Computer Science Department 1st Class : Mathematics

AscLecture 2. Intervals Prof. Dr. Ruma Kareem K. Ajeena ا.د. رومی کریم خضر عجینة **College of Education for Pure Science - Ibn Al-Haitham University of Baghdad** ruma.k.kh@ihcoedu.uobaghdad.edu.iq 2024-2025

A set is a collection of distinct objects.

For example: $\{1, 2, 3\}$ is a set but $\{1, 1, 3\}$ is not because 1 appears twice in the second collection. The second collection is called a multiset.

The set of natural numbers

$$N = \{1, 2, 3, 4, \dots\}$$

The set of even integers can be written

{2n : n is an integer}.

The integers are the set of whole numbers, both positive and negative

$$Z = \{0, \pm 1, \pm 2, \pm 3, \ldots\}.$$

The set of rational numbers Q which is the set of all quotients of integers that can be written by $Q = \{x : x = p/q, where p,q \text{ are integers and } q \neq 0\}.$ Whereas, the irrational numbers is the set of not rational numbers. For example, $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$.

Also, there is a set of real numbers R that is

R = set of all rational and irrational numbers.

Definition. The empty set is a set containing no objects. It is written as a pair of curly braces with nothing inside $\{\}$ or by using the symbol \emptyset .

Definition. The set membership symbol \in is used to say that an object is a member of a set. It has a partner symbol \notin which is used to say an object is not in a set.

Definition. We say two sets are equal if they have exactly the same members.

Example. If

S = {1, 2, 3} then 3 \in S and 4 $\not\in$ S. The set T = {2, 3, 1}

is equal to S because they have the same members.

Definition. The cardinality of a set is its size. For a finite set, the cardinality of a set is the number of members it contains which is written |S|.

Example. For the set $S = \{1, 2, 3\}$ we show cardinality by writing |S| = 3.

Definition. The intersection of two sets S and T is the collection of all objects that are in both sets. It is written $S \cap T$.

Example. Suppose $S = \{1, 2, 3, 5\}, T = \{1, 3, 4, 5\}$, and $U = \{2, 3, 4, 5\}$. Then

 $S \cap T = \{1, 3, 5\}, S \cap U = \{2, 3, 5\}, and T \cap U = \{3, 4, 5\}.$

Definition. If A and B are sets and $A \cap B = \emptyset$ then we say that A and B are disjoint, or disjoint sets.

Definition. The union of two sets S and T is the collection of all objects that are in either set. It is written $S \cup T$ which is defined by

 $S \cup T = \{x : (x \in S) \text{ or } (x \in T)\}$ or $S \cup T = \{x : (x \in S) \lor (x \in T)\}.$

Example. Suppose $S = \{1, 2, 3\}, T = \{1, 3, 5\}, and U = \{2, 3, 4, 5\}.$ Then: $S \cup T = \{1, 2, 3, 5\}, S \cup U = \{1, 2, 3, 4, 5\}, and T \cup U = \{1, 2, 3, 4, 5\}$

8

Definition. The universal set, at least for a given collection of set theoretic computations, is the set of all possible objects.

Venn Diagrams. A Venn diagram is a way of depicting the relationship between sets.

Definition. The compliment of a set S is the collection of objects in the universal set that are not in S. The compliment is written S^c .

 $S^c = \{ \mathbf{x} : (\mathbf{x} \in \mathbf{U}) \land (\mathbf{x} \not\in \mathbf{S}) \}.$

Example.

- 1. Let the universal set be the integers. Then the compliment of the even integers is the odd integers.
- 2. Let the universal set be $\{1, 2, 3, 4, 5\}$, then the compliment of $S = \{1, 2, 3\}$ is $S^c = \{4, 5\}$ while the compliment of $T = \{1, 3, 5\}$ is $T^c = \{2, 4\}$.
- 3. Let the universal set be the letters {a, e, i, o, u, y}. Then {y}^c = {a, e, i, o, u}.

Definition. For two sets S and T we say that S is a subset of T if each element of S is also an element of T. In formal notation $S \subseteq T$ if for all $x \in S$ we have $x \in T$.

If $S \subseteq T$ then we also say T contains S which can be written $T \supseteq S$. If $S \subseteq T$ and $S \neq T$ then we write $S \subset T$ and we say S is a proper subset of T. **Example.** If $A = \{a, b, c\}$ then A has eight different subsets: $\emptyset \{a\} \{b\} \{c\} \{a, b\} \{a, c\} \{b, c\} \{a, b, c\}.$ Notice that $A \subseteq A$ and in fact each set is a subset of itself. The empty set \emptyset is a subset of every set. **Proposition.** Two sets are equal if and only if each is a subset of the other. In symbolic notation:

 $(A = B) \Leftrightarrow (A \subseteq B) \land (B \subseteq A).$ **Proposition.** De Morgan's Laws Suppose that S and T are sets. De Morgan's Laws state that
(i) $(S \cup T)^c = S^c \cap T^c$, and
(ii) $(S \cap T)^c = S^c \cup T^c$.

H.W. 1

- 1. Suppose that the set $U = \{n : 0 \le n < 100\}$ of whole numbers as an universal set. Let P be the prime numbers in U, let E be the even numbers in U, and let $F = \{1, 2, 3, 5, 8, 13, 21, 34, 55, 89\}$. i. E^{c} , **Prof. Dr. Ruma K. K. Ajeena**

H.W. 2

Compute the subsets of $S = \{a, b, c, d\}$ with cardinality 2.

H.W.3

Choose any finite sets S and T and show that $|S \cup T| = |S| + |T| - |S \cap T|.$ **H.W.4**

If the Venn diagrams for the following sets is given by st. Prof. Dr. Ruma K Compute

- 1. A B2. B – A
- 3. $A^c \cap B$
- 4. $A^c \cup B^c$.

Thank You Very Much for Your Attention