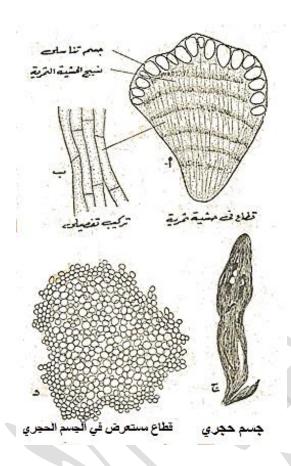


جامعة بغداد كلية التربية للعلوم الصرفة (ابن الهيثم) قسم علوم الحياة

اعداد

استاذ دكتور ثامر عبد الشهيد محسن استاذ مساعد دكتورة سمية نعيمة حوار استاذ مساعد دكتورة فادية فلاح حسن مدرس دكتورة اطياف سعيد حميد للعام الجامعي 2021-2021

علم الفطريات Mycology


اشتق اسم العلم Mycology من الكلمة الاغريقية والمكونة من Mykes والتي تعني العرهون أو عيش الغراب و Logos وتعني علم. يتضمن علم الفطريات دراسة هذه الأحياء (الفطريات) من أبسطها تركيباً وتكاثراً حتى الفطريات التي بلغت درجة كبيرة من التعقيد من حيث التركيب الجسمي، انتشارها، طرق معيشتها وتكاثرها، ودورة حياتها وعلاقتها بالكائنات الحية الاخرى منها الإنسان والحيوان والنبات، وإن معرفة الإنسان بالفطريات قديمة قدم استعماله للخمر والخبز المخمر. ولكن هذه المعرفة لم تتخذ طريقها إلى الدراسة العلمية إلا بعد اختراع المجهر إذ كانت معرفة الفطريات قبل ذلك مقتصرة على الفطريات الكبيرة التي ترى بالعين المجردة والمنتشرة في أمكان كثيرة مثل الغابات والحدائق.

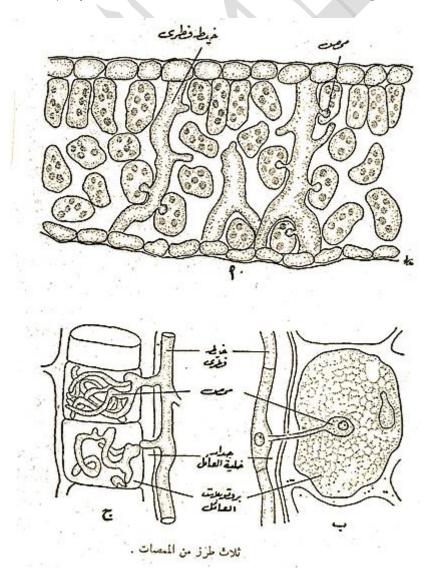
تُعرف الفطريات على أنها كائنات حية غير ذاتية التغذية حقيقية النواة تتكاثر جنسياً ولا جنسياً يتركب جسمها في الغالب من خيوط متفرعة تحاط بجدران خلوية واعتماداً على بعض هذه الصفات ضمت الفطريات قديماً ضمن النباتات البدائية (الثالوسيات) Thallophyta ضمن المملكة النباتية، والثالوسيات بصورة عامة تضم نباتات بسيطة ليس لها ما يشبه السيقان أو الأوراق أو الجذور التي تتميز بها النباتات الراقية، أما الموقع الحديث للفطريات فسيتم التطرق إليه لاحقاً ضمن تصنيف الفطريات.

الصفات العامة للفطريات

- 1- لها جسم بسيط التركيب يعرف بالثالوس (Thallus) يختلف باختلاف المجاميع المختلفة، ففي الأنواع الواطئة يكون الثالوس مؤلفاً من كتلة بروتوبلازمية عارية يشبه الاميبا يدعى البلازموديوم Plasmodium كما في الفطريات الهلامية (Slime molds) إلى ثالوس مؤلف من خلية واحدة بسيطة حاوية على أشباه جذور كما في بعض الفطريات الكتريدية Chytridiomycetes أو خلية واحدة بدون أشباه جذور كما في الخمائر Yeasts. أما الغالبية العظمى من الفطريات فيتألف الثالوس من مجموعة خيوط تتفرع إلى جميع الجهات ومتشابكة تسمى بالغزل الفطري Mycelium يسمى الخيط المنفرد منه الهايفة Aypha والجمع البهات وعمرها.
- 2- الخيط الفطري أو الهايفة قد تكون مقسمة بحواجز عرضية Septa (مفرد Septum) فتدعى الهايفة عندئذ بالهايفة المقسمة Septate hypha أو تكون الهايفات غير مقسمة بحواجز عرضية فتكون بشكل أنبوب متعدد العضيات ويسمى مدمج خلوي Coenocytic hypha أو

- Non-Septate haypha. يوجد الغزل الفطري الغير مقسم (المدمج الخلوي) في الفطريات الراقية الواطئة كالفطريات البيضية واللاقحية بينما يوجد الغزل الفطري المقسم في الفطريات الراقية كالفطريات الكيسية والبازيدية والناقصة، وتعد صفة الغزل الفطري المقسم صفة تطورية.
- 5- تمتلك الخلية الفطرية جداراً خلوياً يختلف في سمكه حسب مناطق الهايفة المختلفة كما يختلف كيميائياً باختلاف المجاميع المختلفة، بصورة عامة يتألف الجدار من طبقتين خارجية تتألف من مواد كاربوهيدراتية وبروتينات وداخلية شبكية تتألف من السليلوز أو الكايتين أو كلاهما معاً وأحياناً من الكالوس (Calose) أو البتكوز Pectose وحسب طبيعة الفطر، ففي الفطريات البيضية يتألف الجدار بصورة عامة من السليلوز وقد يحتوي على الكايتين أو لا يحتوي، أما الكايتين فيوجد في جداران الفطريات الكتريدية Chytridiomycota، الفطريات البازيدية اللاقحية Ascomycota، والفطريات البازيدية Basidiomycota
- 4- يبدأ مايسيليوم الفطر كأنبوب جرثومي قصير يبرز من البوغ (Spore) النامي، والأبواغ هي وحدات تكاثرية جنسية أو لا جنسية صغيرة تكونها معظم الفطريات، يميل المايسيليوم الناتج إلى النمو بصورة شعاعية متساوية في جميع الجهات من نقطة مركزية ليكون مستعمرة دائرية على الوسط الصلب ومستعمرة كروبة في الوسط السائل.
- 5- يأخذ الغزل الفطري أثناء مراحل معينة من دورة حياة غالبية الفطريات في الانتظام إلى أنسجة مفككة أو كثيفة التشابك تختلف عن الخيوط الفطرية المكونة للثالوس، يستعمل اللفظ العام "النسيج المحاك" Plectenchyma للدلالة على جميع الأنسجة الفطرية المحاكة أو المنسقة من أنواع النسيج المحاك وهي:
- أ- النسيج البروزنكيمي Prosenchyma ويكون عبارة عن نسيج محاك بشكل راخٍ أو غير محبك، خلاياه تكون متطاولة وموازية الواحدة للأخرى. يمكن دراسة هذا النسيج كمثال في التركيب الجسمي (الستروما Stroma) الذي تتكون عليه تراكيب تكاثرية يتكون من قبل الفطر Daldinia.
- ب- النسيج الحشوي الكاذب Pseudoparenchyma ويكون بشكل نسيج مكون من خلايا بيضوية أو كروية متماسكة تشبه الخلايا الحشوية في النباتات الراقية. يمكن دراسة هذا النسيج كمثال في الجسم الحجري Sclerotium للفطر كمثال في الجسم الحجري

معيشة الفطريات


بما أن الفطريات كائنات غير قادرة على عملية البناء الضوئي فتكون بذلك اعتمادية التغذية Heterotroph

- 1- رمية المعيشة Saprophytic: وهي الفطريات التي تعيش على مواد عضوية او أنسجة غير حية وهي تعيش إما في التربة أو الماء أو الهواء وتكون على نوعين:
- أ- رمية إجبارية Obligate saprophytes: وهي الفطريات التي تعيش فقط على نسيج ميت أو مادة عضوية مثال .Penicillium spp.
- ب- رمية اختيارية Facultative saprophytes: وهي فطريات طفيلية في الأساس ولكنها تستطيع أن تترمم بغياب العائل مثال Pythium.
- 2- طفيلية المعيشة Parasitic: وهي الفطريات التي تعيش على نسيج حي نباتي أو حيواني مسببة عدداً من الأمراض وتكون على نوعين:
- أ- طفيلية اختيارية Facultative parasites: وهي فطريات مترممة أساساً خاصة في التربة Smut fungi ولكنها بوجود عائل مناسب يمكن أن تتطفل عليه مثل فطريات التفحم Pythium.

ب- طفيلية إجبارية Obligate parasites: وهي الفطريات التي تعيش فقط على نسيج حي، إذ تصبب معظمها النباتات مسببة أمراضاً عديدة للأوراق والسيقان والجذور والثمار وتؤدي أحياناً إلى خسائر جسيمة كما في فطريات الصدأ Albugo candoda ،Rust fungi.

الفطريات الطفيلية إما أن تكون:

- أ- خارجية التطفل Ectoparasitic حيث ينمو الغزل الفطري على سطح العائل ويرسل ممصات Haustoria إلى خلايا البشرة لامتصاص الغذاء.
- ب- داخلية التطفل Endoparasitic وهي التي تنمو داخل أنسجة العائل وتكون بعدة حالات حسب موقعها داخل أنسجة العائل، فإما أن تنمو بين الخلايا أو في المسافات البينية وتسمى عندئذ Intercellular وترسل ممصات داخل الخلايا للحصول على المواد الغذائية وقد تنمو داخل الخلايا للخلايا مصات حيث تحصل على داخل الخلايا مصات حيث تحصل على غذائها عن طريق الانتشار Diffusion خلال الجدار من السايتوبلازم.

وفي هذا الصدد فإن تأثير الطفيلي على العائل أو النسيج قد يؤدي إلى قتله أو موته فيسمى عندئذ الفطر Necrotrophs وقد لا يؤدي إلى قتل العائل ولكن إلى إضعافه ويسمى Nesistroph إذ يعتقد في هذه الحالة بأن العائل ينتج مواد مقاومة ضد الفطر وبذلك لا يستطيع الاستمرار في الحياة.

- 3- المعيشة التكافلية (تبادل المنفعة) Symbiotic: حيث يعيش الفطر مع كائن حي آخر معيشة من نوع تبادل المنفعة بين الاثنين أحدهما يوفر عناصراً أساسية للآخر أمثلة على ذلك:
- أ- المايكورايزا Mycorrhiza: وهي علاقة فطر وجذر حيث تعيش بعض الفطريات معيشة تكافلية مع جذور بعض النباتات الراقية، قد تكون المايكورايزا خارجية النباق وقد عندما يكون الغزل الفطري نامياً على سطح الجذر ويكون تراكيب تكاثرية خارجية ايضاً وقد تكون المايكورايزا داخلية Endomycorrhiza عندما ينتشر الفطر بصورة رئيسة داخل أنسجة الجذر مع قلة منه في التربة. يعتقد بأن الفطر يوفر الفسفور والنتروجين بالشكل الذي يستطيع أن يمتص النبات بينما يقوم النبات بتوفير الكاربوهيدرات.

ب-الاشنات Lichens: وهي علاقة تبادل منفعة بين فطر -طحلب.

زراعة وتغذية الفطريات

تقتصر زراعة أو تنمية الفطريات مختبرياً على الفطريات المترممة سواء المترممة إجبارياً أو اختيارياً كذلك المتطفلة اختيارياً أما المتطفلة إجبارياً فلا يمكن تنميتها بصورة جيدة في المختبر أو يتعذر تنميتها تماماً. تنمى الفطريات على أوساط غذائية Nutrient media خاصة تختلف تبعاً لطبيعة الفطر ويمكن تقسيم الأوساط الغذائية إلى:

- 1- أوساط طبيعية Natural media: وتحضر من خلاصات لاجزاء نباتية قد تكون جذوراً أو سيقاناً أو بذوراً أو فاكهة مثل خلاصة الشعير، خلاصة البطاطا، خلاصة الجزر، وغيرها أو تحضر من مصادر حيوانية مثل خلاصة اللحم أو الدم. مثال على ذلك Potato medium،
- 2- أوساط تركيبية أو صناعية Synthetic media: وتحضر من مواد كيميائية محددة التركيب والكمية على صورة أملاح ومصادر كاربون ومصادر نتروجين مثال وسط الزابكس Czapek's Dox medium.
- 3- الأوساط نصف التركيبية Semisynthetic medium: وتتكون من الأوساط الطبيعية التي يضاف إليها بعض المواد الكيميائية ذات التركيب المحدد فتكون خليطاً بين مواد طبيعية ومواد كيميائية مثل وسط دكستروز البطاطا Potato dextrose medium.

تستعمل الأوساط الغذائية إما على هيئة محاليل سائلة فتسمى بالأوساط السائلة إما على هيئة محاليل سائلة فتسمى بالأوساط السائلة Agar وهي مادة media أو أوساط صلبة وهي مادة الآكار Solid media بعد إضافة مادة مصلبة وهي مادة الآكار Agar وهي مادة كربوهيدراتية معقدة تستخرج من الطحالب الحمر أو الأعشاب البحرية وليس لها قيمة غذائية للفطريات ولكنها تضاف إلى الأوساط الغذائية المستعملة لتنمية الأحياء المجهرية لتصليبها.

العناصر الغذائية الرئيسة لنمو الفطريات تشمل مصدر كاربوني بشكل سكريات أحادية مثل الكلوكوز، الفركتوز أو سكريات متعددة مثل النشا. كذلك تحتاج الفطريات إلى مصدر نتروجيني عضوي أو لا عضوي، العضوي يكون إما بشكل أحماض أمينية أو Peptone (ببتون) وهو مصدر نتروجيني عضوي تستغله الفطريات للنمو. أما المصادر اللاعضوية للنتروجين فتكون بشكل أملاح النترات أو الامونيوم، أما الأملاح التي تحتاجها الفطريات للنمو فتشمل عدداً كبيراً وتضاف إلى الأوساط الغذائية إما بشكل عناصر تضاف بكميات كبيرة نسبياً للنمو فتشمل عدداً كبيراً وتضاف إلى الأوساط الغذائية إما بشكل عناصر تضاف بكميات كبيرة نسبياً بكميات ضئيلة ولها قيمة غذائية أساسية بحيث يؤدي غيابها إلى نقص كبير في نمو الفطر وتسمى بالعناصر الصغيرة أو الاثرية Microelements وتضم الزنك Zn، الحديد Fe، النحاس Piptone المنغنيز Mn والبورون B.

إضافة إلى العناصر الأساسية السابقة تحتاج بعض الفطريات في نموها إلى الفيتامينات Vitamins بالرغم من أن معظم الفطريات تصنع فيتاميناتها بنفسها ولكن القليل منها يحتاج الى فيتامينات مضافة مثل الثيامين Thiamine، البيروكسين Pyridoxine، الرايبوفلافين Biotine.

العوامل البيئية (الفيزياوية) المؤثرة في نمو الفطريات

1- درجة الحرارة Temperature

تتباین الفطریات من حیث مدی درجات الحرارة التي تستطیع أن تنمو فیها وعادة تتراوح ما بین $^{\circ}$ 0 م و $^{\circ}$ 0 م أو أكثر أما الحرارة المثلی فتتراوح ما بین $^{\circ}$ 20 م. واعتماداً علی درجات الحرارة تقسم الفطریات إلی ثلاث مجامیع:

1– الفطريات المحبة لدرجات الحرارة المعتدلة Mesophilic fungi: والتي تنمو بدرجات حرارة معتدلة ضمن المدى 01–00°م، أما الدرجة المثلى Optimum temperature لنموها فتكون ما بين 05–03°م وتضم غالبية الفطريات.

