
 ابن الهيثن/ كلية التربية للعلوم الصرفة

 المرحلة الثانية

 الاء عبد الحميد عبد اللطيف. د. ا

 سكينة شكري . م

A computer is an electronic device, operating under the
control of instructions stored in its own memory that can
accept data (input), process the data according to specified
rules, produce information (output), and store the
information for future use.

Any kind of computers consists of Software and Hardware:

Software: Software is a generic term for organized collections of
computer data and instructions, often broken into two major
categories: system software that provides the basic non-task-specific
functions of the computer, and application software which is used by
users to accomplish specific tasks.

Hardware: Computer hardware is the collection of physical elements
that constitutes a computer system. Computer hardware refers to the
physical parts or components of a computer such as the monitor,
mouse, keyboard, etc. all of which are physical objects that can be
touched.

1. Central Processing Unit (CPU)

2. Read Only Memory (ROM)

3. Random Access Memory (RAM)

4. Input / Output ports

5. Bus System

1.

A CPU is brain of a computer. It is responsible for all functions and
processes. Regarding computing power, the CPU is the most
important element of a computer system.

The CPU is comprised of three main parts:

A. Arithmetic Logic Unit (ALU)

B. Control Unit (CU)

C. Registers

A. Arithmetic Logic Unit (ALU): Executes all arithmetic and logical operations.
Arithmetic calculations like as addition, subtraction, multiplication and division.
Logical operation like compare numbers, letters, or special characters

B. Control Unit (CU): controls and co-ordinates computer components.

 Read the code for the next instruction to be executed.

 Increment the program counter so it points to the next instruction.

 Read whatever data the instruction requires from cells in memory.

 Provide the necessary data to an ALU or register.

 If the instruction requires an ALU or specialized hardware to complete, instruct the

hardware to perform the requested operation.

C. Registers: they are a temporary storage memory that is built into CPU. Registers are
performed their tasks quickly. All computers required these registers to manipulate
data, and store memory addressing.

Program counter (PC): The PC holds the address of the next instruction to be
executed.

 Instruction register (IR): The IR holds the actual instruction being executed currently
by the computer.

Memory address register (MAR): The MAR holds the address of a memory location.

Memory data register (MDR): The MDR holds a data value that is being stored to or
retrieved from the memory location currently addressed by the memory address
register.

Status register (SR): The SR indicates the results of an arithmetic and logic unit
operation. For example: carry, overflow, negative.

Depending on the complexity of each operation (i.e., task), the
computer may take two or more machine cycles in order to
complete the task.

 A machine cycle consists of both fetch and execution cycles:

 In the fetch cycle, the CU brings the program instruction from
the memory, decodes it (i.e., translates the instruction into
commands), and then sends the data to the ALU for execution.

 In the execution cycle, the ALU performs an operation and then
sends the result to the memory for temporary storage.

Fig. 1 Fetch and Execution Cycle

We can categorize the microprocessor according to the generations or according to
the size of the microprocessor:

1) First Generation (4-bit Microprocessors): The first generation
microprocessors were introduced in the year 1971-1972 by Intel Corporation. It
was named Intel 4004 since it was a 4-bit processor. It was a processor on a
single chip. It could perform simple arithmetic and logical operations such as
addition, subtraction, Boolean OR and Boolean AND.

2) Second Generation (8-bit Microprocessor): The second generation
microprocessors were introduced in 1973 again by Intel. It was a first 8 - bit
microprocessor which could perform arithmetic and logic operations on 8-bit
words. It was Intel 8008, and another improved version was Intel 8088.

3) Third Generation (16 - bit Microprocessor): The third generation
microprocessors, introduced in 1978 were represented by Intel's 8086, Zilog
Z800 and 80286, which were 16 - bit processors with a performance like
minicomputers.

4) Fourth Generation (32 - bit Microprocessors): Several different companies
introduced the 32-bit microprocessors, but the most popular one is the Intel
80386.

5) Fifth Generation (64 - bit Microprocessors): From 1995 to now we are in the
fifth generation. After 80856, Intel came out with a new processor namely
Pentium processor followed by Pentium Pro CPU, which allows multiple CPUs
in a single system to achieve multiprocessing. Other improved 64-bit
processors are Celeron, Dual, Quad, Octa Core processors.

 RAM is a memory scheme within the computer system responsible
for storing data on a temporary basis, so that it can be promptly
accessed by the processor as and when needed. It is volatile in
nature, which means that data will be erased once supply to the
storage device is turned off.

