

Lecture & Transcendental Function

Asst. Prof. Dr. Ruma Kareem K. Ajeena

ا.م.د. رومی کریم خضر عجینة College of Education for Pure Science - Ibn **Al-Haitham**

> **University of Baghdad** ruma.usm2015@gmail.com

2023-2024

1. Trigonometric Functions

2.1. Deriving the Trigonometric Functions

On the circle that is shown in next figure and based on the radius. Draw the right triangle with an x leg and a y leg and the radius as the hypotenuse. The hypotenuse is always same as it's the radius of the circle, but the lengths of the legs change in a way that depends on the angle.

To describe the precise the relationship between these side lengths and this angle, we can use trigonometric functions.

Computer Science Department 1st Class: Mathematics

Based on the triangle, here are two legs, the hypotenuse and the angle of interest, theta.

Now, it should different between these two legs by calling adjacent leg which is a leg right next the angle and another one is called the opposite leg.

Now,

$$sin \theta = \frac{opposite}{hypotenuse}$$

$$cos \theta = \frac{adjacent}{hypotenuse}$$

$$\tan \theta = \frac{\text{opposite}}{\text{adjacent}}$$

For easy remember these definitions, it can use the mnemonic

SOHCAHTOA.

Example. Using this triangle to compute the Trigonometric Functions.

Solution.

$$\sin \theta = \frac{3}{5}$$
, $\cos \theta = \frac{4}{5}$, $\tan \theta = \frac{3}{4}$.

Memorize SOHCAHTOA and Reciprocals

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\frac{\csc \theta}{\text{opp}} = \frac{\text{hyp}}{\text{opp}}$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$
 $\sec \theta = \frac{\text{hyp}}{\text{adj}}$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$
 $\cot \theta = \frac{\text{adj}}{\text{opp}}$

Evaluating Trigonometric Functions

Let's evaluate all six trigonometric functions!

Solution.

Evaluating Trigonometric Functions

$$\sin\theta = \frac{5}{13} \qquad \cos\theta = \frac{12}{13} \qquad \tan\theta = \frac{5}{12}$$

$$\cos\theta = \frac{12}{13}$$

$$\tan \theta = \frac{5}{12}$$

$$csc \theta = \frac{13}{5}$$
 $sec \theta = \frac{13}{12}$
 $cot \theta = \frac{12}{5}$

$$\sec \theta = \frac{13}{12}$$

$$\cot \theta = \frac{12}{5}$$

Evaluating Trig Functions For Special Triangles

30-60-90 triangle

45-45-90 triangle

$$\sin \theta =$$

$$\cos \theta =$$

$$tan \theta =$$

$$\sin \theta =$$

$$\cos \theta =$$

$$\tan \theta =$$

First,

30-60-90 triangle

SOHCAHTOA

$$\sin \theta = 1/2$$

$$\cos\theta = \sqrt{3}/2$$

$$\tan \theta = 1 / \sqrt{3}$$

30-60-90 triangle

$$\sin \theta = \sqrt{3}/2$$

$$cos \theta = 1/2$$

$$\tan \theta = \sqrt{3}$$

45-45-90 triangle

SOHCAHTOA

$$\sin\theta = 1 / \sqrt{2}$$

$$\cos \theta = 1 / \sqrt{2}$$

$$tan \theta = 1/1$$

H.W. 1.

Compute all six trigonometric functions for angle A:

2. Compute the six Trigonometric Funs. Of the 30° and explain that geometrically?

Asst. Prof. Dr. Ruma Kareem K. Ajeema