- 2- الفطريات المحبة لدرجات الحرارة الواطئة Cold-Loving or Psychrophilic fungi: وهي الفطريات التي تتمو في درجات حرارة واطئة تصل بعض الأحيان إلى الصفر وضمن المدى العام 5-30م والدرجة المثالية لنموها هي 50م.
- Heat-loving or Thermophilic fungi المرتفعة المرتفعة المرتفعة المريات المحبة لدرجات حرارية المرتفعة المدى $20-50^\circ$ م وقد تصل إلى 58° م، أما الدرجة المثلى لنموها فتكون 40° م وتتواجد عادة في المناطق الحارة وأكوام القش.

2-التركيز الايوني للهيدروجين أو الاس الهيدروجيني pH:

إذ تفضل الفطريات النمو في الوسط القريب من المتعادل الى الحامضي ما بين الرقم الهيدروجيني في الهيدروجيني في 6-6، وتتمو الخمائر بدرجة حموضة تصل الى 2، ويتغير الرقم الهيدروجيني في المزرعة الفطرية مع زيادة نمو الفطر وفعاليته بسبب تراكم العديد من النواتج الايضية مثل الامونيا والأحماض العضوية، CO₂ وغيرها مما يجعل الوسط أقل ملائمة.

3-الماء والرطوبة Water and humidity

تتباين الفطريات من حيث حاجتها إلى الماء، فالفطريات المائية Aquatic fungi تحتاج إلى الماء بصورة سائلة لكي تنمو فيه، وقسم من الفطريات يكتفي برطوبة عالية والبعض الآخر يستطيع تحمل الجفاف عن طريق تكوين تراكيب مقاومة كالأجسام الحجرية أو السبورات الكلاميدية، ويتطلب نمو الفطريات حداً أدنى للرطوبة وقد تستفيد من هذه الظاهرة في حفظ الأغذية والمحاصيل الزراعية وذلك يخفض محتواها من الماء إلى درجة معينة تمنع نمو الفطريات فيها.

4-الضوء Light

تختلف الفطريات اختلافاً كبيراً من حيث حاجتها إلى الضوء بالرغم من أن الضوء لا يؤثر بصورة مباشرة على النمو إلا أن بعض الضوء يكون ضرورياً لتكوين الأبواغ كما يلعب الضوء دوراً في انتشار أبواغ بعض الفطريات حيث تكون الحوامل الحافظية في هذه الفطريات موجبة الانتحاء الضوئي وتقذف أبواغها اتجاه الضوء. أما العراهين (Mushrooms) التي يتناولها الإنسان فتنمو بصورة أفضل في الكهوف المظلمة وأن الضوء العالى يثبط نموها.

(O₂) الاوكسجين −5

إن الغالبية العظمى من الفطريات هي هوائية إجبارية Obligate aerobic حيث تحتاج إلى الاوكسجين لنموها ولكن توجد بعض الأنواع التي تكون لاهوائية إجبارية

خاصة التي تعيش في المياه الآسنة ومياه المجاري والتي تعود إلى الفطريات البيضية إذ تستطيع أن تعيش بغياب الاوكسجين نتيجة حصول تحورات تركيبية أو فسلجية فيها.

إن الفطريات تحتاج أن تتنفس كسائر الأحياء الاخرى لغرض أكسدة المواد العضوية التي تتغذى عليها ومن ثم تحرير الطاقة للقيام بالأعمال الحيوية المختلفة، كما تحتاج الفطريات إلى الاوكسجين لبناء التركيب الخلوي إذ يدخل في تركيب الأحماض الدهنية المشبعة والستيرولات Sterols وغيرها، فالفطريات تتنفس وتوجد ثلاثة أشكال من التنفس حسب طبيعة الفطر الذي يستمد طاقته من أكسدة مركبات عضوية وتحرير الالكترونات من تلك المركبات وتحويلها إلى مستلم معين:

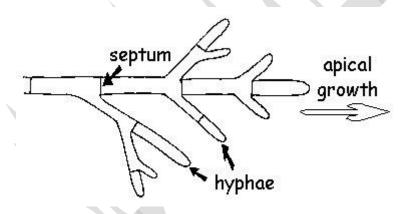
- 1- اذا كان المستلم للالكترونات مركبات عضوبة فالعملية تدعى بالتخمر Fermentation.
 - 2- إذا كان المستلم للالكترونات مركبات لا عضوية فالعملية تدعى التنفس اللاهوائي.
 - 3- إذا كان المستلم الآخر للالكترونات هو الاوكسجين فالعملية تدعى بالتنفس الهوائي.

النمو في الفطربات Fungal growth

إن تعريف مصطلح النمو في الفطريات بصورة عامة يختلف باختلاف الشكل الخضري، بعض العلماء عرف النمو على أنه الزيادة في عدد الأنوية وعدد الخلايا وحجمها أو في كمية المادة البنائية غير الحية. علماء آخرون عرفوا النمو أنه الزيادة في كتلة أو عدد الخلايا، من هذين التعرفين يمكن أن نستنتج بأن النمو يكون في تضاعف المادة الحية أو البروتوبلاست وهذا التضاعف يختلف باختلاف الشكل الخضري للفطريات وكما يلى:

1- نمط النمو الخميري

ويشمل هذا النمط الخمائر المتبرعمة والمنشطرة وأن هنالك علاقة بين النمو والتكاثر إذ أن تضخم البروتوبلاست الناتج من نمو الخميرة المتبرعمة (Budding yeast) يحفز تكوين البرعم الذي ينفصل بعد الزيادة في الحجم ليكون خلية جديدة. تتكرر هذه العملية وتتضاعف الخلايا في عددها. اما في الخميرة المنشطرة فتتضخم الخلية الأم ثم تتشطر إلى خليتين كل منها ينمو إلى حجم الخلية الأم وبذلك يكون نمو الخميرة يعني زيادة في عدد الخلايا المستقلة.


Plasmodial growth النمو البلازمودي-2

ويحدث في الفطريات الهلامية حيث يكون الجسم الخضري بشكل بلازموديوم (كتلة بروتولازمية متعددة الانوية محاطة بغشاء الخلية يشبه الاميبا) في هذا النوع قد يتضاعف

البروتوبلاست في أي جزء من البلازموديوم وهذا يدل على أن جزء من البلازموديوم قادر على التوالد بنفسه.

3-النمو القمى Apical growth

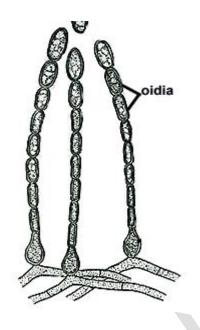
ويحدث في الفطريات الخيطية حيث يتركز النمو عند قمة الخيوط الفطرية التي يسري فيها بروتوبلاست جديد باستمرار قادم من المنطقة تحت القمية، كما أن هنالك تجمع فمي للحويصلات السايتوبلازمية التي ترسل الى قمة الخيط لتجهيز المصدر الكافي لغشاء سايتوبلازمي جديد، أن النموذج العام للنمو القمي في الخيط الفطري تتضمن الاشتراك المباشر للشبكة الاندوبلازمية والديكتيوسومات والحويصلات السايتوبلازمية Macro and Microvesicles والاخيرة تتحد مع الغشاء البلازمي وتفرغ مادتها الأساسية التي إما أن تكون إفرازية تحوي على انزيمات هدم الجدار وبعضها يحوي على مواد بناء الجدار فتعمل جميعاً على تمدده كما في الشكل:

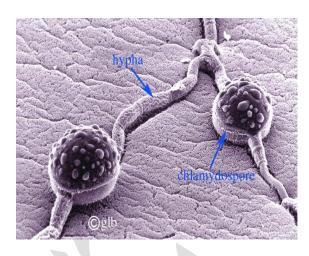
Reproduction in fungi التكاثر في الفطربات

التكاثر هو عملية تكوين أفراد جدد لها جميع خصائص النوع وزيادة عدده والمحافظة على بقائه. التكاثر في الفطريات يكون إما لا جنسي Asexual أو جنسي Sexual ويتم كلاهما بعدة طرق سنأتى إليها لاحقاً.

تعتمد الفطريات على التكاثر اللاجنسي أكثر من التكاثر الجنسي وذلك لأن التكاثر اللاجنسي يكون أفراداً عديدة (آلاف من الوحدات التكاثرية) ويتكرر لعدة مرات على فترات طويلة كما يحصل التكاثر اللاجنسي تحت الظروف الطبيعية للنمو بعد نضج الطور الجسدي، أما التكاثر الجنسي فيحصل تحت ظروف خاصة وقد يحدث لمرة واحدة في دورة الحياة وينتج وحدات تكاثرية قليلة.

هنالك بعض المصطلحات يجب التعرف عليها قبل الخوض في طريق التكاثر وهي:


- الفطريات الكلية الاثمار Holocarpic fungi: وهي الفطريات التي يتحول فيها الثالس الفطري (الطور الجسدي) بأكمله إلى تراكيب تكاثرية واحدة أو أكثر جنسية أو لا جنسية بحيث لا تجتمع الاطوار الجسدية مع الأطوار التكاثرية في نفس الثالس مثال عليها الفطريات الهلامية . Myxomycota
- الفطريات الحقيقة الاثمار Eucarpic fungi: وهي التي تمثل الغالبية العظمى من الفطريات وفيها يتحول جزء من الثالس الجسدي إلى أعضاء تكاثرية جنسية أو لا جنسية ويبقى جزء آخر من الثالس الجسدي لتأدية العمليات الحيوية الجسدية للفطر، إذ تجتمع الأطوار التكاثرية والجسدية في نفس الثالس.
- الفطريات متماثلة الثالس Homohallic fungi: هي الفطريات التي تكون أعضاء أو تراكيب جنسية ذكرية وانثوية وقادرة على أن تخصب نفسها بنفسها أي لها الفة جنسية بين أعضائها الجنسية (أحادية المسكن).
- الفطريات متباينة الثالس Heterothallic: هي الفطريات التي تكون منفصلة الأجناس أي فطر انثوي وفطر ذكري ولا يحصل التكاثر الجنسي إلا بوجود الجنسين (ثنائية المسكن).

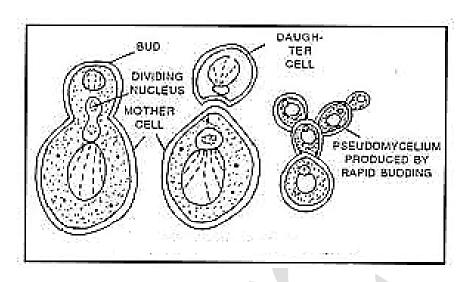

التكاثر اللاجنسي Asexual reproduction

ويتم بتكوين وحدات تكاثرية لا جنسية بطرق مختلفة:

1-التفتت أو التجزؤ Fragmentation وتكوين الاويدات Oidia

يتفتت جسم الفطر الخيطي إلى قطع صغيرة تمثل الخلايا المكونة للهايفة الأصلية وتحدث هذه العملية في قمم الخيوط وتعرف كل خلية منفصلة بمصطلح الاويديم Oidium (جمع Oidia هذه العملية في قمم الخيوط وتعرف كل خلية منفصلة بمصطلح الاويديم Arthrospores وتسمى كذلك بالسبورات المفصلية كروية سميكة الجدار تسمى بالسبورات الكلاميدية قد تتحول الخلايا قبل انفصالها إلى خلية كروية سميكة الجدار تسمى بالسبورات الكلاميدية Chlamydospores وهي سبورات مقاومة لها القدرة على تحمل ومقاومة الظروف الغير الملائكة لحين عودة الظروف الملائمة تنبت إلى فطر جديد، مثال على فطر يتكاثر بطريقة الاويديات هو Geotrichum candidum.

Fission الانشطار-2

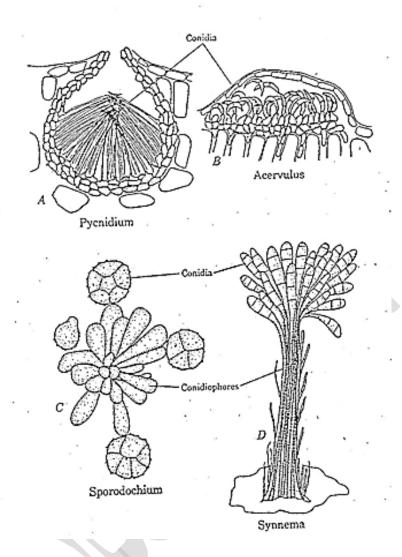

وهي طريقة شائعة للتكاثر في البكتريا كما تحصل في بعض الخمائر مثل خميرة Schizosaccharomyces. إذ تنقسم أو تنشطر الخلية إلى خليتين بواسطة تخصر السايتوبلازم وانقسام النواة، فتنقسم الخلية إلى خليتين صغيرتين متساويتين بالحجم تنموان إلى حجم الخلية الأم بعد انفصالهما.

التكاثر بالأنشطار في الفطريات

Budding التبرعم-3

وهي طريقة شائعة في الخمائر ومنها خميرة السكر .Saccharomyces sp إذ يتكون نمو Blastospore إذ يتكون نمو جانبي من الخلية الأصيلة عند نقطة معينة يعرف بالبرعم Bud أو السبور البرعمي الذي قد ينفصل عن الخلية الأم ينمو بعد ذلك إلى حجمها أو أن يبقى متصلاً فيها ثم يتبرعم بدوره ليكون خيطاً قصيراً من عدة خلايا يسمى بالمايسليوم أو الهايفة الكاذبة Pseudohypha.

التكاثر بالتبرعم في الخمائر


4-إنتاج الأبواغ Spore formation

ويمثل أغلب الطرق الشائعة للتكاثر اللاجنسي في الفطريات، تتباين الأبواغ اللاجنسية في شكلها، لونها، حجمها وعدد الخلايا المكونة لها وهذه الصفات تعتمد في التشخيص والتصنيف وتبعاً لطرق تكوين الأبواغ اللاجنسية تقسم الأبواغ إلى نوعين:

1- الأبواغ الحافظية Sporangiospores: وهي التي تتكون داخل علب أو حوافظ تسمى Sporangiophores. وهذه الأبواغ تتكون بعد أن sporangia وتحمل على حوامل خاصة تسمى Sporangiophores. وهذه الأبواغ تتكون بعد أن يعاني بروتوبلاست الحافظة البوغية عدد من الانقسامات إلى أجزاء وحيدة النواة كل جزء يتميز إلى بوغ حافظي. قد تكون الأبواغ الحافظية غير متحركة Aplanospores أو قد تكون متحركة بواسطة الأسواط فتسمى Planospores أو Zoospores. الأسواط تختلف في عددها قد يكون سوط واحد أملس الله الله وريشي اعتمال كما تختلف من موقع السوط، إما أن يكون أمامي أو في مقدمة الخلية أو خلفي (في مؤخرة الخلية). وقد يحوي البوغ على سوطين كلاهما من النوع الأملس أو أحدهما أملس والآخر ريشي يتصلان إما بمقدمة الخلية أو جانبية الموقع.