 RAM stores data randomly and the processor accesses these data
randomly from the RAM storage.

 RAM is considered "random access" because you can access any
memory cell directly if you know the row and column that intersect
at that cell.

Three basic steps are needed in order the CPU to perform a write
operation into a specified memory location:

1. The word to be stored into the memory location is first loaded by
the CPU into a specified register, called the memory data register
(MDR).

2. The address of the location into which the word is to be stored is
loaded by the CPU into a specified register, called the memory
address register (MAR).

3. A signal, called write, is issued by the CPU indicating that the
word stored in the MDR is to be stored in the memory location
whose address in loaded in the MAR.

Three basic steps are needed in order to perform a memory read
operation:

1. The address of the location from which the word is to be read is
loaded into the MAR.

2. A signal, called read, is issued by the CPU indicating that the
word whose address is in the MAR is to be read into the MDR.

3. After some time, corresponding to the memory delay in reading
the specified word, the required word will be loaded by the
memory into the MDR ready for use by the CPU.

ROM is a permanent form of storage.

ROM stays active regardless of whether power supply to it is turned

on or off.

ROM devices do not allow data stored on them to be modified.

 Input device is any peripheral (piece of computer hardware equipment
to provide data and control signals to an information processing system
such as a computer).

 Input device Translate data from form that humans understand to one
that the computer can work with. Most common are keyboard and
mouse.

Output device is any piece of computer hardware equipment used to
communicate the results of data processing carried out by an
information processing system (such as a computer) which converts the
electronically generated information into human-readable form.

 I/O Devices are connected to the system bus through I/O controller
(interface) – which acts as interface between the system bus and I/O
devices.

1. I/O devices exhibit different characteristics and if these devices are
connected directly, the CPU would have to understand and respond
appropriately to each I/O device. This would cause the CPU to spend
a lot of time interacting with I/O devices and spend less time
executing user programs.

2. The amount of electrical power used to send signals on the system
bus is very low. This means that the cable connecting the I/O device
has to be very short (a few centimeters at most). I/O controllers
typically contain driver hardware to send current over long cable that
connects I/O devices.

A Bus is a common communications pathway used to carry
information between the various elements of a computer system

The term BUS refers to a group of wires or conduction tracks on a
printed circuit board (PCB) though which binary information is
transferred from one part of the microcomputer to another

The individual subsystems of the digital computer are connected
through an interconnecting BUS system.

1) Address Bus

2) Data Bus

3) Control Bus

The address bus consists of 16, 20, 24, or more parallel signal lines.
On these lines the CPU sends out the address of the memory
location that is to be written to or read from.

The number of address lines determines the number of memory
locations that the CPU can address. If the CPU has N address lines
then it can directly address 2N memory locations.

The 8086 microprocessor has 20 bit address bus, therefore it can
address a maximum of 1M byte of memory location with an
address ranged from (00000)H-(FFFFF)H

The data bus consists of 8, 16, 32 or more parallel signal lines. As
indicated by the double-ended arrows on the data bus line, the data
bus lines are bi-directional.

This means that the CPU can read data in on these lines from
memory or from a port as well as send data out on these lines to
memory location or to a port.

Many devices in a system will have their outputs connected to the
data bus, but the outputs of only one device at a time will be
enabled.

The control bus consists of 4-10 parallel signal lines.

The CPU sends out signals on the control bus to enable the outputs
of addressed memory devices or port devices.

Typical control bus signals are memory read, memory write, I/O
read, and I/O writer.

Fig. (2) System Bus in Computer

Microprocessor 8086 is the first 16-bit microprocessor from INTEL,
released in the year 1978.

The term 16 bit means that its ALU, its internal registers and most of
the instructions are designed to work with 16 bit binary words.

 Microprocessor 8086 has a 16-bit data bus and 20-bit address bus. So,
it can address any one of 220 =1048576=1 megabyte memory
locations.

 INTEL 8088 has the same ALU, same registers and same instruction
set as the 8086.But the only difference is 8088 has only 8-bit data bus
and 20-bit address bus.

The 8086 microprocessor can work in two modes of operations. The 8088
can only read/write/ports of only 8-bit data at a time.

 They are Minimum mode and Maximum mode.

 In the minimum mode of operation the microprocessor do not associate
with any co-processors and cannot be used for multiprocessor systems.

 In the maximum mode the 8086 can work in multi-processor or co-
processor configuration.

This minimum or maximum operations are decided by the pin MN/ MX.
When this pin is high 8086 operates in minimum mode otherwise it
operates in Maximum mode.

