Microprocessor &

1 ¥,
ok
g

= Microprocessor 8086 is the first 16-bit microprocessor from INTEL,
released in the year 1978.

= The term 16 bit means that its ALU, its internal registers and most of
the Instructions are designed to work with 16 bit binary words.

= Microprocessor 8086 has a 16-bit data bus and 20-bit address bus. So,
It can address any one of 220 =1048576=1 megabyte memory

locations.

= INTEL 8088
set as the 808

nas 1

and 20-bit add

ress

ne same ALU, same registers and same instruction

6.But the only difference is 8088 has only 8-bit data bus

OUS.

Microprocessor 8086
= The 8086 microprocessor can work in two modes of operations. The 8088
can only read/write/ports of only 8-bit data at a time.
= They are Minimum mode and Maximum mode.

= In the minimum mode of operation the microprocessor do not associate
with any co-processors and cannot be used for multiprocessor systems.

= In the maximum mode the 8086 can work In multi-processor or co-
processor configuration.

= This minimum or maximum operations are decided by the pin MN/ MX.
When this pin i1s high 8086 operates in minimum mode otherwise it
operates in Maximum mode.

~N o o bk

8086 Microprocessor Features:
It I1s 16-bit microprocessor.

It has a 16-bit data bus, so It can read data from or write data to memory
and ports either 16-bit or 8-bit at a time.

It has 20 bit address bus and can access up to 220 memory locations
(1MB).

It can support up to 64K 1/O ports.
It provides 14, 16-Dbit registers.
It has multiplexed address and data bus AD0O-AD15 & A16-A19.

Pre-fetches up to 6 iInstruction bytes from memory and queues them in
order to speed up the processing.

8086 supports 2 modes of operation: Minimum mode and Maximum modei@

\/';

Architecture of 80:
Microprocessor

To improve the performance by implementing the parallel processing

concept the CPU of the 8086 /8088 Is divided into two independent
sections :

= They are Bus Interface Unit (BIU).
= Execution Unit (EU).

Address Bus (20- bit)

General

Registers Data Bus

(16 bit

Fig. 3: Architecture of
IP _
| 8086 Microprocessor
ALU D‘a'ta bus (16 bit) T T
: Communication Control |
Ternporay' Regsters Logic
Registers [
Internal ae Instruction queue
Control - =150-11[2|3[4]5 6
ystom| | (601 LLELZIEIRI BIU

————————— . —————————————— il ———————————————————————————————

Bus Interface Unit (BIU)

=Bus Interface Unit (BIU) provides a full 16 bit bidirectional data
bus and 20 bit address bus.

=The Bus Interface Unit connects the microprocessor to external
devices.

BlU performs following
operations:

= Instruction fetching.
= Reading and writing data of data operands for memory.

= Inputting/outputting data for Input/output peripherals. And other
functions related to instruction and data acquisition.

= To iImplement above functions, the BIU contains the segment registers,
the instruction pointer, address generation adder, bus control logic, and
an instruction gqueue.

=The BIU uses a mechanism known as an instruction stream queue to
Implement pipeline architecture.

Execution Unit (EU)

=The Execution Unit is responsible for decoding and executing all
Instructions.

= The EU consists of arithmetic logic unit (ALU), status and control flags,
general-purpose registers, and temporary-operand registers.

=The EU extracts instructions from the top of the queue In the BIU,
decodes them ,generates operands If necessary, passes them to the BIU
and requests it to perform the read or write by cycles to memory or 1/0
and perform the operation specified by the instruction on the operands.

=During the execution of the instruction, the EU tests the status and
control flags and updates them based on the results of executing the
Instruction.

Archite

Pipelining cture Iin

=While the EU Is decoding an instruction or executing an instruction,
which does not require use of the buses, the BIU fetches up to six
Instruction bytes for the following instructions.

= The BIU stores these pre-fetched bytes in a first-in-first-out register set
called a queue.

=When the EU Is ready for its next instruction from the queue in the BIU.
This Is much faster than sending out an address to the system memory
and waiting for memory to send back the next instruction byte or bytes.

Pipelining Architecture In

=While the EU Is decoding an instruction or executing an instruction,
which does not require use of the buses, the BIU fetches up to six
Instruction bytes for the following instructions.

= The BIU stores these pre-fetched bytes in a first-in-first-out register
set called a queue.

=When the EU is ready for its next instruction from the queue In the
BIU. This Is much faster than sending out an address to the system
memory and waiting for memory to send back the next instruction

byte or bytes.

= Except In the case of JIMP and CALL instructions, where the queue must
be dumped and then reloaded starting from a new address, this pre-fetch
and queue scheme greatly speeds up processing..

= Fetching the next instruction while the current instruction executes IS
called pipelining.

anization

= The 14 registers of 8086 microprocessor are categorized into four
groups. They are general purpose data registers, Pointer & Index
registers, Segment registers, Instruction register, and Flag register as
shown in the table below.