2-الأبواغ الكونيدية Conidiospores ويطلق عليها غالباً كونيديا Conidia وهي أبواغ لا جنسية تتكون بصورة عارية وغير محفوظة داخل علب كما تحمل أو تنتج من حوامل خاصة تسمى الحوامل الكونيدية واحدة مفردة أو سلاسل أو الكونيدية واحدة مفردة أو سلاسل أو تجمعات عنقودية تنتظم في قمة الحامل، في بعض الأحيان تتجمع الحوامل الكونيدية على هيئة حوامل مركبة بطرق مختلفة مكونة أجساماً ثمرية لا جنسية أهمها:

- 1- الظفيرة الكونيدية Synnema (جمع Synnema) ويطلق عليها كذلك بالكوريميا Coremia. وفيها تتحد الحوامل الكونيدية على هيئة عمود قائم قد يكون محدود النمو فتتكون كونيدات قمية فقط وقد يكون غير محدود النمو فتنتج الكونيدات جانبياً وقمياً. مثال Graphium ، Penicillium claviforme
- 2- الوسادة السبورية Sporodochium ويكون فيها الحامل السبوري المركب على هيئة وسادة Cushion shape يتركب من قاعدة حشوية مؤلفة من خيوط فطرية متشابكة تنبثق منها الحوامل الكونيدية عمودياً، وهذه الوسادات توجد على النباتات المصابة مطمورة داخل جسم العائل بينما يشق الجزء الخصب المكون من الحوامل الكونيدية والكونيدات البشرة ويصبح مكشوفاً. مثال Fusarium ، Nectria.
- 3- الكويمة الكونيدية Acervulus وهي عبارة عن حوامل كونيدية قصيرة قائمة ومرتبة بصورة عمادية على قاعدة حشوية كاذبة بحيث تتخذ الكويمة هيئة حشية مسطحة تكون في بادئ الأمر مغطاة بنسيج العائل ولكنها تظهر بعد ذلك عندما يتمزق النسيج. قد تحتوي الكويمات في بعض الفطريات على شعيرات متصلبة Setae قائمة طويلة أو قصيرة تظهر بين الحوامل الكونيدية. مثال Colletotrichum.
- 4- البكنيدة Pycnidium وهي عبارة عن حامل سبوري مركب أو ثمرة لا جنسية كروية أو قارورية الشكل محاطة بنسيج برنكيمي كاذب يؤلف الجدار، ومبطنة من الداخل بحوامل كونيدية قصيرة بشكل طبقة خصيبة عمادية الشكل. قد تكون البكنيدة مغلقة وتفتح عند النضج أو مفتوحة للخارج بفوهة Ostiole تنطلق منها السبورات. مثال Septoria.

اشكال مختلفة من التراكيب التكاثرية الثمرية اللاجنسية (الحوامل الكونيدية المركبة)

التكاثر الجنسى Sexual reproduction

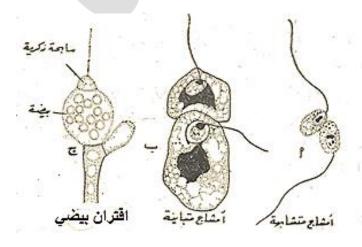
ويشمل اتحاد خليتين جنسيتين إحداهما ذكرية والاخرى انثوية لتتكون اللاقحة والتي تمر بعملية انقسام اختزالي نتاجها تكوين أفراد لها نفس عدد كروموسومات الآباء.

تتم عملية التكاثر الجنسي خلال ثلاث مراحل:

1- اندماج السايتوبلازم Plasmogamy: إذ يتم الاندماج بين سايتوبلازم الخليتين المتزاوجتين إما كلياً أو جزئياً خلاله تندفع النواة الذكرية إلى الخلية الانثوية.

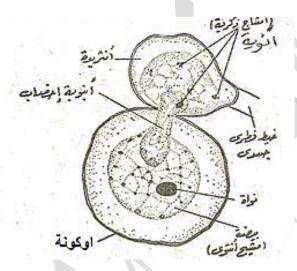
2- اندماج الأنوية Karyogamy: وهي الخطوة التي تتحد فيها النواتان لتكون نواة واحدة ثنائية المجموعة الكروموسومية وتعرف بالخلية باللاقحة.

3- الانقسام الاختزالي Meiosis: وهي الخطوة التي ترجع فيها حالة تصف العدد الكروموسومي في النوى الأربعة الناتجة من الانقسام.


بعض الفطريات وخاصة الواطئة منها تكون أمشاج تختلف في شكلها وحجمها وحركتها كما تختلف الحوافظ المشيجية من حيث اللون والشكل والحجم، بعض الفطريات تتشابه فيها الحوافظ المشيجية الانثوية والذكرية من حيث المظهر لذلك يرمز الإحداهما بعلامة (+) والاخرى بعلامة (-) يتم التكاثر الجنسي بعدة طرق:

1-اندماج أو تزاوج الأمشاج المتحركة Planogametic copulation:

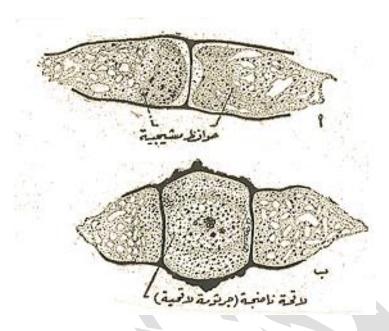
قد تكون الأمشاج المتزاوجة متحركة فتعرف عندئذ Planogametes وهذا يتطلب وجود الماء في مرحلة من دورة الحياة، لذلك تقتصر هذه الطريقة على تلك التي تعيش في الماء أو على الترب الرطبة أو متطفلة داخل أنسجة العائل حيث يوفر العصير الخلوي الوسط اللازم لتحرك الأمشاج.


قد يكون تزواج الأمشاج المتحركة باحدى الحالات التالية:

- 1- تتزاوج أمشاج متشابهة Isogamous إذ يكون كل من المشيجين الانثوي والذكري متشابهان مظهرباً (الحجم والشكل والحركة) ولكنهما مختلفان جنسياً.
- 2- تتزاوج أمشاج متباينة (Heterogamous) Anisogamous إذ يكون المشيج الذكري صغير الحجم وسريع الحركة، أما المشيج الانثوي فيكون كبير الحجم بطيء الحركة ويحصل الإخصاب خارج جسم الفطر.
- 5- تزاوج بيضي Oogamous وهو نوع من تزاوج الأمشاج المتباينة إذ يتكون المشيج الذكري ويتحرر سابحاً باتجاه البيضة التي تبقى داخل الحافظة الانثوية ويحصل الإخصاب داخل الحافظة الانثوية، ويكون هذا النوع نادراً في الفطريات ويحدث في رتبة واحدة من الفطريات الكتربدية Order: Monoblepharis وجنس Monoblepharis.

2-تلامس الحوافظ المشيجية Gametangial contact:

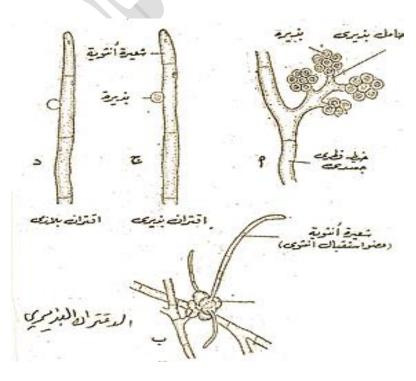
في هذه الطريقة تتلامس الحافظتان الانثوية والذكرية ولا تتميز الأمشاج في الحافظة الذكرية ولم الحافظة الانثوية فتحتوي على بيضة واحدة Oosphere أو أكثر، تنتقل الأنوية الذكرية بعد تلامس الحافظة الانثوية الانثوية من خلال ثقب ذائب في الجدار المشترك عند نقطة التلامس وقد يتكون أنبوب إخصاب Fertilization tube. تحصل هذه الطريقة في بعض الفطريات الواطئة مائية وغير مائية كذلك في الفطريات المتطفلة، لا يحدث اندماج فعلي بين الحافظتان ولكن تنتقل الأنوية الذكرية مع جزء من السايتوبلازم إلى داخل الحافظة الانثوية.



تكاثر جنسي بتلامس الحوافظ المشيجية.

3-اندماج الحوافظ المشيجية Gametangial conjugation:

تتميز هذه الطريقة باندماج جميع محتويات الحافظتان الملتصقتان وتتم بطريقتين:


- 1- مرور محتويات الحافظة الذكرية خلال ثقب يتكون في نقطة التلامس إلى الحافظة الانثوية وهذه تحصل في الفطربات الكلية الاثمار المائية.
- 2- الاندماج المباشر للحافظتين وتكوينها حافظة واحدة حيث يذوب الجدار الفاصل بين الحافظتين المتماستين وتندمج محتوياتهما في حافظة واحدة مكونة سبور جنسي ساكن وهذا يحدث في الفطريات اللاقحية Zygomycota.

طريقة تزاوج الحوافظ المشيجية

Spermatization الاقتران البذيري–4

بعض الفطريات الراقية تكون وحدات ذكرية تشبه الأبواغ أحادية الخلية صغيرة الحجم غير متحركة تعرف بالبذيرات Spermatia وتنتقل بواسطة الحشرات أو الرياح إلى حوافظ مشيجية انثوية أو إلى هايفات استقبال أو إلى هايفة جسدية وتلتصق بها ثم يتكون ثقب في نقطة الالتصاق تفرغ خلالها محتويات البذيرة إلى الجزء الذي يقوم مقام التركيب الانثوي، تحدث هذه الطريقة في الفطريات البازيدية والكيسية.

5-الاقتران الجسدي Somatogamy:

بعض الفطريات لا تكون أعضاء جنسية متخصصة ولكن تقوم خلايا جسدية عادية بهذه المهمة وهي ظاهرة شائعة في الفطريات الراقية ومنها الفطريات البازيدية، حيث يحصل اندماج خلايا جسدية متجاورة في نفس الخيط عن طريق ما يسمى بالاتصالات الكلابية Clamp connections بين الخلايا المتزاوجة تمر خلال هذه الاتصالات (القنوات) الأنوية من خلية إلى اخرى متباينة وراثياً. وقد يحصل الاتحاد بين خليتين جسديتين من خيطين مختلفين.

الأهمية الاقتصادية للفطريات

تلعب الفطريات دوراً مهماً في العالم العضوي وحياة الإنسان والحيوان والنبات فلهذه الفطريات أضرار ومنافع.

الأضرار

1-الفطريات مسؤولة على ما يقارب 70% من الأمراض النباتية، فتصيب النباتات الاقتصادية مثل أشجار الفاكهة والخضروات والحبوب فتسبب لها الكثير من الأمراض وتؤثر مباشرة في اقتصاد البلاد مثل أمراض الصدأ والتفحم، البياض الزغبي، البياض الدقيقي وغيرها.

2-تتسبب الفطريات في تلف المواد الغذائية والفواكه الطازجة، الأجبان المعلبات والحبوب في المخازن عند التخزين السيء.

3-تسبب الفطريات أمراض عديدة للإنسان أمثلة على ذلك:

- أ- التسمم الاركوتي Ergotism الناتج عن تناول الحبوب الحاوية على الأجسام الحجرية للفطر Claviceps purpurea عندما تطحن الأجسام الحجرية مع الحبوب.
- ب-أمراض جلدية مثل مرض القرع على فروة الرأس (Ring warm) الذي يسببه الفطر بسببه الفطر المراض جهازية داخلية متالفة، قد تسبب أعراض مشابهة لمرض التدرن الرئوي يسمى بمرض الرشاشيات Aspergillus fumigatus.

4-بعض الفطريات تنتج سموماً Mycotoxins مسرطنة أو لها تأثيرات خطيرة اخرى أمثلة على هذه السموم هي Aflatoxins التي ينتجها الفطر Aspergillus flavus ومنه اشتق اسم السم، إضافة إلى سموم اخرى مثل Patulin و Ochratoxin وغيرها.

5-بعض الفطريات تسبب تلف الأخشاب وتحللها لذلك تسبب مشاكل للبيوت الخشبية والجسور وسكك القطار.

6-تسبب تلف وتآكل الألياف والورق والجلود والمنتوجات.

7-بعضها يتطفل على الأسماك أو بيوضها مثل الفطر Saprolegnia parasitica، البعض الاخر يتطفل على دودة الحرير Beauveria bassiana.

منافع الفطربات

1—تقوم الفطريات بدور هام في إحداث التغيرات البطيئة والمستمرة للبيئة فهي مسؤولة مع البكتريا في تحليل المخلفات العضوية إلى مركبات بسيطة وتحرير ${\rm CO}_2$ الذي تستخدمه النباتات في عملية البناء الضوئي، كذلك تزيد من خصوبة التربة وتخليص الكرة الأرضية من المواد العضوية المتراكمة.

2-بعضها يستخدم في تحضير الأجبان Roquefort cheese الذي يستخدم في إنتاجه الفطر Penicillium roquefotii وجبن الكاممبرت Camembert cheese الذي يستخدم في إنتاجه الفطر Penicillium camemberti.

3-بعض الفطريات تستخدم كغذاء مباشرة للأنسان مثل المشروم Mushrroms (العراهين) والكمأ .Truffles

4-تنتج الفطريات العديد من المواد الكيمائية التجارية مثل الحوامض العضوية كحامض الستريك، والاوكزاليك، كما تنتج الفيتامينات وغيرها.

5-تستخدم الخميرة صناعياً لإنتاج الكحول وتضاف الى المعجنات لتحسين قوامها وإنضاجها.

6-تستخدم بعض الفطريات في المقاومة الإحيائية لمكافحة أمراض النبات المتسببة عن الفطريات المرضية مثل أنواع جنس Trichoderma كما يستخدم بعضها في المقاومة الإحيائية للحشرات الضارة مثل الذباب المنزلي باستخدام الفطر Entomophthora muscae.

7-بتطور علم التقنيات الإحيائية فقد استخدمت الفطريات في تحسين العديد من المنتجات والصناعات باستغلالها للأنزيمات المفرزة والتي تعمل على تحليل المواد السليلوزية واللكنينية الداخلة في صناعة الورق والتخلص من الشوائب لإنتاج نوعية جيدة من الورق.

8-يمكن أن تستخدم الفطريات في الدراسات الوراثية والكيمياء الحياتية ولذلك لسرعة تكاثرها وإمكانية تتميتها في أماكن محدودة.

9-بعضها ينتج مواد مضادة للأحياء المجهرية (مضادات حياتية) كالبنسلين والكريسوفلفين Griseofulvin

تصنيف الفطريات

وضعت عدة نظم لتصنيف الفطريات منذ اكتشافها ولغاية الوقت الحاضر فقد صنفت أولاً ضمن المملكة النباتية (الثالوسيات Thallophyta) ولفترة طويلة اعتبرت ضمن هذه المملكة، بعد ذلك وضعها العالم (Whittakar, 1969) وحسب نظام المملكات الخمسة ضمن مملكة مستقلة سميت Kingdom Mycetae ولكنه حسب التصنيف الحديث المعتمد على الصفات التطورية سميت Phylogenetic classification والعلاقات التطورية لإيجاد علاقة القرابة بين المجاميع المختلفة.

Kingdom protoctista (Protista)-1

وتضم هذه المملكة الفطريات الهلامية التي تتميز بعدم وجود جدار خلوي في الطور الجسدي المتمثل بالبلازموديوم الحقيقي أو الكاذب وتضم هذه المملكة عدة شعب Phyla:

- Phylum: Myxomycota -1 تتميز بوجود البلازموديوم الحقيقى حر المعيشة.
- Phylum: plasmodiophoromycota -2 تتميز بأن البلازموديوم يكون متطفلاً داخل خلايا العائل وليس حر المعيشة.
- Phylum: Dictyosteliomcota -3 يتميز بالبلازموديوم الكاذب Pseudoplasmodium الناتج من تجمع عدد من الاميبات والتي تتساب نحو نقطة مركزية.
- Phylum: Acrasiomycota –4 يتميز بالبلازموديوم الكاذب الناتج كذلك من تجمع عدد من الاميبات الهلامية بدون انسياب مركزي.

Kingdom: Stramenopila-2

تضم فطريات تتميز باحتوائها على جدار خلوي متميز يحوي على السليلوز تكون أبواغ متحركة بسوطين متباينة Heterokont أحدهما ريشي Tinsel والآخر أملس Whiplash وكذلك تعتبر كخطوط منفصلة Separate Lineages ضمن مجاميع طحلبية معينة والتي تعتمد في الأساس على وجود السوط الريشي، تضم هذه المملكة عدداً من الشعب Phyta وهي:

Phylum: Oomycota –1

ويكون فيها الثالس خيطي غير مقسم (مدمج خلوي)، الأبواغ متحركة بسوطين متباينة Heterokont.