1. It is 16-bit microprocessor.

2. It has a 16-bit data bus, so it can read data from or write data to memory
and ports either 16-bit or 8-bit at a time.

3. It has 20 bit address bus and can access up to 220 memory locations
(1MB).

4. It can support up to 64K I/O ports.

5. It provides 14, 16-bit registers.

6. It has multiplexed address and data bus AD0-AD15 & A16-A19.

7. Pre-fetches up to 6 instruction bytes from memory and queues them in
order to speed up the processing.

8. 8086 supports 2 modes of operation: Minimum mode and Maximum mode

To improve the performance by implementing the parallel processing
concept the CPU of the 8086 /8088 is divided into two independent
sections :

They are Bus Interface Unit (BIU).

Execution Unit (EU).

Fig. 3: Architecture of

8086 Microprocessor

Bus Interface Unit (BIU) provides a full 16 bit bidirectional data
bus and 20 bit address bus.

The Bus Interface Unit connects the microprocessor to external
devices.

 Instruction fetching.

Reading and writing data of data operands for memory.

 Inputting/outputting data for input/output peripherals. And other
functions related to instruction and data acquisition.

To implement above functions, the BIU contains the segment registers,
the instruction pointer, address generation adder, bus control logic, and
an instruction queue.

The BIU uses a mechanism known as an instruction stream queue to
implement pipeline architecture.

The Execution Unit is responsible for decoding and executing all
instructions.

The EU consists of arithmetic logic unit (ALU), status and control flags,
general‐purpose registers, and temporary‐operand registers.

The EU extracts instructions from the top of the queue in the BIU,
decodes them ,generates operands if necessary, passes them to the BIU
and requests it to perform the read or write by cycles to memory or I/O
and perform the operation specified by the instruction on the operands.

During the execution of the instruction, the EU tests the status and
control flags and updates them based on the results of executing the
instruction.

While the EU is decoding an instruction or executing an instruction,
which does not require use of the buses, the BIU fetches up to six
instruction bytes for the following instructions.

The BIU stores these pre-fetched bytes in a first-in-first-out register set
called a queue.

When the EU is ready for its next instruction from the queue in the BIU.
This is much faster than sending out an address to the system memory
and waiting for memory to send back the next instruction byte or bytes.

While the EU is decoding an instruction or executing an instruction,
which does not require use of the buses, the BIU fetches up to six
instruction bytes for the following instructions.

The BIU stores these pre-fetched bytes in a first-in-first-out register
set called a queue.

When the EU is ready for its next instruction from the queue in the
BIU. This is much faster than sending out an address to the system
memory and waiting for memory to send back the next instruction
byte or bytes.

Except in the case of JMP and CALL instructions, where the queue must
be dumped and then reloaded starting from a new address, this pre-fetch
and queue scheme greatly speeds up processing..

Fetching the next instruction while the current instruction executes is
called pipelining.

 The 14 registers of 8086 microprocessor are categorized into four
groups. They are general purpose data registers, Pointer & Index
registers, Segment registers, Instruction register, and Flag register as
shown in the table below.

S.NO Type Register width Name of the Registers

1 Data Register 16-bit AX,BX,CX,DX

8-bit AL,AH,BL,BH,CL,CH,

DL,DH

2 Pointer Registers 16-bit Stack Pointer (SP)

Base Pointer (BP)

3 Index Registers 16-bit Source Index (SI)

Destination Index (DI)

4 Segment Registers 16-bit Code Segment (CS)

Data Segment (DS)

Stack Segment (SS)

Extra Segment (ES)

5 Instruction 16-bit Instruction Pointer (IP)

6 Flag 16-bit Flag Register

 8086 CPU has 8 general purpose registers; these registers can be divided
into:

a) Data registers: four 16 bits data registers

b) Pointer and index registers: two 16 bits pointer registers and two 16
bits index registers.

a) Data registers

 They are four registers (AX, BX, CX, and DX) which used for
arithmetic and data movement.

Each register can be addressed as either 16-bit or 8 bit value. Example,
AX register is a 16-bit register, its upper 8-bit is called AH, and its lower
8-bit is called AL.

Bit 0 in AL corresponds to bit 0 in AX and bit 0 in AH corresponds to bit
8 in AX as shown in the figure below.

Fig. 4: AX register

 Accumulator Register (AX): It is the accumulator register because it is
favored by the CPU for arithmetic operations. Other operations are also
slightly more efficient when performed using AX.