S.NO

Type

Data Register

Pointer Registers

Index Registers

Segment Registers

Instruction

Flag

Register width

16-bit
8-bit

16-bit

16-bit

16-bit

16-bit

16-bit

Name of the Registers

AX,BX,CX,DX
AL,AH,BL,BH,CL,CH,
DL,DH
Stack Pointer (SP)
Base Pointer (BP)
Source Index (Sl)
Destination Index (DI)
Code Segment (CS)
Data Segment (DS)
Stack Segment (SS)
Extra Segment (ES)

Instruction Pointer (IP)

Flag Register

isters

1.

= 8086 CPU has 8 general purpose registers; these registers can be divided
Into:

a) Data registers: four 16 bits data registers

b) Pointer and index registers: two 16 bits pointer registers and two 16
bits index registers.

General Purpose Reg

General Purpose Registers

a) Data registers

= They are four registers (AX, BX, CX, and DX) which used for
arithmetic and data movement.

= Each register can be addressed as either 16-bit or 8 bit value. Example,
AX register Is a 16-bit register, its upper 8-bit Is called AH, and its lower
8-bit i1s called AL.

=Bit 0 in AL corresponds to bit 0 in AX and bit O in AH corresponds to bit
8 In AX as shown in the figure below.

AX

Fig. 4: AX register

= Accumulator Register (AX): It Is the accumulator register because It IS
favored by the CPU for arithmetic operations. Other operations are also
slightly more efficient when performed using AX.

= Base Register (BX): The BX register can hold the address of a
procedure or variable. Three other registers with this ability are Sl, DI
and BP. The BX register usually contains a data pointer used for based,
pased Indexed or register indirect addressing. BX register can also
perform arithmetic and data movement.

= Count Register (CX): The CX register acts as a counter for repeating or
looping Instructions. These Instructions automatically repeat and
decrement CX.

= Data Register (DX): In integer 32-bit multiply and divide instruction the
DX register contains high order word of the resulting number. DX
register can be used as a port number in I/O operations.

isters

General Purpose Reg

b) Pointer and index registers

= There are four 16-bits registers two serve as pointers and two serve as
Indexes. These registers usually store offset address used for addressing

within the segment.

Pointer and Index Registers

N ()
Stack Pointer Sp Pointer to top of stack
Base Pointer Bp Pointer to base address (stack)
Source Index SI Source string/index pointer
Destination Index D] Destination string/index pointer

= Source Index (SlI): Is a 16-bit register. Sl iIs used for indexed, based
Indexed and register indirect addressing. As well as source data address
In string manipulation instructions. Used in conjunction with DS register
to point to data locations in the data segment.

= Destination Index (DI): 1s a 16-bit register. Used with the ES register in
string operations. DI Is used for indexed, based indexed and register
Indirect addressing, as well as a destination data address In string
manipulation instructions..

nd Pointer Reg

= Source Index (SlI): Is a 16-bit register. Sl iIs used for indexed, based
Indexed and register indirect addressing. As well as source data address
In string manipulation instructions. Used in conjunction with DS register
to point to data locations in the data segment.

= Destination Index (DI): 1s a 16-bit register. Used with the ES register in
string operations. DI Is used for indexed, based indexed and register
Indirect addressing, as well as a destination data address In string
manipulation instructions..

nd Pointer Reg

= Stack Pointer (SP): Is a 16-bit register pointing to stack, it Is used to
hold the address of the top of the stack. The stack is maintained as LIFO
with its bottom at the start of the stack segment (Specified by the SS
segment register). Unlike the SP register, the BP can be used to specify
the offset of other program segments.

=Base Pointer (BP): Is a 16-bit register pointing to stack segment. It is
usually used by subroutine to locate variables that were passed on stack
by calling program. BP register is usually used for based, based indexed
or register indirect addressing.

e
\ /

rs

= Within the 1 MB of memory space the 8086/88 defines 16 segments, but
four 64K-byte memory blocks are active at a time called the code
segment, stack segment, data segment, and extra segment.

= Each of these blocks of memory is used differently by the processor.

= The four segment registers (CS, DS, ES, and SS) are used to "point" at
location O (the base address) of each segment as shown in fig. (5)

CODE
CODE
DATA DATAS1
STACK
EXTRA
Segment Registers DATAS2
STACK
MEMORY
CODE > Segment Add.
it L L Offset Add.
STACK
EXTRA Physical Add. (20bit)

Segment Registers

Fig. 5: Physical Memory Organization

®

= Code Segment (CS): 1s a 16-bit register containing address of 64 KB

segment with program instructions. CS register cannot be changed
directly. The CS register is automatically updated during far jump, far
call and far return instructions. .

= Stack segment (SS): Is a 16-bit register containing address of 64KB
segment with program stack. The stack segment in memory which the
value of instruction pointer, status flags, and other registers are pushed in
case of interrupt or subroutine call.

Registers

= Data segment (DS): Is a 16-bit register containing the starting address of

the current data segment in which data are stored.
memory space.

= Extra segment (ES): used to hold the starting ad
Extra segment is provided for programs that neec

It provides a read/write

dress of Extra segment.
to access a second data

segment. Segment registers cannot be used in arit

nmetic operations..