Phylum: Labyrinthulomycota -2

الثالس بشكل أنابيب متفرعة داخلها خلايا اميبية زاحفة.

Phylum: Hyphochytridiomycota -3

الثالس احادي الخلية بدون أشباه جذور وقد تحتوي على أشباه جذور، الخلايا متحركة بسوط واحد امامي ريشي Tinsel.

Kingdom Fungi-3

تضم فطريات قد تكون خلايا متحركة في الطور التكاثري ولكن الأبواغ تكون من النوع (Isokont) بشكل سوط خلفي مفرد أملس Whiplash، الجدار الخلوي يحوي على كاتيين وكلوكان، الغالبية العظمى يكون الثالس بشكل خيوط جيدة التكوين متفرعة إما بشكل مدمج خلوي أو مقسمة، تضم عدداً من الشعب:

Phylum: Chytridiomycota-1

الثالس احادي الخلية بأشباه جذور أو بدونها وقد يكون بشكل خيوط مدمج خلوي، الخلايا المتحركة (أبواغ وأمشاج) تتحرك بسوط واحد خلفي أملس.

Phylum: Zygomycota-2

الثالس بشكل مدمج خلوي، التكاثر اللاجنسي بتكوين أبواغ حافظية غير متحركة داخل حوافظ Sporangia، التكاثر الجنسي بطريقة تزاوج الحوافظ المشيجية.

Phylum: Glomeromycota -3

الثالس بشكل مدمج خلوي، التكاثر اللاجنسي بتكوين أبواغ حافظية غير متحركة داخل حوافظ Sporangia، كانت هذه الشعبة ضمن شعبة الفطريات الزيجية وفصلت الى شعبة مستقلة استناداً الى مظهر الأبوغ والدراسات الجزيئية المعتمدة على تتابع القواعد النتروجينية في الوحدات الصغيرة لل rRNA التي بينت إن هذه المجموعة سلكت طريقاً تطورياً خاصاً بها يختلف عن الفطريات الأخرى لذلك وضعت في شعبة خاصة.

Phylum: Ascomycota-4

الثالس بشكل خيوط مقسمة، تكون أبواغ كيسية داخل كيس.

Phylum: Basidiomycota-5

الثالس بشكل خيوط مقسمة، تكون أبواغ بازيدية خارج أو فوق البازيدات.

Phylum: Deuteromycota-6

لا يعرف فيها التكاثر الجنسي.

مملكة الطليعيات Kingdom: Protista

شعبة الفطريات الهلامية Phylum: Myxomycota

كانت الفطريات الهلامية قديماً مثار حيرة وجدل حول موقعها ضمن الكائنات الحية (حيوانات أو نباتات) وذلك لاحتوائها على بعض مميزات المجموعتين من الكائنات، إذ أن طورها الجسدي غير الخلوي الزاحف والذي يشبه الحيوان من حيث تركيبه وفسلجته أما أطوارها التكاثرية فهي تشبه مثيلاتها في النباتات إذ تنتج أبواغاً مغطاة بجدران محددة قد تحتوي على السليلوز.

لذلك عرفت الفطريات الهلامية لأول مرة بأنها أحياء شبيهة بالفطريات، صنفت الفطريات الهلامية لأول مرة من قبل العالم (1887) De Bary (1887) حيث وضعها ضمن مجموعة مستقلة أسماها الحيوانات الفطرية Mycetozoa إلا أن العالم (1950) Bessy (1950) إلا أن العالم (1950) Myxogastrales ضمن الحيوانات الابتدائية Protozoa صنف اللحميات Sarcodina إلى أن جاء العالم (1961) Martin (1961) فاعتبر الفطريات الهلامية مجموعة قائمة بذاتها ضمن مملكة الفطريات، أما حسب التصنيف الحديث فيكون موضعها ضمن مملكة الطليعيات Kingdom: Potoctista أما حسب التصنيف الحديث فيكون موضعها طورين في دورة حياتها، طور خضري أو جسدي يتمثل (Protista)، تتميز هذه الفطريات بامتلاكها طورين في دورة حياتها، طور خضري أو جسدي يتمثل بالبلازموديوم الذي يكون بهيئة كتلة بروتوبلازمية متعددة الأنوية خالية من الجدار يتحرك ويتغذى كالامييا وطور تكاثري يكون أبواغاً متحركة بسوطين أماميين كلاهما من النوع الأملس غير متساويين بالطول، تكون الفطريات الهلامية من الأنواع كلية الأثمار Holocarpic أي يتحول الطور الجسدي بأكمله إلى تراكيب تكاثرية.

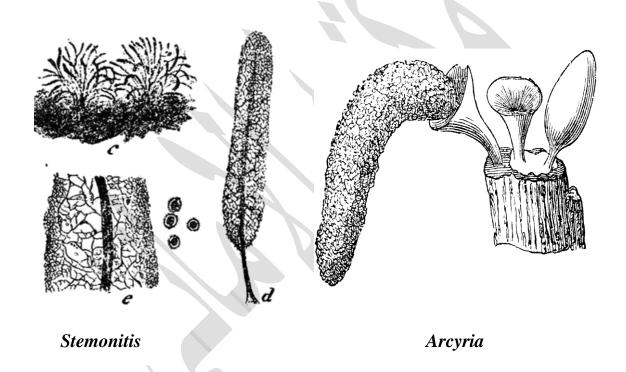
تواجدها وأهميتها

الفطريات الهلامية واسعة الانتشار في الطبيعة فتوجد على الأوراق والأغصان وبقايا النباتات المتساقطة على الأرض وخاصة في الغابات. يزحف البلازموديوم ليصل إلى أعلى النبات ويصل إلى الأوراق. الفطريات الهلامية غير متطفلة ولا تضر النبات وغير رمية المعيشة ولكنها تعتبر حيوانية المعيشة من بكتيريا وسبورات فطريات وخيوطها. أهميتها

الاقتصادية قليلة، وتحرر أجسام ثمرية زاهية اللون قد تكون محمولة على سيقان متميزة أو جالسة، لها قيمة فنية بسبب تعدد ألوانها ودقة تركيبها وتنسيقها حيث تظهر بشكل شعر ملون ينمو على الخشب أو المواد الاخرى.

الصفات المظهرية للفطريات الهلامية

اولاً البلازموديوم Plasmodium: وهو كتلة بروتوبلازمية حية متعددة الأنوية خالية من الجدار عدا الغشاء البلازمي، ليس له شكل وحجم ثابت يزحف على السطح. وبسبب طريقة معيشته هذه لا نراه كثيراً في الحقل بعكس التراكيب الثمرية الناشئة عنه. يظهر البلازموديوم بألوان مختلفة جذابة. محتواه قد يكون سائلاً أو جلاتينياً يتميز بظاهرة انسياب السايتوبلازم في عروقه Cytoplasmic قد يكون سائلاً أو جلاتينياً يتميز بظاهرة انسياب السايتوبلازم في عروقه streaming ترجع هذه الحركة إلى وجود بروتين قابل للتقلص والانبساط في الفطريات الهلامية يطلق عليه Myxomycin يشبه البروتين الموجود في عضلات الحيوانات. قد يتواجد البلازموديوم على السطوح طيلة فترة حياته أو قد يوجد في التربة أو داخل الأخشاب وشقوق السيقان ولا يظهر إلا عند تكوينه الأجسام الثمرية.


ثانياً –الخصلة الشعرية Capillitium: وهي مجموعة شعيرات عقيمة توجد داخل التراكيب الثمرية على شكل خيوط طويلة متفرعة أو بسيطة أو بشكل شبكة، تختلف الخصلة الشعرية من حيث الشكل واللون والاتصال فقد تكون متصلة بالغلاف الثمري Peridium أو بالعويمد Columella (وهو عبارة عن امتداد محدد لحامل الحافظة السبورية وداخل الحافظة نفسها). كما تختلف الخصل الشعرية من حيث احتوائها على مادة الكلس أو عدم احتوائها، كذلك قد تكون الخصل طليقة غير متصلة بالعويمد أو الغلاف فتعرف عندئذ بـ Elaters كما في فطر .Hemitrichia ،Arcyria

تنشأ الخصل الشعرية في البلازموديوم بعد فقده للماء حيث تترسب مواد مذابة مختلفة داخل فجوات عديدة تتكون في البلازموديوم وهذه المواد تساعد على تكوين الخصلة. فائدة هذه الخصلة هي تحرير السبورات بعد نضجها حيث لها القابلية على امتصاص الرطوبة فيزداد حجمها مسببة ضغطاً داخلياً يساعد على تمزق الغلاف الثمري وتحرر السبورات.

ثالثاً –تكوين السبورات Spore formation: بعد تكوين الخصلة الشعرية حالاً تعاني أنوية البلازموديوم انقسام غير مباشر تم تبدأ كل نواة بإحاطة نفسها بغلاف وتتحول إلى سبور. السبورات كروية أو بيضوية ذات ألوان مختلفة زاهية يستعان بها في التشخيص، لها القدرة على مقاومة الظروف الغير ملائمة فتمتك جداراً ثنائي أو ثلاثي لطبقات الداخلية سليلوزية والخارجية كايتينية.

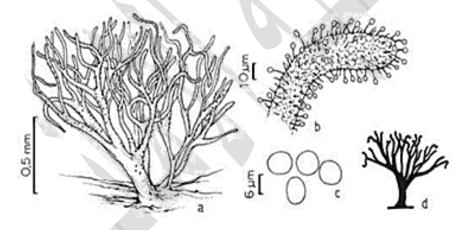
رابعاً -التراكيب الثمرية Fruiting bodies: بعد نضج الطور الخضري للفطريات الهلامية يبدأ تكوين الأطوار التكاثرية حيث يتحول الجسم بأكمله إلى واحد أو أكثر من الأجسام الثمرية والتي تكون على ثلاث أشكال هي:

1- علب السبورات Sporangia: وهي صغيرة لا يزيد ارتفاعها عن 1-2 ملم وتتكون بأعداد كبيرة من البلازموديوم الواحد تحاط علب السبورات عادة بغلاف ثمري Peridium، قد تكون جالسة أو محمولة على حامل متميز. تخرج علب السبورات عادة من قاعدة غشائية Hypothallus رقيقة. قد يترسب الكلس بشكل بلورات على الغلاف المحيط بالعلبة. أمثلة على ذلك:

2- الثمار البلازمودية Plasmodiocarps: وهي تشبه علب السبورات الجالسة ولكنها تكون متفرعة شبكية تشبه في تفرعها البلازموديوم الذي نشأت منه وتختلف من الحافظة السبورية أيضاً في أنها تكون غير متناظرة. تنشأ الثمار البلازمودية بعد أن يتركز البروتوبلازم في بعض العروق الرئيسة للبلازموديوم ويفرز حوله غشاءً رقيقاً ثم تتحول الأنوية في هذه العروق إلى سبورات. قد تكون الثمار البلازمودية متعلقة بخيوط رقيقة على السطح السفلي للورقة مثال على ذلك Hemitrichia serpula.

3- الايثاليا (الثمار السناجية) Aethalia: وهي تراكيب كبيرة الحجم مكونة من حوافظ سبورية ماتحمة مع بعضها ومحاطة بغلاف واحد مشترك. يمكن رؤية جدران الحوافظ ضم الايثاليا الواحدة بشكل فصوص حاوية لعدد الحوافظ داخلها. مثال Lycogala ، Fuligo

خامساً -الأجسام الحجرية Sclerotia: في الحلات الاعتيادية والظروف الملائمة يتحول البلازموديوم إلى جسم ثمري ولكنه تحت الظروف الغير ملائمة مثل انخفاض درجة الحرارة أو الجفاف أو نفاذ الغذاء أو حموضة عالية يتحول البلازموديوم إلى تركيب صلب غير منتظم يدعى الجسم الحجري الذي يبقى ساكناً لمدة غير محدودة لحين عودة الظروف الملائمة. وقد تشتي الفطريات الهلامية بشكل أجسام حجرية فتعتبر وسيلة تشتية.

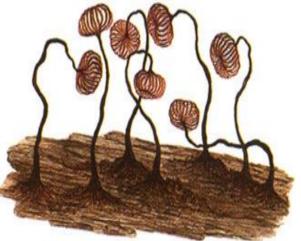

تقسيم صف الفطريات الهلامية

يقسم صف الفطريات الهلامية إلى تحت صفين:

Subclass: Ceratiomyxomycetidae السبورات -1

ويضم فطريات هلامية تحمل سبوراتها خارج الجسم الثمري على أشواك منفصلة فوق التركيب الثمري. التركيب الثمري يكون قائماً ومتفرعاً غالباً ومثقباً أحياناً ولا يوجد غلاف يحيط بالسبورات كما في المجاميع الاخرى. يحوي هذا التحت صف على رتبة واحدة وعائلة واحدة وجنس واحد يضم عدداً من الأنواع:

Order Ceratiomyxales
Family Ceratiomyxaceae
e.g. *Ceratiomyxa fruticulosa*

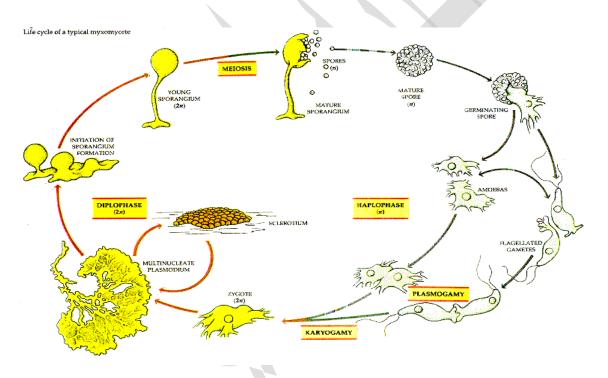

جسم ثمري خارجي السبورات

Subclass: Myxogastromycetidae تحت صف داخلية السبورات -2

ويضم فطريات هلامية تحمل سبوراتها داخل الجسم الثمري الذي يكون محاطاً بغلاف متميز. يشمل هذا التحت صف خمس رتب هي:

Order: Liceales -1: تكون سبورات أفراد هذه الرتبة فاتحة اللون والتراكيب الثمرية تكون أحد الأنواع المختلفة التي ذكرت سابقاً ولا تحتوي على كابلشيم حقيقي يسمى كابشليم كاذب الأنواع المختلفة التي تكون من خيوط أو صفائح بين السبورات. أهم أنواع هذه الرتبة: Lycogala الذي يكون الجسم الثمري فيها بشكل اثياليا Dictydium

Lycogala


Dictydium

- Order: Echinosteales -2: وهو رتبة صغيرة تضم أربعة أنواع وهي أصغر الفطريات الهلامية حجماً تكون سبورات باهتة اللون وردية أو صفراء ذهبية جدرانها مغلظة، الجسم الثمري بشكل علبة سبورات، يختفي الجدار الثمري فيها في مرحلة مبكرة من تكوين الجسم الثمري فتكون الحافظة الناضجة عارية على الدوام قد تكون الخصلة الشعرية واضحة و متميزة و قد تكون اثرية في بعض الأنواع. مثال Echinostelium minotum.
- Order Trichiales -3: التراكيب الثمرية من نوع علب السبورات محمولة أو جالسة وقد تكون بشكل بلازموديوكارب. الخصلة موجود في كافة الأفراد خيطية الشكل صلاة أو أنبوبية ناعمة أو خشنة طليقة أو متحدة لا تحوي على عويمد، السبورات تظهر بألوان زاهية برتقالية، حمراء، صفراء. مثال Hemitrichia ، Arcyria.
- -4 Order: Stemonitales: تمتاز بسبوراتها الداكنة اللون تتراوح ما بين الأسود إلى البنفسجي الغامق، الخصلة والغلاف غير متكلسان، قد يترسب الكلس في قاعدة العلبة السبورية (Hypothallus). الخصلة داكنة اللون خيطية أو شبكية. مثال
- Order Physarales -5: السبورات سوداء اللون إلى ارجوانية أو بنفسجية غامقة يوجد الكلس بوفرة على غلاف العلبة السبورية أو الخصلة أو الحامل و قد يغطي كافة التراكيب في آن واحد مثال Physarum.