 Base Register (BX): The BX register can hold the address of a
procedure or variable. Three other registers with this ability are SI, DI
and BP. The BX register usually contains a data pointer used for based,
based indexed or register indirect addressing. BX register can also
perform arithmetic and data movement.

 Count Register (CX): The CX register acts as a counter for repeating or
looping instructions. These instructions automatically repeat and
decrement CX.

Data Register (DX): In integer 32-bit multiply and divide instruction the
DX register contains high order word of the resulting number. DX
register can be used as a port number in I/O operations.

b) Pointer and index registers

There are four 16-bits registers two serve as pointers and two serve as
indexes. These registers usually store offset address used for addressing
within the segment.

 Source Index (SI): is a 16-bit register. SI is used for indexed, based
indexed and register indirect addressing. As well as source data address
in string manipulation instructions. Used in conjunction with DS register
to point to data locations in the data segment.

Destination Index (DI): is a 16-bit register. Used with the ES register in
string operations. DI is used for indexed, based indexed and register
indirect addressing, as well as a destination data address in string
manipulation instructions..

 Source Index (SI): is a 16-bit register. SI is used for indexed, based
indexed and register indirect addressing. As well as source data address
in string manipulation instructions. Used in conjunction with DS register
to point to data locations in the data segment.

Destination Index (DI): is a 16-bit register. Used with the ES register in
string operations. DI is used for indexed, based indexed and register
indirect addressing, as well as a destination data address in string
manipulation instructions..

 Stack Pointer (SP): is a 16-bit register pointing to stack, it is used to
hold the address of the top of the stack. The stack is maintained as LIFO
with its bottom at the start of the stack segment (Specified by the SS
segment register). Unlike the SP register, the BP can be used to specify
the offset of other program segments.

Base Pointer (BP): is a 16-bit register pointing to stack segment. It is
usually used by subroutine to locate variables that were passed on stack
by calling program. BP register is usually used for based, based indexed
or register indirect addressing.

Within the 1 MB of memory space the 8086/88 defines 16 segments, but
four 64K-byte memory blocks are active at a time called the code
segment, stack segment, data segment, and extra segment.

Each of these blocks of memory is used differently by the processor.

The four segment registers (CS, DS, ES, and SS) are used to "point" at
location 0 (the base address) of each segment as shown in fig. (5)

Fig. 5: Physical Memory Organization

Code Segment (CS): is a 16-bit register containing address of 64 KB
segment with program instructions. CS register cannot be changed
directly. The CS register is automatically updated during far jump, far
call and far return instructions. .

Stack segment (SS): is a 16‐bit register containing address of 64KB
segment with program stack. The stack segment in memory which the
value of instruction pointer, status flags, and other registers are pushed in
case of interrupt or subroutine call.

Data segment (DS): is a 16‐bit register containing the starting address of
the current data segment in which data are stored. It provides a read/write
memory space.

Extra segment (ES): used to hold the starting address of Extra segment.
Extra segment is provided for programs that need to access a second data
segment. Segment registers cannot be used in arithmetic operations..

 Is a 16‐bit register. This is important register which is used to control
which instruction the CPU executes.

The IP, or program counter, is used to store the memory location of the
next instruction to be executed (offset address relative to CS).

The CPU checks the IP to ascertain which instruction to carry out next,
and then updates the IP to point to the next instruction.

Thus the IP will always point to the next instruction to be executed.

Determines the current state of the processor.

They are modified automatically by CPU after mathematical operations,
this allows to determine the type of the result, and to determine
conditions to transfer control to other parts of the program.

8086 has 9 flags and they are divided into two categories as shown in
figure below.

Fig. 6: Flag Register

 The status flags are set/reset depending on the results of some arithmetic
or logical operations during program execution:

 Carry Flag (CF): this flag is set to 1 if there is a carry out or borrow in
for the most significant bit of the result during the execution of an
arithmetic instruction otherwise, CF is reset.

 Auxiliary Flag (AF): If an operation performed in ALU generates a
carry/barrow from lower nibble (i.e. D0 D3) to upper nibble (i.e. D4 –
D7), the AF flag is set i.e. carry given by D3 bit to D4 is AF flag. This is
not a general‐purpose flag, it is used internally by the processor to
perform Binary to BCD conversion.

 Parity Flag (PF): This flag is used to indicate the parity of result. If
lower order 8‐bits of the result contains even number of 1‟s, the Parity
Flag is set and for odd number of 1‟s, the Parity Flag is reset.

 Zero Flag (ZF): It is set; if the result of arithmetic or logical operation
is zero else it is reset.

