Computer Science Department

1st Class: Mathematics

Lecture 7. Continuity

Prof. Dr. Ruma Kareem K. Ajeena

ا.د. رومی کریم خضر عجینة م.د. سهاد احمد احمد

Dr. Suhad Ahmed Ahmed

College of Education for Pure Science - Ibn Al-Haitham

University of Baghdad

ruma.usm2015@gmail.com

2024-2025

Computer Science Department 1st Class: Mathematics

Continuity

Definition. A function f is continuous function at $x \neq a$ if

- 1. f(a) is defined.
- 2. $\lim_{x \to a} f(x)$ exists. i.e $\lim_{x \to a} f(x) = \lim_{x \to a} f(x)$.
- $3. \lim_{x \to a} f(x) = f(a).$

Example 1. Let
$$f(x) = \begin{cases} \sqrt{x+2}, & x < 2 \\ x^2 - 2, & 2 \le x < 3 \\ 2x + 5, & x \ge 3. \end{cases}$$

Show that f(x) is continuous function at x=2,3 or not.

Solution.

If x = 2 then

1.
$$f(2) = (2)^2 - 2 = 2$$
.

2.
$$\lim_{x \to 0} f(x) = 2^2 - 2 = 2$$
.

And
$$\lim_{x \to 2^{-}} f(x) = \sqrt{2+2} = \sqrt{4} = 2$$
.

So, $\lim_{x\to 2^+} f(x) = \lim_{x\to 2^-} f(x)$. Therefore, $\lim_{x\to 2} f(x)$ exists.

3.
$$\lim_{x \to 0} f(x) = f(2) = 2$$
.

Computer Science Department 1st Class: Mathematics

Thus, f(x) is continuous at x = 2.

If x = 3 then

1.
$$f(3) = 2(3) + 5 = 11$$
.

2.
$$\lim_{x \to 3^{+}} f(x) = 2(3) + 5 = 11$$

and $\lim_{x \to 3^{-}} f(x) = 3^{2} - 2 = 9 - 2 = 7$.

So, $\lim_{x \to 3^+} f(x) \neq \lim_{x \to 3^-} f(x)$. Therefore, $\lim_{x \to 3^-} f(x)$ is not existed. Thus, f(x) is discontinuous at $x \neq 3$.

Example 2. Let
$$f(x) = \begin{cases} 2x+5, & x < -1 \\ x^2+2, & x > -1 \\ 5, & x = -1. \end{cases}$$

Show that $f(x)$ is continuous function at $x = -1$.

Show that f(x) is continuous function at x = -1 or not.

Solution:

$$1. f(-1) = 5.$$

2.
$$\lim_{x \to -\Gamma^+} f(x) = (-1)^2 + 2 = 3$$
 and $\lim_{x \to -\Gamma^-} f(x) = 2(-1) + 5 = 3$.
So, $\lim_{x \to -\Gamma^+} f(x) = \lim_{x \to -\Gamma^-} f(x)$. Therefore, $\lim_{x \to -\Gamma} f(x)$ is existed.

3.
$$\lim_{x \to -1} f(x) \neq f(-1)$$
.

Thus, f(x) is discontinuous at x = -1.

Computer Science Department 1st Class: Mathematics

Example 3. Let f(x) = 1/x. Show that f(x) is continuous function at x = 0 or not.

Solution:

1. $f(0) = 1/0 = \infty$, so f(0) is not defined. Thus, f(x) is dis Asst. Prof. Dr. Ruma Kanee
Asst. Prof. Dr. Ruma Kanee continuous at x = 0.