دورة حياة الفطربات الهلامية Life cycle

تبدأ دورة حياة الفطريات الهلامية بصورة عامة بإنبات الأبواغ الساكنة (Resting spores) تحت ظروف معينة تشمل نوع الفطر، سلالته، والظروف البيئية المؤثرة، الدرجة الحرارية المثلى للإنبات هي 22-30°م والرقم الهيدروجيني 4.5-7. يحدث الإنبات أما بتمزق الجدار أو من خلال

ثقب صغير فيه، ينتج كل بوغ ساكن عدد 1-4 خلايا إما متحركة بسوطين غير متساويين بالطول من النوع الملساء تتصل بمقدمة الخلايا التي تسمى Swarm cells تحت ظروف توفر رطوبة معينة في التربة، وبعكس ذلك ينبت البوغ الساكن مكوناً اميبات هلامية ملامية Myxomoeba. تتحرك هذه الخلايا فترة من الزمن ثم تتحد الخلايا المتوافقة جنسياً بشكل أزواج (Karyogamy أو 2 Swarms cells) في اللاقحة، تعاني نواة اللاقحة سلسلة من الانقسامات النووية الخيطية Mitosis ينتج عنها بلازموديوم متعدد الانوية ثنائي المجموعة الكروموسومية. عند نضج البلازموديوم يبدأ بالتحول التدريجي والكامل إلى تراكيب تكاثرية لا جنسية (ثمار لا جنسية) بأشكال وألوان مختلفة خاصة بالنوع بعد ان تعاني الانوية انقساماً اختزالياً ثم تحاط كل نواة (1n) بقليل من السايتوبلازم وجدار متميز وتتحول إلى أبواغ ضمن الغلاف الثمري في الثمار.

دورة حياة الفطربات الهلامية العامة

2-Phylum: Plasmodiophoromcota

Class: Plasmodiophoromycetes

Order: Plasmodiophorales

Family: Plasmodiophoraceae

الصفات العامة

1- يضم فطريات هلامية داخلية التطفل Endoparasitic إجبارية، تهاجم النباتات الراقية ويصيبها بأمراض مهمة اقتصادية، كذلك تتطفل على الطحالب والفطريات المائية.

2- أهم الأمراض التي تسببها أنواعه هي:

- أ- مرض الجذور الصولجانية لنباتات العائلة الصليبية وأهمها اللهانة Club root disease of أ- مرض الجذور الصولجانية لنباتات العائلة الصليبية وأهمها اللهانة Plasmodiophora brassicae والذي يسببه الفطر
- ب- مرض الجرب الدقيقي على البطاطس Powdery scab of Potatoes والذي يسببه الفطر .Spongospora subterranea

3-تتميز أفراد هذا الصف بتكوين سبورات متحركة ثنائية الأسواط مختلفين في الطول ومتصلين بمقدمة السبور المتحرك تخترق الشعيرات الجذرية.

4-جسم الفطر يكون بشكل بلازموديوم متعدد الانوية عار يتكون كلياً داخل جسم العائل ويكون إما أحادي المجموعة الكرموسومية أو ثنائي المجموعة الكروموسومية.

1- دورة حياة الفطر Plasmodiophora brassicae

المسبب لمرض الجذور الصولجانية ويسمى المرض أيضاً بمرض التصويع toe disease وتعليم أعراضه بشكل انتفاخات كروية أو مغزلية على الجذور وقواعد السيقان ومع تطور المرض تتضخم الجذور وتصبح غير منتظمة تعطي منظر الأصابع. يتسرب الفطر إلى التربة عند موت وتحلل الجذور المصابة وعندئذ تنطلق السبورات الساكنة وهي كروية الشكل أحادية النواة أحادية المجموعة الكروموسومية محاطة بجدار كايتيني أملس يقيها من الظروف غير الملائمة لفترات طويلة. وعندما تحين الظروف الملائمة تنبت ليعطي كل منها سبوراً متحركاً يهاجم العائل في طور البادرة. السبور المتحرك كمثري الشكل ذو سوطين من النوع الأملس أحدهما طويل والآخر قصير، ولابد أن يتوفر الماء لهذه السبورات كي تسبح وتصيب العائل. تحدث الإصابة بمهاجمة السبور المتحرك جدار العائل عند منطقة الشعيرات الجذرية أو خلية من خلايا البشرة وحينئذ يسحب سوطيه ويحيط نفسه بجدار رقيق وينفصل بعد ذلك بروتوبلاست السبور عن جداره ويدخل كتركيب اميبي وحيد النواة يسمى اميبا هلامية هلامية Myxamoeba وسرعان ما يتحول نتيجة عدة انقسامات نووية عادية إلى بلازموديوم عديدة الأنوية يزداد في الحجم تدريجياً حتى يملأ خلية العائل. وعند وصول البلازموديوم مرحلة النضج يتجزأ إلى وحدات أحادية النواة كروية الشكل يحاط كل منها بغشاء، ثم

تنقسم النواة مرتين أو ثلاث مرات تتحول بعدها كل واحدة إلى حافظة سبورية تتحرر منها سبورات متحركة إلى الخارج جسم العائل وتستطيع أن تسبب إصابات جديدة تعيد الدورة اللاجنسية. أما في الدورة الجنسية فيعتقد أن بعض الوحدات الناتجة تجزؤ البلازموديوم لا تتحول إلى حوافظ سبورية إنما إلى حوافظ مشيجية ينقسم داخلها البروتوبلاست إلى عدد من الأمشاج المتحركة تحت الظروف غير الملائمة. الأمشاج المتحركة تكون كمثرية الشكل ثنائية الأسواط تنطلق من الشعيرات الجذرية إلى التربة ثم تندمج بشكل أزواج. ناتجها تتكون الزايكوت ثنائية المجموعة الكروموسومية التي تكون في البداية متحركة ولكن بعد اختراقها للشعيرات الجذرية مرة اخرى تفقد أسواطها وتتحول إلى اميبا هلامية (بلازموديوم) ثنائية المجموعة الكروموسومية، تنتقل من الشعيرة الجذرية إلى أنسجة القشرة للجذر ثم تستقر وقتياً في خلايا القشرة أو غيرها من الخلايا التي تجهزها بالغذاء الكافي وتنمو إلى بلازموديوم بوساطة انقسام نواتها المتكرر.

إن خلية العائل المصابة يحدث بها تضخم Hypertrophy ثم تتحفز الخلايا المجاورة للخلية المصابة على الانقسامات المتكررة Hyperplasia مما يؤدي إلى أعراض التضخم للجذور المصابة. عندما يصل البلازموديوم درجة النضج فإنه يملأ خلية العائل التي تقوم بالمحافظة عليه. أما الأنوية فيه فإنها تمر بدور خاص يعرف بالدور اللانووي A karyote phase الذي خلاله يختفي الجسم النووي حيث أن أغلب الكروماتين لا يأخذ الصبغة النووية الاعتيادية ثم يعقب ذلك الحالة الاعتيادية للأنوية. يحدث الانقسام الاختزالي ثم يتحول البروتوبلاست إلى كتلة كروية تعرف بالسبورات الساكنة Resting spores كل سبور يحوي على نصف العدد من الكروموسومات، تتحرر هذه السبورات بعد تحلل الجذر وموت البنات لتعيد الدورة من جديد.

flagella gerimating resting spore resting spore primary zoospore encysting penetration host cell filled with resting spores ZŞ formation of Root hair sporangia infection Root hair multinucleate secondary Root cortex Soil plasmodium 0880 (000 primary PL plasmodium karyogamy ? plasmodamy dikaryotic amoeba secondary zoospore

The Life Cycle of Plasmodiophora brassicae

دورة حياة الفطر الفطر Plasmodiophora brassicae

2-مرض الجرب الدقيقي للبطاطا Powdery scab disease of Potato

الفطر المسبب Spongospora subterranea

<u>دورة الحياة</u>

يصيب الفطر درنات البطاطا وهو يمر بدورة حياة شبيهة بتلك للفطر محتوية على للمعابة محتوية على brassica حيث تظهر الأعراض على هيئة بثرات دقيقة على سطح الدرنات المصابة محتوية على كتل من السبورات الساكنة متجمعة في صورة كرات جوفاء وتنبت السبورات الساكنة الموجودة في التربة عند توفر الماء لتعطي سبورات متحركة ذات سوطين مختلفين تسبح في ماء التربة وعندما تصادف الشعيرات الجذرية للعائل تفقد أسواطها ثم تخترقها أو قد تدخل إلى درنات البطاطا عن طريق الجروح والعديسات. ثم يتحول السبور المتحرك إلى اميبا هلامية تنمو وتقسم نواتها لتكون بلازموديوم عديد الأنوية ينمو ويزداد في الحجم حتى يملأ خلية العائل ثم يتجزأ ليتحول تدريجياً إلى أكياس للسبورات المتحركة ومن هذه الأكياس تنطلق السبورات إلى التربة حيث تكون مستعدة لإصابة جديدة، ونتيجة للإصابة تنتبه خلايا العائل فتقسم انقسامات عديدة ينتج عنها تمزق خلايا البشرة وتكوبن بثرات

مرتفعة وبذلك تتحصر الإصابة في الطبقة السطحية للدرنة وقد تتخذ السبورات المتحركة أزواجاً وتسلك سلوك الأمشاج فتكون اللاقحة التي تستطيع بدورها مهاجمة العائل بالاختراق المباشر للشعيرات الجذرية ثم يتكون البلازموديوم ثنائي المجموعة الكروموسومية وتنقسم الأنوية بعد ذلك انقسامات عدة أحدها اختزالي وتكون بذلك أكياس سبورية تحوي على سبورات أحادية المجموعة الكرموسومية محاطة بجدار وتلتصق السبورات ببعضها على هيئة كرات اسفنجية الشكل مميزة لجنس Spongospora ومنها اشتق الاسم.

مملكة السترامينوبيلا Kingdom: Stramenopila

تتألف مملكة السترامينوبيلا من شعب الفطريات التي تشمل Oomcota و Labyrinthulomycota بالإضافة إلى الطحالب ذات السوطين غير المتساويين (Heterokont) والتي تشمل الطحالب البنية والطحالب البنية الذهبية والدايتومات، إن التشابه البيئي والمظهري وطبيعة التغذية هي العوامل التي جعلت متخصصي الفطريات يتناولوها في دراساتهم باعتبارها فطريات غير حقيقية.

<u> Phylum: Oomycota</u> <u>شعبة الفطريات البيضية</u>

تضم شعبة الفطريات البيضية Oomycota حوالي 500–800 نوعاً، تعيش الأنواع البدائية منها في الماء وتسمى بأعفان المياه Water molds، بعضها يعيش معيشة رمية على البقايا الحيوانية والنباتية، ومنها ما يتطفل على الطحالب، أما الأنواع المتطورة فتعيش بطريقة التطفل الإجباري على نباتات أرضية مسببة لها أمراضاً مهمة كأمراض البياض الزغبي White rust diseases وأمراض الصدأ الأبيض White rust diseases.

لفترة طويلة اعتبرت هذه المجموعة من الأحياء الدقيقة فطريات بسبب الطبيعة الخيطية لتركيبها الجسمي وتغذيتها الامتصاصية، لكن ثمة صفات عديدة تمتلكها هذه الأحياء تبعدها عن الفطريات منها:

1- اختلاف تركيب الجدار حيث أنه يتألف من الكلوكان (بيتا-كلوكان والحامض الاميني هيدروكسي برولين) والسليلوز ولا يحتوي على الكايتين الذي تتميز به الفطريات الحقيقية.

2- نوى الخلايا ثنائية المجموعة الكروموسومية على عكس الفطريات التي يسودها وجود النوى احادية المجموعة الكروموسومية.

- 3- شيوع الأبواغ المتحركة التي تمتلك سوطين غير متماثلين احدهما ريشي طويل متجه إلى الأمام والآخر أملس قصير متجه للخلف و هذا مشابه لما تمتلكه أحياء مملكة Chromista.
 - 4- احتواء المايتوكوندريا على انبعاجات داخلية (Cristae) انبوبية.
- 5- تكوينها للأبواغ البيضية Oospores وهي الأبواغ الجنسية لها عن طريق تلقيح البيوض في الحافظة البوغية Oogonium بواسطة الانثريدات Autheridia.
 - 6- الاختلاف مع الفطربات في العديد من الصفات الكيموحيوبة والجزيئية.
- 7- وجود مواد غذائية مخزونة بشكل مادة مايكولامينارين (Mycolaminarine) كما هو الحال في طحالب Kelps و Diatoms.
 - من ناحية أخرى، فإن الفطريات البيضية تشابه الفطريات الحقيقية في عدد من الخواص:
 - 1- التغذية الغيرية الامتصاصية والتماثل أو التقارب البيئي والمعيشة الرمية أو الطفيلية.
 - 2- التركيب الجسمي الخيطي المتفرع والنمو الطرفي للخيوط الفطرية وتكوين الغزل الفطري.
 - 3- التكاثر بواسطة الأبواغ الجنسية واللاجنسية.

وقد اعتبرها المتخصصون أقرب إلى الطحالب منها إلى الفطريات من حيث نموها التطوري، وعليه برزت فكرة استبعاد هذه المجموعة عن الفطريات الحقيقة وضمنت في مملكة Chromista ولأسباب عملية ولأهميتها الاقتصادية وما تسببه من أمراض مهمة ما زالت هذه المجموعة تضمن في الكتب التي تتناول الفطريات.

المميزات العامة:

- 1- الأبواغ اللاجنسية فيها تكون متحركة بسوطين أحدهما خلفي أملس والآخر أمامي ريشي في جانب واحد من البوغ، تتكون الأبواغ داخل حوافظ بوغية مختلفة الأشكال والأحجام.
- 2- يتباين الثالس فيها في أبسط صورة بشكل خلية مفردة بسيطة كلية الأثمار في الأنواع الواطئة إلى غزل فطري جيد التكوين بشكل مدمج خلوي حقيقي الأثمار في الأنواع المتطورة.
 - 3- يتألف الجدار الخلوي من الكلوكان والسيللوز وينعدم وجود الكايتين.
- 4- في الأنواع المتطورة قد تسلك الحوافظ البوغية سلوك كونيديا تنفصل عن الحامل وتنبت مباشرة مكونة انبوب إنبات ينمو ويتطور إلى غزل فطري كما في جنس Sclerospora.

5- يتم التكاثر الجنسي عن طريق تكوين حوافظ مشيجية متباينة Heterogametangia تتميز إلى انثريديات وأوكونات وليس هناك وجود للأمشاج المتحركة بل تقوم الأنوية بوظيفة الأمشاج، ويكون التكاثر عن طريق تلامس الحوافظ المشيجية، ينشأ عن عملية الإخصاب لاقحة Zygote لها جدار سميك تتطور إلى بوغ ساكن يعرف بـ Oospore، يبقى البوغ البيضي داخل الاوكونيوم عادة إلى أن يتحلل الجدار فيتحرر وينبت إما مباشرة إلى انبوب إنبات أو بصورة غير مباشرة ليعطي أبواغ لا جنسية متحركة.