=|s a 16-bit register. This I1s important register which is used to control
which instruction the CPU executes.

= The IP, or program counter, Is used to store the memory location of the
next instruction to be executed (offset address relative to CS).

= The CPU checks the IP to ascertain which instruction to carry out next,
and then updates the IP to point to the next instruction.

= Thus the IP will always point to the next instruction to be executed.

truction Pointer (IF

= Determines the current state of the processor.

= They are modified automatically by CPU after mathematical operations,
this allows to determine the type of the result, and to determine
conditions to transfer control to other parts of the program.

=8086 has 9 flags and they are divided into two categories as shown In
figure below.

Overflow Flag Auxiliary Carry Flag

Direction Flag Parity Flag
Interrupt Flag \ Carrv Flag
P

of|DF|IF |TF|sF|zF| |aF| |PF| |cF

isf1aji3fiz j11fiolo Je 7 Jefs 43 [2]1]0

Trap Flag Sign Flag Zero Flag

Fig. 6: Flag Register

.-,.)

The status flags are set/reset depending on the results of some arithmetic
or logical operations during program execution:

= Carry Flag (CF): this flag i1s set to 1 if there Is a carry out or borrow In
for the most significant bit of the result during the execution of an
arithmetic instruction otherwise, CF Is reset.

= AUXI
carry/
D7), t
not a

lary Flag (AF): If an operation performed in ALU generates a
parrow from lower nibble (i.e. DO D3) to upper nibble (i.e. D4 —

ne AF flag Is set I.e. carry given by D3 bit to D4 is AF flag. This Is
general-purpose flag, it Is used internally by the processor to

perform Binary to BCD conversion.

= Parity Flag (PF): This flag 1s used to indicate the parity of result. If
lower order 8-bits of the result contains even number of 1%s, the Parity
Flag is set and for odd number of 1*s, the Parity Flag Is reset.

= Zero Flag (ZF): 1t is set; if the result of arithmetic or logical operation
IS zero else It Is reset.

= Sign Flag (SF): In sign magnitude format the sign of number Is
Indicated by MSB bit. If the result of operation iIs negative, sign flag is
Set.

= Overflow Flag (OF): It occurs when signed numbers overflow. An OF
Indicates that the result has exceeded the capacity of machine.

1. Status Flags

« Example: Suppose AL= CFH if we execute the instruction ADD AL, C1H
AL 1100 1111 CF=1 AF=1 PF=1
Cl1H 1100 0001 ZF=0 SF=1 OF=0

90H 1001 0000

2. Control Flags

Control flags are set or reset deliberately to control the operations of the execution unit.

= Trap Flag (TP): It is used for single step control. It allows user to execute one
Instruction of a program at a time for debugging. When trap flag is set, program can be
run in single step mode.

= Interrupt Flag (IF): It is an interrupt enable/disable flag. If it is set, the maskable
Interrupt of 8086 Is enabled and if it is reset, the interrupt is disabled. It can be set by
executing instruction STI and can be cleared by executing CLI instruction.

= Direction Flag (DF): It is used in string operation. If it is set, string bytes are
accessed from higher memory address to lower memory address. When it is reset, the
string bytes are accessed from lower memory address to higher memory address.

/4 \
{ \
'l T4H
\ "/
&\//

Memory Segmentation:

= The memory in an 8086 based system is organized as segmented memory.

= The CPU 8086 is able to access 1MB of physical memory. The complete 1IMB of
memory can be divided into 16 segments, each of 64KB size and is addressed by one of
the segment register.

= The 16-bit contents of the segment register actually point to the starting location of a
particular segment. The address of the segments may be assigned as 0000H to FOOOh
respectively.

= To address a specific memory location within a segment, we need an offset address. The
offset address values are from 0000H to FFFFH so that the physical addresses range
from 00000H to FFFFFH.

= A program can have more than four segments, but can only access four segments at a
time.

Physical address is calculated as

EX:

Segment address =1005H

Offset address =5555H

Segment address =1005H = 0001 0000 0000 0101

Shifted left by 4 Positions=0001 0000 0000 0101 0000 + Offset
address = 5555H= 0101 0101 0101 0101

Physical address=155A5H =0001 0101 0101 1010 0101

Physical address = Segment address * 10H + Offset address.

15

15

SEGMENT DISPLACEMENT

Offset

Segment

AV

NI

-

Physical Address (20bit)

Fig. 7. Generating a Physical Address

o

segmemed memcry scheme are as
foliows:

= It provides a powerful memory management mechanism.

= Data related or stack related operations can be performed in different segments.
= Code related operation can be done in separate code segments.
= It allows to processes to easily share data.

= It allows to extend the address ability of the processor, i.e. segmentation allows the
use of 16 bit registers to give an addressing capability of 1 Megabytes. Without
segmentation, it would require 20 bit registers.

= It IS possible to enhance the memory size of code data or stack segments beyond 64
KB by allotting more than one segment for each area.