 Sign Flag (SF): In sign magnitude format the sign of number is
indicated by MSB bit. If the result of operation is negative, sign flag is
set.

Overflow Flag (OF): It occurs when signed numbers overflow. An OF
indicates that the result has exceeded the capacity of machine.

 Example: Suppose AL= CFH if we execute the instruction ADD AL, C1H

AL 1100 1111 CF=1 AF=1 PF=1

C1H 1100 0001 ZF=0 SF=1 OF=0

90H 1001 0000

Control flags are set or reset deliberately to control the operations of the execution unit.

 Trap Flag (TP): It is used for single step control. It allows user to execute one
instruction of a program at a time for debugging. When trap flag is set, program can be
run in single step mode.

 Interrupt Flag (IF): It is an interrupt enable/disable flag. If it is set, the maskable
interrupt of 8086 is enabled and if it is reset, the interrupt is disabled. It can be set by
executing instruction STI and can be cleared by executing CLI instruction.

Direction Flag (DF): It is used in string operation. If it is set, string bytes are
accessed from higher memory address to lower memory address. When it is reset, the
string bytes are accessed from lower memory address to higher memory address.

 The memory in an 8086 based system is organized as segmented memory.

 The CPU 8086 is able to access 1MB of physical memory. The complete 1MB of
memory can be divided into 16 segments, each of 64KB size and is addressed by one of
the segment register.

 The 16-bit contents of the segment register actually point to the starting location of a
particular segment. The address of the segments may be assigned as 0000H to F000h
respectively.

 To address a specific memory location within a segment, we need an offset address. The
offset address values are from 0000H to FFFFH so that the physical addresses range
from 00000H to FFFFFH.

 A program can have more than four segments, but can only access four segments at a
time.

Ex:

Segment address =1005H

Offset address =5555H

Segment address =1005H = 0001 0000 0000 0101

Shifted left by 4 Positions=0001 0000 0000 0101 0000 + Offset

address = 5555H= 0101 0101 0101 0101

Physical address=155A5H =0001 0101 0101 1010 0101

Physical address = Segment address * 10H + Offset address.

Fig. 7: Generating a Physical Address

 It provides a powerful memory management mechanism.

 Data related or stack related operations can be performed in different segments.

 Code related operation can be done in separate code segments.

 It allows to processes to easily share data.

 It allows to extend the address ability of the processor, i.e. segmentation allows the
use of 16 bit registers to give an addressing capability of 1 Megabytes. Without
segmentation, it would require 20 bit registers.

 It is possible to enhance the memory size of code data or stack segments beyond 64
KB by allotting more than one segment for each area.

When the 8086 executes an instruction, it performs the specified function on data. The data
are called its operands and may be part of the instruction reside in one of the internal registers
of the 8086, stored at an address in memory, or held at an I/O port. To access these different
types of operands, the 8086 is provided with various addressing modes as follow:

1. Immediate addressing mode.

2. Register addressing mode.

3. Direct addressing mode.

4. Register indirect addressing mode.

5. Based addressing mode.

6. Indexed addressing mode.

7. Based indexed addressing mode

8. String addressing mode.

9. Input / Output mode.

1. Immediate addressing mode: In this type of addressing, immediate data is a part of
instruction instead of the contents of a register or memory location, and it may be 8-
bit or 16-bit in size.

 Ex: MOV AL, 015H

2. Register addressing mode: In register addressing mode, the data is stored in a
register and is referred using the particular register. All the registers, except IP, may
be used in this mode.

 Ex: MOV AX, BX

Fig. 8 (a): Immediate

addressing mode before

execution.

Fig. 8 (b): Immediate

addressing mode after

execution.

Fig. 9 (a): Register addressing

mode before execution.

Fig. 9 (b): Register addressing

mode after execution.

3. Direct addressing mode: In the direct addressing mode a 16-bit memory
address (offset) is directly specified in the instruction as a part of it.

 Ex: MOV CX, [1234H]

 Here, the operand resides in a memory location in the data segment, whose
effective address may be completed using 1234H as the offset address and
content of DS as segment address. The effective address here, is 10H * DS
+ 1234H.

4. Register indirect addressing mode: Sometimes, the address of the memory
location, which contains data or operand, is determined in an indirect way, using
the offset register. This mode of addressing is known as register indirect mode. In
this addressing mode, the offset address of data is in either BX or SI or DI or BP
registers. The default segment is either DS or ES or SS. The data is supposed to
be available at the address pointed to by the content of any of the above registers
in the default data segment.