يعد صف الفطريات البيضية Class: Oomycetes أهم الصفوف العائدة لشعبة الفطريات البيضية والذي بدوره يضم عدة رتب أهمها:

Order: Saprolegniales رتبة السابروليكنيالات -1

ويضم فطريات كلية أو حقيقة الأثمار وفي الحالة الأخيرة يكون الثالس بشكل مدمج خلوي، تحوي الأوكونة على سبور بيضي واحد إلى عدة سبورات، تضم الرتبة عدة عائلات أهمها:

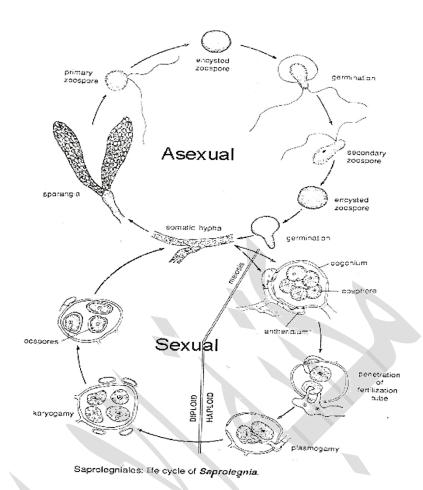
Family: Saprolegniaceae العائلة السابروليكنيسية

تنتشر أفراد هذه العائلة بوفرة في المياه العذبة حيث تعيش مترممة على البقايا الحيوانية والنباتية، القليل منها يتواجد في المياه قليلة الملوحة (المويلحة). ويطلق عليها أعفان المياه وبيوضها molds. بعضها يعيش في التربة الرطبة بصورة رمية وبعض أنواعها يتطفل على الأسماك وبيوضها والحيوانات المائية مثل الأنواع Achlya racemosa ،Saprolegnia parasitica، بينما يتطفل الفطر Aphanomyces eutiche على جذور نبات البازلياء والبنجر السكري مسبباً تعفنها وموت النبات.

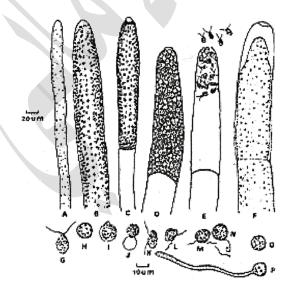
تضم العائلة أفراداً احادية الخلية كلية الأثمار تتطفل على الطحالب، إلا أن معظم أفرادها حقيقية الإثمار ذات غزل فطري جيد التكوين بشكل مدمج خلوي، تتكون الحواجز العرضية فقط في قاعدة الأعضاء التكاثرية.

من الصفات المميزة لعدد من أفراد هذه العائلة لاسيما التي تنمو في المزارع Cultures هي تحول أجزاء أو قطع من الهايفة طرفية أو بينية إلى تراكيب مضخمة متثخنة الجدار ذات سايتوبلازم كثيف تنفصل هذه التراكيب عن الهايفة بحاجز عرضي قد تكون مفردة أو بشكل سلسلة تسمى هذه التراكيب بالجيمات Gemmae أو الكلاميدوسبورات والتي تتكون لمقاومة الظروف غير الملائمة وعند

عودة الظروف الطبيعية تتحول إما إلى حافظة مشيجية انثوية أو إلى حافظة بوغية، وقد تنبت في أغلب الأحيان بتكوين انبوب جرثومي.


-التكاثر اللاجنسي في أفراد عائلة Saprolegniaceae

يتم التعرف على التكاثر اللاجنسي وذلك من خلال أمثلة لأجناس شائعة ومهمة منها:

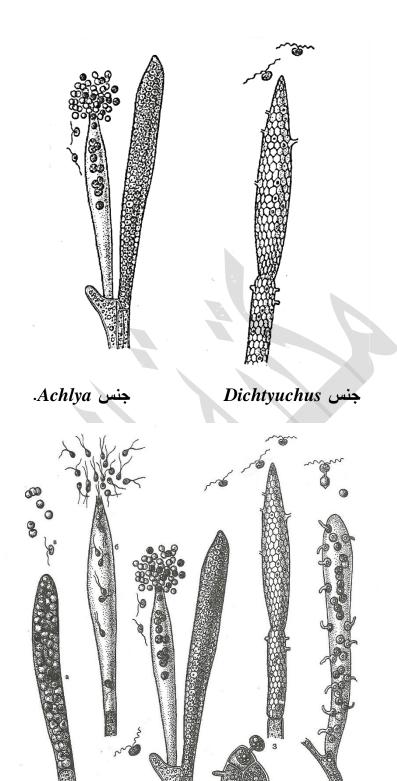

1- جنس Saprolegnia

يضم هذا الجنس أكثر من ثلاثين نوعاً، تتكون الحوافظ البوغية طرفياً من الخيوط الجسدية حيث تأخذ قمة الخيط الفطري بالانتفاخ بعد أن تنساب إليه كمية من السايتوبلازم والأنوية، ثم يتكون حاجز عرضي يفصل الجزء المنتفخ (الحافظة البوغية) عن بقية الخيط الفطري، ثم تنقسم المحتويات الداخلية العديدة الأنوية إلى قطع احادية النواة ينمو كل منها إلى بوغ سابح كمثري الشكل ذو سوطين أساسيين، تنطلق الأبواغ بعد نضجها خارج الحافظة عن طريق ثقب يتكون في قمة الحافظة تخرج خلاله الأبواغ تنباعاً تسمى هذه الأبواغ بالأبواغ السابحة الأولية (Primary zoospores). تسبح الأبواغ الابتدائية الإنبات لتعطي طرازاً أخر من الأبواغ السابحة الكلوية الشكل Reniform جانبية الأسواط (يتصلان بالجانب المقعر) تسمى هذه الأبواغ بالأبواغ السابحة الثانوية (Secondary zoospores)، وبعد فترة سباحة تمر بها تتحوصل وتنبت بعد فترة لتعطي غزلاً فطرياً جديداً، تعرف مثل هذه الفطريات التي تتضمن فترتين سباحة لأبواغها وتتضمن طرازين من الأبواغ السابحة بأسم الفطريات ثنائية فترة السباحة راتسابحة بأسم الفطريات ثنائية فترة السباحة والنباحة بأسم الفطريات ثنائية فترة السباحة الشباحة السابحة بأسم الفطريات ثنائية فترة السباحة المسابحة المسابحة بأسم الفطريات ثنائية فترة السباحة المسابحة السابحة بأسم الفطريات ثنائية فترة السباحة المسابحة المسابحة المسابحة بأسم الفطريات ثنائية فترة السباحة المسابحة السابحة المسابحة المسابحة

من الظواهر المهمة لهذا الجنس هو عندما تفرغ الحافظة البوغية محتوياتها من الأبواغ تبدأ حافظة اخرى في الانبثاق من الحاجز العرضي وتعرف بالحافظة البوغية الثانوية وتنمو خلال الاولى ويتم نضجها إما بداخلها أو فوقها، تسمى هذه العلمية بظاهرة الانبثاق الداخلي للحوافظ Internal تتكرر هذه العملية مما ينتج عنه تكوين عدة حوافظ بوغية الواحدة داخل الاخرى وتنضج كل واحدة منها وتفرغ أبواغها قبل تكوين الحافظة الاخرى.

دورة حياة الفطر Saprolegnia

مراحل تكوين الحافظة البوغية و انطلاق الأبواغ المتحركة في جنس Saprolegnia، (A-E) انبثاق الحافظة البوغية الثانوية (G)، (G) بوغ متحرك اولي، (H) حوصلة أولية، (I, J) إنبات الحوصلة لتكوين بوغ متحرك ثانوي، (N, L, K) أبواغ متحركة ثانوية، (P, O, N) بوغ ثانوي يتحوصل ثم ينبت.


Achlya جنس-2

يضم هذا الجنس 44 نوعاً شائعاً في الترب الرطبة وعلى النباتات الطافية في المياه، بعض أنواعه وجدت متطفلة على الأسماك، الحوافظ البوغية مغزلية، أو زورقية اسطوانية أو صولجانية الشكل، طريقة نشوء وتطور الحافظة مشابهة لجنس Saprolegnia، ولكن تختلف عنها في أن الأبواغ الابتدائية حال خروجها من الفتحة القمية في الحافظة تتحوصل وتتجمع بشكل كرة مجوفة، قد تسقط عن الحافظة وتطفو الأكياس بحرية ثم تنبت مكونة أبواغ متحركة ثانوية أو تبقى ضمن التجمع الكروي للأبواغ وتكون الأبواغ الثانوية، يتجدد تكوين الحوافظ البوغية بعد ذلك عن طريق تكوين نمو جانبي من قاعدة الحافظة الاولى.

3-جنس Dictyuchus

يتميز هذا الجنس بعدم وجود مرحلة أبواغ سابحة ابتدائية حرة، كما أن الحافظة البوغية قد تتفصل عن الهايفة المكونة لها وباستطاعتها أن تكون أبواغ سابحة. تتحوصل الأبواغ السابحة الابتدائية بعد مدة عن تميزها داخل الحافظة البوغية ثم تخرج الأبواغ الثانوية بعد ذلك خلال فتحات تتكون على محيط الحافظة. بعد تحرر الأبواغ الثانوية تترك مكانها داخل الحافظة شكلاً شبكياً مكوناً من جدران متعددة الأوجه تمثل مواقع الحويصلات المضغوطة داخل الحافظة وفي أغلب الأحيان بعد خروج الأبواغ الثانوية تسبح لفترة من الزمن وعندما تصادف وسطاً مناسباً فإنها تتحوصل مرة اخرى ثم تتبت بعد مدة من الزمن لتعطي بوغاً سابحاً ينبت بوجود الوسط المناسب، وإذا لم يجده يعيد العملية مرة اخرى وهكذا، لذلك يدعى الفطر بمتعدد الفترات السابحة Polyplanetic كما يتجدد تكوين الحوافظ البوغية الجديدة بنفس طريقة الجنس Achlya.

من الجدير بالذكر أن هنالك بعض أفراد عائلة Saprolegniaceae قد بلغت أقصى تطوراً حيث تفتقر الأبواغ إلى فترة سباحة ولا تكون أبواغاً سابحة وتنبت الأبواغ الساكنة المنطلقة من الحافظة بواسطة انبوب إنبات لذلك يسمى هذا الجنس بعديم الأبواغ السابحة Aplanetic كما في جنس .Geolegnia

(1) جنس Saprolegnia تحرر الابواغ السابحة الأولية (2) جنس Achlya تحرر الابواغ السابحة الابتدائية وتحوصلها في قمة الحافظة وتكوين حافظة بوغية جديدة من قاعدة الحافظة القديمة، (3) جنس Dichtychus تحرر الابواغ الساكنة الثانوية.

التكاثر الجنسى

يتم التكاثر الجنسي في أفراد هذه العائلة بوساطة الحوافظ المشيجية الأنثوية خلال البوبة إخصاب، تكون والذكرية الجنسية عادة طرفية وقد تتكون في حالات قليلة أوكونات بينية. تكون الاوكونة كروية الأعضاء الجنسية عادة طرفية وقد تتكون في حالات قليلة أوكونات بينية. تكون الاوكونة كروية الشكل تتميز محتوياتها إلى بيضة واحدة واحدة واحدة على أو على فرع مختلف أو على ثالس مختلف كلياً، الأنوية إما من نفس الأوكونة (من تحتها مباشرة) أو على فرع مختلف أو على ثالس مختلف كلياً، تتصل بالأوكونة انثريدة واحدة أو أكثر تخترقها وتتفرع بداخلها مرسلة فرعاً واحداً لكل بيضة عن طريق انبوب إخصاب. بعد اندماج النواتين تتكشف جدران غليظة في البيوض المخصبة التي تتحول إلى مبورات بيضية قمتها مرسلة أبواغ متحركة.

بعض الأفراد التابعة لهذه العائلة تتكشف السبورات البيضية بطريقة التوالد العذري Parthenogenesis حيث لا يعرف تكوين انثريدات فيها. غالبية أفراد هذه العائلة تكون متماثلة الثالس (خنثية) وتنتج انثريدات واوكونات متوالفة على نفس الثالس، إلا أن أنواعاً منهما تكون ثنائية المسكن ويتطلب التكاثر الجنسي وجود فردين مختلفين أحدهما ذكري والآخر انثوي.

Order: Peronosporales رتبة البيرونوسبورالات-2

تتميز أفراد هذه الرتبة بالصفات الآتية:

1- تضم أفراداً تمثل أقصى ما بلغته الفطريات البيضية من رقي وتتضمن أنواعاً مائية وبرمائية وأرضية، غالبية أنواعها طفيليات متلفة لنباتات اقتصادية حيث تسبب أمراضاً جسيمة للعديد من النباتات الاقتصادية مثل أمراض الذبول والبياض الزغبي والصدأ الأبيض.

2-التركيب الجسدي يكون بشكل غزل فطري جيد التكوين غير مقسم (مدمج خلوي) غزير التفرع، يكون عدداً كبيراً من أنواعها ممصات شبيهة بالعقدة أو متفرعة داخل خلايا العائل وتنمو الخيوط الفطرية للانواع المتطفلة اما بين الخلايا أو داخلها، ولكن بصورة عامة الخيوط الفطرية لأكثر الفطريات تخصصاً تنمو بين خلايا العائل.

3- التكاثر اللاجنسي يتم في الغالب بتكوين أبواغ سابحة ثنائية الأسواط كلوية الشكل أحادية الفترة السابحة فتكون داخل حوافظ بوغية بيضوية إلى ليمونية أو كروية. تنفصل الحوافظ في الأبواغ الراقية وتسقط عند اكتمال نضجها وتنتشر بوساطة الرياح وتبنت في هذه الحالة مباشرة إلى انبوب إنبات بدلاً

من إنتاجها لأبواغ سابحة وبذلك تضم الفطريات البيضية أنواعاً راقية أرضية المعيشة لا تحتاج إلى الماء في انتشار أبواغها.

4- التكاثر الجنسي يتم بوساطة تلامس الحوافظ المشيجية الانثوية والذكرية (الاوكونات والانثريدات) التي إما أن تتولد على نفس الخيوط الفطرية أو على خيوط مختلفة، تحوي الاوكونة في الغالب على بيضة واحدة Oosphere محاطة بطبقة بلازم محيطي Periplasm. أما الانثريدة فتكون وحيدة النواة أو عديدة الأنوية ويحدث الإخصاب عن طريق انبوبة إخصاب تتكون من الانثريدة تتصل خلالها النواة الذكرية. ناتج الإخصاب تتكون بيضة مخصبة تحيط نفسها بجدار سميك وتتحور إلى سبور بيضي الذكرية. ناتج الإخصاب تتكون أملساً أو مزخرفاً أو مثأللاً تبعاً للنوع، عند توفر الظروف الملائمة للإنبات يعطي السبور البيضي إما أبواغاً سابحة (إنبات غير مباشر) أو قد ينبت مباشرة ليعطي انبوبة إنبات. تضم هذه الرتبة إلى ثلاث عائلات اعتماداً على صفات الحوامل الحافظية والحوافظ البوغية وطريقة معيشتها وهذه العائلات هي:

Family: Pythiaceae العائلة البيثيسية

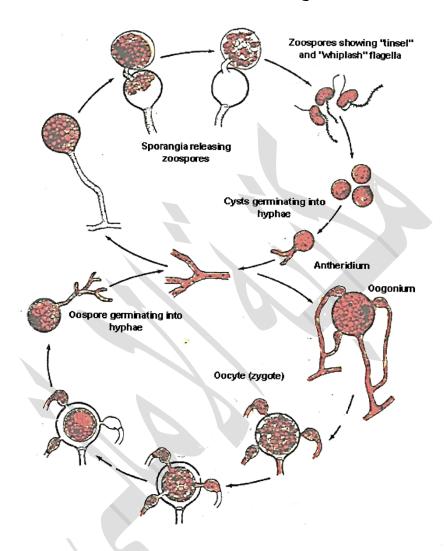
تضم أفراداً تكون إما رمية أو طفيلية اختيارية، تحمل الحوافظ البوغية على خيوط فطرية غير متميزة، ولكن في بعض الأنواع الأكثر تطوراً تتميز الحوامل لكنها تكون غير محدودة النمو وبالتالي وجود حوافظ بوغية مختلفة الأعمار، تحمل الحوامل في قمتها حافظة بوغية واحدة.

