = 1
7 = -1 (mod 2)	-1 mod 2 = 1
13 = -1 (mod 7)	-1 mod 7 = 6
-15 = 10 (mod 5)	-15 mod 5 = 0
2	

Classical Encryption: Substitution

Monoalphabetic substitution cipher

Homophonic substitution cipher

Polyalphabetic substitution cipher

Polygraphic substitution cipher

Monoalphabetic Substitution Ciphers

A monoalphabetic substitution is a cipher in which each occurrence of a plaintext symbol is

replaced by a corresponding ciphertext symbol to generate ciphertext.

Additive Cipher

- The simplest monoalphabetic cipher is the additive cipher. This cipher is sometimes called a shift cipher and sometimes a Caesar cipher
- The earliest known, and the simplest, use of a substitution cipher was by Julius Caesar.
- The method is apparently named after Julius Caesar, who apparently used it to communicate with his officials.
- □ The **Caesar cipher** involves replacing each letter of the alphabet with the letter standing **three places** further down the alphabet.

Example

abc defghijk Imnopqrstuvwxyz

Example: Encryption with k=3 Plaintext: hello Ciphertext: KHOOR Decryption with k=3 ciphertext: KHOOR plaintext: hello

Additive cipher

Additive Cipher: How to encrypt

- □ Thus to cipher a given text we need an integer value, known as shift (key) which indicates the number of position each letter of the text has been moved down.
- □ Convert the letter into the number that matches its order in the alphabet starting from 0, and call this number P. (a=0, b=1, c=2, ..., y=24, z=25)

Calculate:

 $C = E(P,K) = (P+K) \mod n$, where n is the size of the alphabet. \Box Convert the number **C** into a letter that matches its order in the alphabet.

Additive Cipher: How to decrypt

For every letter in the ciphertext:

Convert the letter into the number that matches its order in the alphabet starting from 0, and call this number C

P = D (C, K) = (C - K) mod n, where n is the size of the alphabet

Convert the number P into a letter that matches its order in the alphabet starting from 0.
(a=0, b=1, c=2, ..., y=24, z=25)

Example

ENCRYPTION

DECRYPTION

			End	ryp	ot th	ne p	lain	text	" h	ello	" u	sing	ado	ditiv	e ci	phe	r wi	ith l	<=4							Decryp
а	b	с	d	e	f	g	h	i	j	k	I	m	n	0	р	q	r	s	t	u	v	w	x	y	z	plainte
	Ciphertext: LIPPS															Or										
Or														P = D												
$C = E(P, K) = (P + K) \mod 26$														P = D												
			C =	= E	(h,	4)	= ((7 +	- 4)	mo	d 2	6 =	11	= L	4											P = D
	$C = E(e, 4) = (4 + 4) \mod 26 = 8 = I$														P = D											
	$C = E(1, 4) = (11 + 4) \mod 26 = 15 = P$ $C = E(1, 4) = (11 + 4) \mod 26 = 15 = P$														P = D											
			C =	- L - E	(0,	4)	- (= (· · · · · · · · · · · · · · · · · · ·	+ 4	;)m	od 2	26 =	= 18	3 =	S											P = D
	$C = E(0, 4) = (14 + 4) \mod 20 = 18 = 5$													nlainto												

ot the ciphertext" LIPPS" using additive cipher with k=4 ext: hello $(C, K) = (C - K) \mod 26$ $(L, 4) = (11 - 4) \mod 26 = 7 = h$ $(I, 4) = (8 - 4) \mod 26 = 4 = e$ $(P, 4) = (15 - 4) \mod 26 = 11 = 1$ $(P, 4) = (15 - 4) \mod 26 = 11 = 1$ $(S, 4) = (18 - 4) \mod 26 = 14 = 0$

plaintext: hello

Example

ENCRYPTION

Use the additive cipher with key = 15 to encrypt the plaintext "hello".

Plaintext: $h \rightarrow 07$	Encryption: (07 + 15) mod 26	Ciphertext: $22 \rightarrow W$
Plaintext: $e \rightarrow 04$	Encryption: (04 + 15) mod 26	Ciphertext: $19 \rightarrow T$
Plaintext: $1 \rightarrow 11$	Encryption: (11 + 15) mod 26	Ciphertext: $00 \rightarrow A$
Plaintext: $1 \rightarrow 11$	Encryption: (11 + 15) mod 26	Ciphertext: $00 \rightarrow A$
Plaintext: $o \rightarrow 14$	Encryption: (14 + 15) mod 26	Ciphertext: $03 \rightarrow D$

DECRYPTION

Use the additive cipher with key = 15 to decrypt the cihertext"WTAAD".

Ciphertext: $W \rightarrow 22$	Decryption: (22 – 15) mod 26	Plaintext: $07 \rightarrow h$
Ciphertext: T \rightarrow 19	Decryption: (19 – 15) mod 26	Plaintext: $04 \rightarrow e$
Ciphertext: A $\rightarrow 00$	Decryption: (00 – 15) mod 26	Plaintext: $11 \rightarrow 1$
Ciphertext: A $\rightarrow 00$	Decryption: (00 – 15) mod 26	Plaintext: $11 \rightarrow 1$
Ciphertext: $D \rightarrow 03$	Decryption: (03 – 15) mod 26	Plaintext: $14 \rightarrow 0$

Is the shift (additive)cipher secure?

□ If it is known that a given ciphertext is a Caesar cipher, then a **brute-force cryptanalysis** is easily performed: simply try all the 25 possible keys.

A **brute-force attack** involves trying every possible key until an intelligible translation of the ciphertext into plaintext is obtained.

	PHHW	PH	DIWHU	WKH	WRJD	SDUWB
KEY	0.7.7	~ ~	abuat	wie	waie	ratur
1	oggv	og	chvgt	vjg	vqic	rctva
2	niiu r	II I	oguis (111 1	ipnb c	Ipsuz
3	meet	me	after	the	toga	party
4	ldds	ld	zesdq	sgd	snfz	ozqsx
5	kccr	kc	ydrcp	rfc	rmey	nyprw
б	jbbq	jb	xcqbo	qeb	qldx	mxoqv
7	iaap	ia	wbpan	pda	pkcw	lwnpu
8	hzzo	hz	vaozm	ocz	ojbv	kvmot
9	gyyn	дy	uznyl	nby	niau	julns
10	fxxm	fx	tymxk	max	mhzt	itkmr
11	ewwl	ew	sxlwj	lzw	lgys	hsjlq
12	dvvk	dv	rwkvi	kyv	kfxr	grikp
13	cuuj	cu	qvjuh	jxu	jewq	fqhjo
14	btti	bt	puitg	iwt	idvp	epgin
15	assh	as	othsf	hvs	hcuo	dofhm
16	zrrg	zr	nsgre	gur	gbtn	cnegl
17	yqqf	Уq	mrfqd	ftq	fasm	bmdfk
18	xppe	хp	lqepc	esp	ezrl	alcej
19	wood	wo	kpdob	dro	dyqk	zkbdi
20	vnnc	vn	jocna	cqn	cxpj	yjach
21	ummb	um	inbmz	bpm	bwoi	xizbg
22	tlla	tl	hmaly	aol	avnh	whyaf
23	skkz	sk	glzkx	znk	zumg	vgxze
24	rjjy	rj	fkyjw	ymj	ytlf	ufwyd
25	giix	gi	eixiv	xli	xske	tevxc

Brute-Force attack of Caesar Cipher