 Ex: MOV AX, [SI]

 Here, data is present in a memory location in DS whose offset address is in SI. The
effective address of the data is given as 10H * DS + SI.

Fig. 10 (a): Direct Addressing

mode before execution.

Fig. 10 (b): Direct Addressing

mode after execution.

Fig. 11 (a): Register Indirect

Addressing before execution.

Fig. 11(b): Register Indirect

Addressing mode after

execution.

5. Based addressing mode: In the based addressing mode, the physical address of
the operand is obtained by adding a direct or indirect displacement to the
contents of either BX or BP and the current value in DS and SS, respectively.

 Ex: MOV [BX] + 1234H, AL; EA=BX+1234H, PA=DS*10H+EA

 After execute the instruction the content of register AL is moved to memory
location specified by PA (as shown in Fig. 12)

6. Indexed Addressing mode: In the Indexed addressing mode, the effective
address of the operand is obtained by adding a direct or indirect displacement to
the contents of either SI or DI register. Indexed addressing works identically to
the based addressing, it uses the contents of one of the index registers, instead of
BX or BP, in the generation of the physical address.

 Ex: MOV BL, [SI]+1234H; EA=SI+1234H, PA=DS*10H+EA

 After execute the instruction the byte of data stored at this location (PA), is read
into lower byte BX.

Fig. 12(a): Based Addressing

before execution.

Fig. 12(b): Based Addressing

mode after execution.

Fig. 13(a): Indexed Addressing

before execution.

Fig. 13(b): Direct Indexed

Addressing mode after

execution.

7. Based -Index addressing mode: Combining the based addressing mode and the
indexed addressing mode together results in a new, more powerful mode known
as based indexed addressing. The effective address of data is formed, by adding
an 8 or 16-bit displacement with the content of a base register (any one of BX or
BP) and the content of an index register (any one of SI or DI). The default
segment register may be ES or DS.

 Ex: MOV AX, 1234H [BX] [SI]

 Here, 1234H is an immediate displacement, BX is base register and SI is an index
register the effective address of data is computed as

 EA= [BX] + [SI] + 1234H

 And the physical address

 PA=10H * DS + EA

8. String Addressing Mode: The string instructions of the 8086's instruction set
automatically use the source and destination index registers to specify the
effective addresses of the source and destination operands, respectively.

 Ex: MOVSB

The physical address for the source operand

10H * DS + [SI]

The physical address for the destination operand

10H * ES + [DI]

 Notice that neither SI nor DI appears in the string instruction, but both are used
during its execution.

9. Input / Output mode: This addressing mode is related with input output
operations.

 Ex:

 IN Al, 45

 OUT DX, AL

 An interrupt is a condition that halts the microprocessor temporarily to work on a
different task and then return to its previous task. Interrupt is an event or signal that
request to attention of CPU. This halt allows peripheral devices to access the
microprocessor.

 Whenever an interrupt occurs the processor completes the execution of the current
instruction and starts the execution of an Interrupt Service Routine (ISR) or
Interrupt Handler.

 ISR is a program that tells the processor what to do when the interrupt occurs. After
the execution of ISR, control returns back to the main routine where it was
interrupted.

 Broadly the interrupts are divided into two types. They are External (Hardware)
Interrupts and Internal (Software) Interrupts.

 The hardware interrupts are classified as non-maskable and maskable interrupts.

 The hardware interrupt is caused by any peripheral device by sending a signal
through a specified pin to the microprocessor.

 Whereas internal interrupts are initiated by the state of the CPU (e.g. divide by zero
error) or by an instruction. So, the software interrupt is one which interrupts the
normal execution of a program of the microprocessor.

 The 8086 has two hardware interrupt pins namely NMI and INTR. In the two, the
NMI is a non-maskable interrupt and the INTR interrupt request is a maskable
interrupt which has lower priority .The third pin associated with the hardware
interrupts are the INTA called interrupt acknowledge.

 The interrupts initiated by external hardware by sending an appropriate signal to
the interrupt pin of the processor is called hardware interrupt. The 8086 processor
has two interrupt pins INTR and NMI.

Maskable and Non-Maskable Interrupts

 The processor has the facility for accepting or rejecting hardware interrupts.
Programming the processor to reject an interrupt is referred to as masking or
disabling and programming the processor to accept an interrupt is referred to as
unmasking or enabling.

 In 8086 the interrupt flag (IF) can be set to one to unmask or enable all hardware
interrupts and IF is cleared to zero to mask or disable a hardware interrupts except
NMI.