Family: Peronosporaceae العائلة البيرونوسبوربسية -2

تضم أفراداً طفيلية إجبارية على النباتات الاقتصادية، الحوامل الحافظية متفرعة بأشكال مختلفة محدودة النمو تختلف في شكلها عن الهايفات الجسدية التي نشأت منها.

3- العائلة الالبوجنيسية Family: Albugianceae

أفرادها طفيلية إجبارية على النبات، الحافظة متفرعة محدودة النمو صولجانية الشكل، يحمل كل حامل سلسلة من الحوافظ البوغية في تتابع قاعدي.


Family: Pythiaceae العائلة البيثيسية

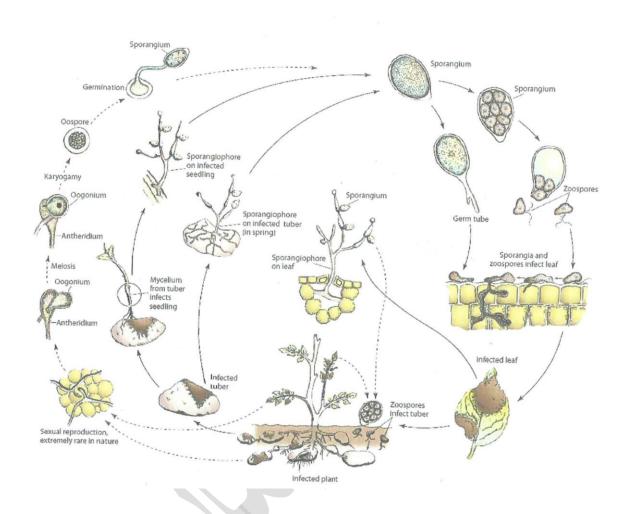
تضم هذه العائلة أكثر من 200 نوع موصوف متوزعة على 11 جنس، تكون فطريات هذه العائلة مائية وبرمائية وبربة من أهمها جنس Pythium الذي يضم أنوعاً مائية تتطفل على الاشنات

وأنواعاً برية تعيش في التربة وتتطفل على النباتات الراقية. من هذه الأنواع الفطرية وتتطفل على النباتات الراقية. من هذه الأنواع الفطرية Root rot and Damping of المسبب لمرض تعفن الجذور وذبول البادرات Phytophthora ويشمل الكثير من seedling كذلك تضم العائلة جنساً مهماً اخر هو جنس Phytophthora ويشمل الكثير من مسببات الأمراض المهمة منها النوع P. infestans المسبب لمرض اللفحة المتأخرة على البطاطا والنوع Late blight disease of Potato والنوع Citrus Gummosis

يستخدم النوع P. debaryauum لتوضيح دورة الحياة العامة الأفراد هذا الجنس. يكون الغزل الفطري جيد التكوين ويتكون من خيوط رقيقة مدمجة خلوياً ذات جدران سيليلوزية، يعيش اما مترمماً على المواد العضوية الميتة في التربة أو متطفلاً اختيارياً على البادرات الصغيرة لعدد من النباتات البذرية حيث يهاجم الفطر الأجزاء تحت سطح التربة، الخيوط الفطرية داخل أنسجة النباتات المصابة تكون كبيرة وغير مقسمة في البداية فيما بعد تنشأ حواجز تفصل الأقسام الفارغة من الخيط الفطري، ويكون نمو الخيوط الفطرية بين الخلايا (في المسافات البينية) وبداخلها ولا تتكون منها ممصات. يبدأ الفطر بعد مدة بالتكاثر اللاجنسي وذلك بتكوين حوافظ أبواغ متحركة Zoosporangia، كروية أو اهليليجية الشكل وتظهر زخارف مختلفة، تتولد بصورة مفردة على نهاية هايفة مولدة غير محدودة النمو لا تختلف من ناحية الشكل والحجم عن هايفات الغزل الفطري، تنبت الحافظة البوغية في مكانها مكونة حويصلة Vesicle شبيهة بفقاعة الصابون تنبثق من طرف انبوية طويلة ممتدة من قمة الحافظة البوغية إلى الحويصلة ويتم في الاخيرة تميّز الأبواغ السابحة التي تبدأ بعد فترة بحركة مستمرة داخل الحوصلة مما يؤدي إلى انفجارها وتحرر الأبواغ تكون كلوية الشكل لها سوطين جانبيين على الجانب المقعر منها، وبعد مدة سباحة في غشاء الماء في التربة تستقر وتتحوصل ثم تنبت بوساطة انبوب إنبات يخترق نسيج البشرة وبنمو داخل الخلايا. التكاثر الجنسي فيبدأ تكوبن الاوكونات بحصول انتفاخ كروي في نهاية الخيط الفطري تنتقل إليه كتلة من بروتوبلازم ثم تنفصل عن الخيط الفطري بجدار مستعرض، ويتميز داخل التركيب الكروي بيضة Oosphere، تكون وحيدة النواة محاطة بالبلازم المحيطي Periplasm المتعدد الأنوبة، أما الانثربدات فتكون بالقرب من الاوكونات، وقد تكون على نفس الخيط وتحت الاوكونة مباشرة وتكون أصغر بكثير من الأوكونات، صولجانية الشكل متعددة الأنوبة. عند تلامس الحوافظ المشيجية (الانثريدة والاوكونة) يتكون إخصاب يخترق جدار الاوكونة والبلازم المحيطي ثم يحدث انقسام نووي في كل من الحافظتين المشيجيتين، تنحل بعدها جميع الأنوبة عدا نواة واحدة تبقى ناشطة، عندئذ تتصل النواة الذكرية خلال الأنبوبة إلى البيضة وتندمج مع نواتها لتكون اللاحقة التي تتميز إلى سبور بيضي Oospore مغلظ الجدار أملس أو مشوك في بعض الحالات، قد تتحول البيضة دون إخصاب إلى بوغ عذري Parthenospore عندما

يتعذر وجود انثريدات بالقرب منها وعند توفر درجة حرارة عالية نسبياً (28°م) ينبت السبور مباشرة ليكون غزلاً فطرياً جديداً، اما في درجات الحرارة الواطئة (10-17°م) فتتكون انبوبة إنبات قصيرة في قمتها حويصلة تتكشف بداخلها الأبواغ المتحركة.

دورة حياة الفطر Pythium debaryanum


Phytophthora جنس -2

يضم هذا الجنس بعض الأنواع التي تشبه جنس Pythium إلى حد كبير ولكنها تختلف في أن الحافظة البوغية لا تكون حوصلة، وإذا ما حدث أن تكونت حوصلة فان الابواغ تدخلها في حالة نضج تام، كذلك تختلف عنها في إنتاجها لحوامل حافظية يمكن تمييزها عن الخيوط الفطرية الجسدية حيث تكون متفرعة تفرعات كاذبة المحور (Sympodial)، كما تكون الحوامل غير محدودة النمو تتولد عند أطرافها حوافظ بوغية ليمونية الشكل ذات حليمات.

من الأنواع المهمة لهذا الجنس هو P. infestans الذي يسبب مرض اللفحة المتأخرة على البطاطا Late blight disease of Potato والذي سبب في موت مليون نبات وهجرة أكثر من مليون ونصف من ايرلندا سنوات 1845 و 1846.

تبدأ إصابة نبات البطاطا في فصل الربيع من الدرنات المصابة التي واصل فيها الغزل الفطري البقاء حيث يمتد نموه إلى الأنسجة الجديدة المنبثقة من الدرنات المصابة، ويتجرثم الفطر على الأجزاء الهوائية من النبات وينتقل بعد ذلك بوساطة الماء أو الرياح. تتميز الحوافظ البوغية في هذا النوع وغيرها من أنواع جنس Phytophthora بشدة حساسيتها للجفاف، فضلاً عن تأثير درجة الحرارة بشكل كبير على إنبات هذه الحوافظ، فبينما تستحث درجة الحرارة المنخفضة (أقل من 15°م) تكوين الأبواغ السابحة، تستحث درجات الحرارة الأعلى على إنتاج أنابيب الإنبات.

بعد اختراق انبوب الإنبات للورقة يتكشف بداخلها إلى غزل فطري غزير التفرع ينمو بين خلاياها ويرسل ممصات طويلة إلى داخل خلايا الورقة، وإذا كان الطقس مناسباً انبثقت منه بعد أيام قليلة من بدء الإصابة عدة حوامل تخرج من الثغور وتعطي عدداً كبيراً من الحوافظ البوغية التي تتشر بوساطة الرياح لتصيب نباتات جديدة، أما التكاثر الجنسي فقد وجد أن هذا الفطر يتميز بظاهرة التباين الثالوسي Heterothallic حيث يتطلب وجود طرازين تزواجيين، ويحدث التكاثر الجنسي بين انثريدات واوكونات متضادة الطرز التزاوجية، حيث تخترق الأوكونة الانثريدة في مرحلة تكشف الانثريدة أو تنمو الاوكونة خلالها وتتكشف فوق الانثريدة كتركيب كروي الشكل، وتظهر الانثريدة بذلك بهيئة طوق قمعي الشكل حول قاعدة الاوكونة الناضجة ويتكون انبوب إخصاب تنتقل خلاله النواة الذكرية لتلقح البيضة التي تتميز بعد ذلك إلى سبور بيضي ينبت بتوفر الظروف الملائمة ليكون انبوب إنبات ينتهي في طرفه بحافظة بوغية.

دورة حياة الفطر Phytophthora infestans

Family: Peronosporaceae العائلة البيرونوسبوسية-3

تعد هذه العائلة من أكثر الفطريات أهمية من الناحية الاقتصادية وأكثر العائلات رقياً من بين العائلات الثلاثة التي تضمها رتبة Peronosporales. تعيش جميع أفرادها كطفيليات إجبارية متخصصة على النباتات الوعائية وتسبب أمراض تعرف بالبياض الزغبي النباتات الوعائية أيضاً بفطريات البياض الزغبي وذلك لأن الأجزاء المصابة من النبات العائل تكتسي عادة بزغب فطري أبيض-رمادي مؤلف من حوامل حافظية والحوافظ نفسها.

ينمو الغزل الفطري داخلياً إلى المسافات البينية الخلوية ويرسل ممصات مفصصة كبيرة إلى داخل الخلايا لامتصاص الغذاء، ثم يبدأ بتكوين حوامل حافظية محدودة النمو يتوقف نموها عند

اكتمال نضجها وتعطي هذه الحوامل نتاجاً من حوافظ بوغية تحمل على ذنيبات عند أطراف الفروع، لذلك تكون جميع الحوافظ تقريباً متقاربة العمر كروية أو بيضوية أو ليمونية قابلة للانفصال وتنتشر بوساطة الرياح. تضم هذه العائلة عدة أجناس يمكن تمييزها اعتماداً على شكل وطبيعة تفرع حوامل الحوافظ البوغية فضلاً عن طبيعة إنبات هذه الحوافظ.

Sclerospora جنس

تكون فيه حوامل الحوافظ البوغية طويلة نسبياً بدينة منتصبة تتفرع عند القمة إلى عدد من الفروع القصيرة، ينقسم كل فرع بدوره مرة واحدة أو أكثر إلى فروع قصيرة (تفرعات شجيرية) يحمل كل منها عند نهايته حافظة بوغية واحدة (انباتها مباشر). من أهم أنواعه S. graminicola المسبب لمرض البياض الزغبي على نباتات العائلة النجيلية.

2-جنس Plasmopara

يكون حامل الحافظة البوغية ذا تفرع وحيد الشعبة وتكون الفروع وأجزائها متعامدة بعضها على بعض (بشكل زاوية قائمة) وعلى مسافات. تنبت الحوافظ البوغية بصورة غير مباشرة لتعطي أبواغاً متحركة. من أهم أنواعه P. viticola المسبب لمرض البياض الزغبي على العنب.

Peronospora جنس -3

يكون حامل الحافظة البوغية متفرعاً تفرعات ثنائية الشعب وبزاوية حادة تستدق أطرافها وتتقوس لتحمل حوافظ بوغية مفردة. تنبت الحوافظ البوغية بصورة مباشرة. من أهم أنواعه .P. tabacina المسبب لمرض بياض الزغبي على البصل والفطر P. tabacina المسبب للبياض الزغبي على التبغ.

4-جنس Bremia

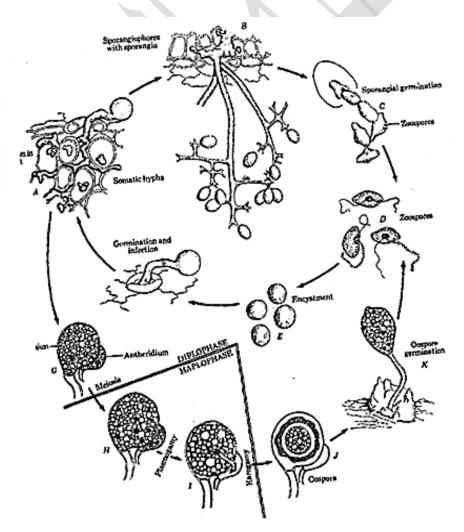
يكون حامل الحافظة البوغية ثنائي التفرع ونهايات الفروع تنتهي ببروزات لتشكل ما يشبه الكف حيث تحمل الحوافظ البوغية التي تكون بيضوية الشكل وتنبت بصورة مباشرة. من أنواعه . الكف المسبب لمرض البياض الزغبي على الخس.

5-جنس Basidiophora

يكون حامل الحافظة صولجاني الشكل تكون قمته متسعة تحوي على ذنيبات يحمل كل منها حافظة بوغية تنبت بصورة غير مباشرة مكونة أبواغاً متحركة ثنائية الأسواط.

يورة حياة الفطر Plasmopara viticola

يسبب هذا الفطر مرض البياض الزغبي على العنب، عرف هذا المرض لأول مرة في الولايات المتحدة الامريكية ومنها انتشر إلى دول اوربا والبلدان الاخرى التي يزرع فيها العنب، وكثيراً ما يشاهد هذا المرض محلياً على الأعناب في الحدائق والبساتين ذات الظل والحرارة والرطوبة المناسبة لحدوث المرض. تنشأ الإصابة بهذا المرض نتيجة سقوط حوافظ الأبواغ على الأجزاء القابلة للإصابة من النبات العائل، حيث يصيب الفطر جميع الأجزاء فوق سطح التربة (الأوراق وسويقاتها والفروع والحوالق والأزهار والثمار).


بعض أجناس عائلة Peronosporaceae

تظهر أعراض الإصابة بشكل بقع حاوية على زغب أبيض رمادي يتألف أساساً من التراكيب التكاثرية اللاجنسية. يعيش الفطر بشكل طفيلي إجباري على العائل وله غزل فطري متشعب ينمو في المسافات البينية وبرسل ممصات إلى داخل خلايا العائل لامتصاص الغذاء منها. ترسل الهايفات إلى

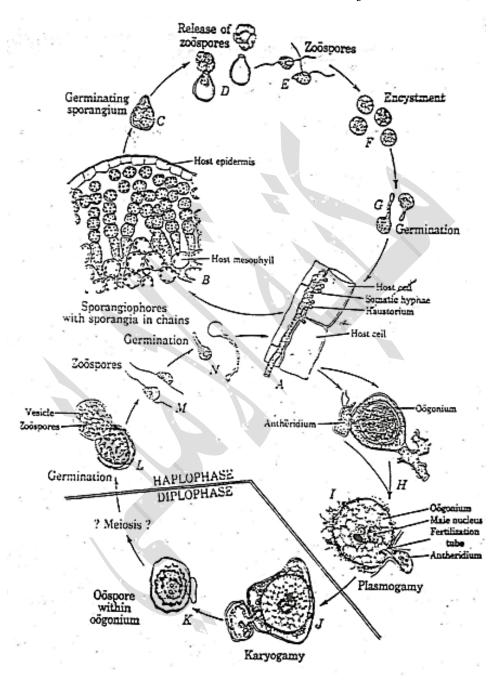
الخارج عبر الثغور حوامل حافظية تحمل حوافظ بوغية عديدة. تسقط الحوافظ البوغية بعد نضجها وتنتشر بوساطة الرياح والأمطار إلى أجزاء جديدة تبنت عليها مباشرة لتعطى عدداً من الأبواغ المتحركة، تفقد الأبواغ أسواطها وتتكيس ثم تنبت مكونة انبوباً جرثومياً يدخل نسيج العائل عن طريق الثغور في نهاية الموسم وبعد موت العائل يبدأ الفطر بالتكاثر الجنسي مكوناً اوكونات وانثريدات لا تختلف أساساً عن الطريقة المتبعة في العائلة بصورة عامة، وبعد عملية الإخصاب تنشأ سبورات بيضوية كروية مثخنة الجدران مجعدة خشنة الملمس ذات لون بني-برتقالي.