 The interrupts whose request can be either accepted or rejected by the processor are
called maskable interrupts.

Maskable and Non-Maskable Interrupts

 The interrupts whose request has to be definitely accepted (or cannot be rejected)
by the processor are called non-maskable interrupts. Whenever a request is made
by non-maskable interrupt, the processor has to definitely accept that request and
service that interrupt by suspending its current program and executing an ISR. In
8086 processor all the hardware interrupts initiated through INTR pin are maskable
by clearing interrupt flag (IF). The interrupt initiated through NMI pin and all
software interrupts are non-maskable.

 The programmer cannot control when a Non-Maskable Interrupts is serviced and
the processor has to stop the main program to execute the NMI service routine.

Maskable and Non-Maskable Interrupts

 Maskable Interrupts the programmer can choose to mask specific interrupts and re-
enable them later.

 Non-Maskable Interrupts used :

1. during power failure

2. during critical response time

3. during non-recoverable hardware errors

4. watchdog interrupt

5. during memory parity errors

Coming to the software interrupts, 8086 can generate 256 interrupt types through the
instruction INT n .Any of the 256 interrupt types can be generated by specifying the
interrupt type after INT instruction. For example the first five types are as follows:

 TYPE 0 interrupt represents division by zero situation.

 TYPE 1 interrupt represents single-step execution during the debugging of a program.

 TYPE 2 interrupt represents non-maskable NMI interrupt.

 TYPE 3 interrupt represents break-point interrupt.

 TYPE 4 interrupt represents overflow interrupt.

The interrupts from Type 5 to Type 31 are reserved for other advanced microprocessors,
and interrupts from 32 to Type 255 are available for hardware and software interrupts.

 Interrupt Vector Table on 8086 is a vector that consists of 256 total interrupts
placed at first 1 kb of memory from 0000h to 03ffh, where each vector consists of
segment and offset address for ISR.

 The call to interrupt service routine is similar to far procedure call.

 The size for each interrupt vector is 4 bytes (2 word in 16 bit), where 2 bytes (1
word) for segment and 2 bytes for offset of interrupt service routine address. So it
takes 1024 bytes (1 kb) memory for interrupt vector table.

When an interrupt occur, the following action are taken:

1. Push flag register on the stack

2. clear IF and TF

3. Push CS and IP register, on the stack

4. Load CS with the 16-bit data at memory address (INT-type *4+2)

5. Load IP with the 16 bit data at memory address (INT-type *4).

The last instruction of ISR is (IRET) instruction, it actions are:

1. POP the 16-value on top of stack into IP register

2. POP the 16-value on top of stack into CS register

3. POP the 16-value on top of stack into flag register.

 Computer typically have more than one I/O device requesting interrupt service, like
keyboard, hard disk, floppy disk, printer all generate an INT when they required
the attention to CPU.

 When more than one device INT CPU, we need a mechanism to priority these INT
(if they come at the same time) and forward only one INT request at a time to the
CPU while keeping other INT request pending for their service.

1. INT 10h / AH=0Eh teletype output (print Al value)

 Ex: MOV AL, 'A'

 MOV AH, 0Eh

 INT 10h

2. INT 21h / AH=01h

Read character from standard input with echo, result is stored in AL.

 EX: MOV AH, 01h

 INT 21h

3. INT 21h / AH=02h

Write character to standard output entry DL= character to write, after execution
AL=DL

 EX:

 MOV AH, 02h

 MOV DL, 'a'

 INT 21h

Ex: Write assembly program to read five value from keyboard and
store it in array

Org 100h

Mov ah, 01h

Mov cx, 5

aa: int 21h

Mov a[si], al

Inc si

Loop aa

Ret

a db 5 dup (0)

Ex: Write assembly program to print the value of array a where a=
1, 2, 3, 4, 5

Org 100h

Mov ah, 2

Mov cx, 5

aa: Mov Dl, a[si]

Int 21h

Inc si

Loop aa

Ret

a db 1, 2, 3, 4, 5

4. INT 33h (mouse driver interrupt)

INT 33h / AX= 0001h (show mouse pointer)

 Ex: Mov ax, 1

 Int 33h

5. INT 33h / AX=0002h (Hide visible mouse pointer)

Ex: Mov ax, 2

 Int 33h

 Input & Output (I/O) devices provide the means by which a computer system can
interact with the outside worlds.

 An I/O device can be a purely input device (e.g. KB, Mouse), a purely output
device (printer, screen), or both input and output device like (e.g. disk).

 Regardless of the intended purpose of I/O devices, all communication with these
devices must involve the system bus. However, I/O devices are not directly
connected to the system bus. Instead, there is usually, On I/O controller that acts as
an interface between the system and the I/O devices.

 As programmer, you can have direct control to any of the I/O devices (through
their associated I/O controller).

 It is a waste of time and effort if every one had to develop their own routines to
access I/O devices. In addition system resource could be abused either intentionally
or accidentally. For instance, and improper disk drive could erase the content of a
disk due to a bug in the driver routine.

 To avoid this problem and to provide a standard way of accessing I/O devices, OS
provide routine to convent all access I/O devices. Typically, access to I/O devices
can be obtain from two layer of system software, the basic I/O system (BIOS) and
the OS,BIOS is ROM resident and is a collection of routine that control the I/O
devices. Both provide access to routine that control I/O devices through a
mechanism called INT (interrupt).

 As we know I/O ports in the 8086 MPU can be either byte wide or word wide. The
port that is accessed for input or output of data is selected by an I/O address. The
address is specified as port of the instruction that performs the I/O operation.

 I/O addresses are 16 bit in length and are output by the 8086 to the I/O interface
over bus lines AD0 through AD15, the most significant bit A16-A19 of the
memory address are held at the 0 logic (not used).

 Below Figure 19 show a map of I/O address space of the 8086 system. This is an
independent 64-KB address space that is dedicated for I/O devices. Notice that its
address range is from 000016-FFFF16. Moreover, notice that the eight ports
located from address 00F8 to 00FF are specified as reserved. These port addresses
are reserved by Intel for use in their future HW and SW products.

 Data transfer between the MPU and I/O devices are performed over the data bus.
Word transfer take place over the complete data bus D0 to D15, and can required
either one or two bus cycle.

 Ports: a port is a device that connects the processor to the external world through a
port processor, receive a signal from an input device and send a signal to an output
device.

 The instruction set contains one type of instruction that transfer information to an
I/O device (OUT) and another to read information from an I/O device (IN).

Instruction Meaning Format Operation

IN

Input direct IN ACC, PORT ACC PORT

Input indirect IN ACC, DX ACC (DX)

OUT

Output direct OUT PORT,ACC PORT ACC

Output indirect OUT DX, ACC (DX) ACC

ACC = AL or AX

 Ex 1: write a sequence of inst that will output FF16 to a byte wide output port at
address AB16 of the I/O addresses space.

 Solution: first the AL register is loaded with FF16 as an immediate operand in the
instruction

 MOV AL, 0FFH

 Now the data in AL can be output to the byte wide output port with the instruction

 OUT 0ABH, AL

 Ex 2: write a series of instruction that will output FF16 to an output port located at
address B00016 of the I/O address space

 Solution: the DX register must first be loaded with the address of the output port

 MOV DX, 0B000H

 Next, the data that is to be output must be loaded into AL

 MOV AL, 0FFH

 Finally, the data are output with the instruction

 OUT DX, AL

 Ex 3: data are to be read in from two byte wide input port at address AA16 and
A916 respectively, and then output to a word wide output port at address B00016.
Write a sequence of instruction to perform this I/O operation:

 Solution: we first read in a byte from the port at address AA16 into AL and move it
to AH

 IN AL, 0AAH

 MOV AH, AL

 The other byte can be read into AL

 IN AL, 0A9H

 To writhe out the word of data in AX, we can load DX with the addressB00016 and
use a variable output instruction

 MOV DX, 0B000H

 OUT DX, AX

 There are two different method of interfacing I/O to the MPU.

 In the isolated I/O scheme, the IN, OUT instruction transfer data between the
MPU (ACC or memory) and the I/O device.

 It is the most common I/O transfer techniques. The addressed for insolated I/O device,
called ports, are separate from the memory. Because the ports are separate from the
memory, because the ports are separate. The user can expand the memory to its full
size without using any of memory space for I/O device.

 A disadvantage of isolated I/O is that, the data transferred between I/O and the MPU
must be accessed by the IN, OUT instruction.

 Unlike isolated I/O, memory mapped I/O does not use the IN
or OUT instruction.

 Instead, it uses any instruction that transfer data between the
MPU and memory. A memory mapped I/O device is treated as
a memory location in memory map.

 The main advantage of memory-mapped I/O is that any
memory transfer instruction can be used to access the I/O

 The main disadvantage is that a portion of the memory
systems used as the I/O map. This reduced the amount of
memory available to application.