يقضي الفطر مدة الشتاء في المناطق الباردة في حالة سبورات بيضية في التربة أو على بقايا الأجزاء النباتية المصابة، وفي أوائل الربيع وبتوفر الظروف الملائمة تنبت السبورات البيضية مكونة انبوب إنبات يمتد ويحمل في نهايته حافظة بوغية مفردة تنتج بدورها عدداً من الأبواغ المتحركة.

أما في المناطق الدافئة فيشتي الفطر بهيئة غزل فطري في البرعم، وفي الربيع يكون الغزل الفطري حوامل حافظية تحمل حوافظ بوغية تنتشر وتسبب انتشار المرض.

دورة حياة الفطر Plasmopara viticola

Family: Albuginaceae العائلة الألبوجسنيسية


تضم العائلة جنساً واحداً هو Albugo candida وتضم حوالي 40 نوعاً جميعها ممرضات مجبرة التطفل على النباتات الزهرية. أشهر هذه الأنواع هو Albugo candida الذي يسبب مرض الصدأ الأبيض على العائلة الصليبية Cruciferae كالفجل واللهانة (الملفوف). حيث تظهر الإصابة على الأجزاء المصابة من النبات العائل بشكل بثرات بيضاء لماعة تشبه قطرات الشمع المتصلبة. الخيوط الفطرية تكون ممصات كروية صغيرة داخل خلايا العائل، تكوين الأبواغ المتحركة يكون داخل الحافظة التي تنتهي بحلمة، يكون الفطر حوامل حافظية قصيرة صولجانية الشكل غير متفرعة تتكون بأعداد كبيرة وقريبة الواحدة من الاخرى وتكون جدران الحوافظ الجانبية سميكة تشكل ما يشبه الحصيرة الفطرية.

دورة حياة الفطر Albugo candida

ينمو الغزل الفطري بين الخلايا ويتغذى بوساطة الممصات، يستمر الغزل في النمو والتفرع حتى يصل مرحلة معينة من النضج عندها يبدأ في مواقع معينة تحت طبقة البشرة بتكوين حوامل حافظية صولجانية غير متفرعة، تبدأ الحوامل بعد مرحلة معينة من النمو بتكوين عدد من الحوافظ البوغية التي تنبثق الواحدة تحت الاخرى على التوالي بحيث تكون سلسلة من الحوافظ تعلو أكبرها عمراً طرف السلسلة وتقع أصغرها عند قاعدتها، وعند اكتمال نضجها تنفصل وتتحرر في الفراغ الواقع بين الحوامل الحافظية وبشرة العائل مما يؤدي إلى تسليط ضغط على بشرة العائل وانبعاجها إلى الخارج ومن ثم تمزقها وتحرر الحوافظ البوغية التي تبدو كفشرة بيضاء على سطح العائل وتنتشر بوساطة الرياح أو الماء وتنبت بتوفر الظروف الملائمة وذلك إما بتكوين ابواغ سابحة عددها يتراوح من الأبواغ المتحركة أو تكوّن انابيب إنبات اعتماداً على درجة الحرارة.

أما التكاثر الجنسي فيشابه من حيث مظاهره الإجمالية جميع الأنواع حيث يبدأ بتكوين الاوكونات والانثريدات داخل أنسجة العائل، وتكون تلك الأعضاء في البداية عديدة النوى إلا أن نواة واحدة في كل منها تكون في النهاية هي الناشطة. تتكون الحوافظ المشيجية على مقربة من بعضها البعض وتتولد على أطراف الخيوط الجسدية. تحوي الاوكونة المكتملة النضج على بيضة واحدة محاطة ببلازم محيطي لا تلبث الحافظتان أن تتلامسا ويتكون انبوب إخصاب تنقل خلاله نواة ذكرية واحدة مع بعض السايتوبلازم وتحصل عملية الإخصاب، ناتج الإخصاب تتكون البيضة المخصبة التي يتكشف لها جدار غليظ وتتحول إلى سبور بيضي، يختلف جدار السبور البيضي في الأنواع المختلفة حيث يكون مثأللاً أو يحوي اخاديد وزخرفة، وتعد هذه الصفات معياراً يعتمد عليه في التمييز بين الأنواع المختلفة لجنس Albugo.

يعاني السبور البيضي مرحلة السكون بعد أن تعاني نواته عدة انقسامات. وفي الربيع الآتي يبدأ بروتوبلازم السبور البيضي بالانقسام إلى عدد كبير من الأجزاء الوحيدة النواة، يتكشف كل منها إلى بوغ سابح كلوي الشكل ثنائي الأسواط، تتحرر الأبواغ وتنبت بوساطة انابيب إنبات لتصيب العائل.

دورة حياة الفطر Albugo candida

<u>Kingdom: Fungi</u>

Phylum: Chytridiomycota

تعرض نسب فطريات هذه الشعبة إلى مملكة الفطريات الحقيقة للجدل بسبب امتلاكها للأسواط وعلى هذا الأساس كانت ضمن مملكة الابتدائيات Protista، لكن تركيب السكريات المعقدة (خصوصاً الكايتين) في جدارها وتخليق اللايسين ربطها بقوة مع الفطريات الحقيقة. تعد الفطريات الكتريدية أصغر الفطريات وأبسطها، تعيش في البيئات المائية كالمحيطات والبحار والبحيرات والأنهار وكذلك في الترب الرطبة وجذور النبات والقنوات الهضمية للمجترات كالأبقار والغزلان. وتتسيد الفطريات الكتريدية ترب المناطق الباردة تحت الثلوج في قمم وسفوح الجبال الشاهقة في مختلفة مناطق العالم.

تضم هذه الشعبة فطريات رمية وطفيلية اختيارية وطفيلية إجبارية تتغذى على الأحياء الحية أو المتحللة وتعد من الكائنات الحية المحللة المهمة.

تمتلك الفطريات الكتريدية أسواطاً Flagella للحركة في أغلب الأنواع وتكون مفردة خلفية من النوع الأملس (Whiplash).

تكون الفطريات الكتريدية أمشاج متحركة وجدرانها الخلوية تحوي على الكايتين، وتضم هذه الشعبة مجموعة متباعدة من الفطريات موزعة على 100 جنس و 1000 نوع. فهي تضم فطريات تتراوح ما بين وحيدة الخلية إلى متعددة الخلايا، وأهم صفات هذه الفطريات هي:

1- جسم الفطر بشكل مدمج خلوي (Coenocytic) وإذا لم يكون الفطر غزلاً فطرياً فإنه إلى جانب الشكل الكروي يكون خيطاً فطرياً، وعليه توجد ثلاث أشكال يمكن أن يكون عليها جسم الفطر:

- أ- أحادي المركز (Monocentric) وهو الشكل الأبسط أي أنه يكون بوغاً ساكناً واحداً أو حافظة بوغية واحدة وهذا يكون كلي الأثمار Holocarpic حيث يتحول كل الجسم إلى تركيب ثمري، وتعد من الأنواع الأكثر بدائية حيث أنه يتطفل داخلياً Endobiotic في حبة لقاح أو داخل خلية طحلب.
- ب- أحادي الخلية (Unicellular) يتكون من خلية واحدة لها أشباه جذور (Rhizoids) تثبت الخلية في الوسط الغذائي، وأشباه الجذور تكون خالية من النوى، ويكون أحادي المركز ولكن حقيقي الأثمار (Eucarpic) أي أن جزء من الجسم وليس كله يكون تراكيب تكاثرية.
- ج- غزل فطري جذيري (Rhizomycellium) ويكون متعدد النوى ومتعدد المركز (Polycentric) اي أن الجسم يكون فيه أكثر من تركيب تكاثري أو مجموعة تراكيب تكاثرية (أبواغ ساكنة أو حوافظ بوغية)، الحوافظ البوغية تنتج أبواغ متحركة أحادية أو ثنائية المجموعة

الكروموسومية وفي أوقات مختلفة، حافظة الأبواغ تكون كروية أو كمثرية الشكل لها واحدة أو أكثر من أنابيب أو حُلم التفريغ، وتختلف الفطريات في طريقة تفريغ الحافظة للأبواغ المتحركة. في الفطريات الكتريدية غير الغطائية (Inoporculate) مثل فطر Diplophlyctis تكون الحافظة البوغية انبوب تفريغ إلى خارج خلية العائل ثم تذوب نهايتها لتتحرر من خلالها الأبواغ. في الفطريات الكتريدية الغطائية (Operculate) مثل فطر للتحرر من خلالها الأبواغ. في الفطريات الكتريدية العطائية بطريقة محددة تكثف عن غطاء بعد تحرير الأبواغ المتحركة، هذه الأنواع تعد أكثر رقياً وعادة ما يكون تطفلها خارجياً Epibiotic حيث تنتج أعضائها التكاثرية على سطح العائل.

2- تحول اللاقحة إلى بوغ ساكن أو حافظة بوغية ساكنة أو غزل فطري ثنائي المجموعة الكروموسومية.

3- تتكاثر لا جنسياً بوساطة الأبواغ المتحركة ذات السوط الواحد المتجه للخلف.

4- التكاثر الجنسي تم وصفه في بعض الأنواع ولم يوصف في غالبية الأنواع وناتج التكاثر الجنسي هو تكوين بوغ ساكن غليظ الجدار، الغالبية تكون أبواغاً ساكنة بطريقة لا جنسية.

يقسم صف الكتيريديومايسيتات Class: Chytridiomycets إلى 4 رتب اعتماداً على شكل التركيب الجسدي وطريقة التكاثر الجنسى:

Order: Chytridiales

1- رتبة الكتريديالات

ويضم الفطريات الكتريدية أحادية الخلية كروية أو بيضوية الشكل قد تحوي الخلية على أشباه جذور فتكون حقيقية الأثمار كما في جنس Rhizophlyctis وقد لا تحوي الخلية على أشباه جذور وبذلك تكون كلية الأثمار كما في جنس Olpidium و Olpidium. التكاثر الجنسي من نوع تزاوج الأمشاج المتشابهة Isogamy.

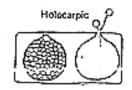
Order: Blastocladiales

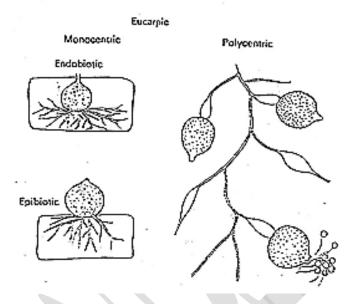
2- رتبة البلاستوكلاديالات

ويضم الفطريات الكتريدية ذات الغزل الفطري الحقيقي غير المقسم (مدمج خلوي) حقيقي الأثمار، التكاثر الجنسي يتم باتحاد أمشاج متماثلة Isogamy أو متباينة Heterogamy، التكاثر اللاجنسي يتم بتكوين أبواغ متحركة في حوافظ غليظة الجدار داكنة اللون وحوافظ بوغية رقيقة الجدران، تضم الرتبة عائلة Blastocladiacea والتي تتضمن عدة أجناس منها Blastocladiella.

3- مرتبة المونوبليفاريدالات

Order: Monoblepharidales


يتميز الثالس الجسدي إلى خيوط جيدة التكوين غير مقسمة حقيقي الأثمار، التكاثر الجنسي يحدث باندماج مشيج ذكري سابح مع بيضة ساكنة (تكاثر بيضي Oogamous) مثل جنس .Monoblepharis


Order: Chytridiales

رتبة الكتريديالات

معظم أفراد هذه الرتبة مائية تنمو مترممة على بقايا النباتات والحيوانات، بعضها يتطفل داخل خلايا الطحالب والحيوانات المائية، والبعض الآخر مترممة على مختلف البقايا الحيوانية والنباتية، ولكن البعض يهاجم الأجزاء الأرضية والهوائية للنباتات الراقية مسببة أمراضاً مهمة اقتصادياً مثل فطر Synchytrium endobioticum المسبب لمرض الثآليل السوداء على البطاطا، تتطفل بعضها على الطحالب وتؤدي إلى خفض مستواها في المياه.

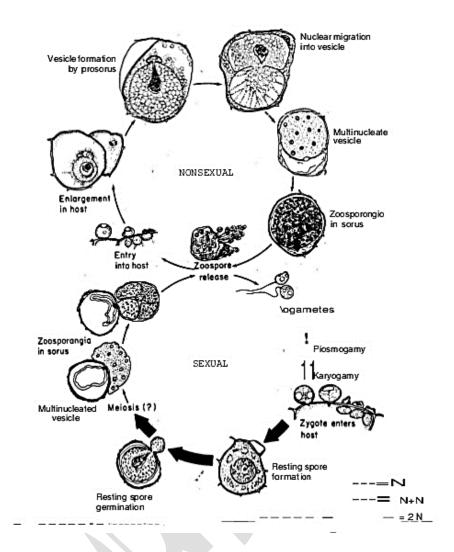
بعض الفطريات الكتريدية التي تعيش في التربة والطين لها القابلية على تحليل السيلياوز والكايتين والكيراتين. لذلك فإن الطُعم المؤلف من هذه المواد مثل السيلوفان، قشور الروبيان، جلد الأفعى والشعر، إذا ما طفى فوق سطح الماء الذي يضاف له تربة من وقت لآخر سيؤدي حتماً إلى استعمار هذه الموارد من قبل الأبواغ السابحة للفطريات الكتريدية والتي ستؤدي إلى تكوين ثالس ناضج. تعد هذه الرتبة من أكبر رتب الفطريات الكتريدية حيث تحوي على أكثر من نصف الأنواع الموصوفة في الشعبة.

أشكال التركيب الجسدي في الفطريات الكتريدية

تضم الرتبة عدة عائلات أهمها:

Family: Synchytriaceae

العائلة السنكتربسية


تضم هذه العائلة فطريات كلية الأثمار Holocarpic فيها الحوافظ البوغية غير غطائية، Sorus أشم مقسم إلى عدة حوافظ بوغية أو مشيجية محاطة بغلاف مشترك مكونة ما يسمى البثرة Sorus، أهم مثال عليها هو الفطر Synchytrium endobioticum المسبب لمرض الثآليل السوداء في البطاطا Black warts disease of Potatoes ينتشر هذا المرض في مناطق زراعة البطاطا في العالم خصوصاً في المناطق الباردة نسبياً والرطبة. ويعد من الأمراض المهمة التي تصيب البطاطا وينتج عنه نقص في المحصول ورداءة نوعيته حيث تكون الدرنات المصابة صغيرة الحجم ومشوهة لاحتواء سطحها الخارجي على ثآليل سوداء تقلل من قيمتها الاقتصادية.

التركيب ودورة حياة الفطر:

الفطر المسبب هو Synchytrium endobioticum، يعد الفطر المسبب إجباري التطفل Obligate parasites ويوجد في التربة على هيئة أبواغ شتوية ساكنة (حوافظ بوغية ساكنة) مقاومة للظروف غير الملائمة، تحدث إصابة درنة البطاطا في التربة خلال الربيع وذلك عندما تتحرر الأبواغ

السابحة بأعداد ضخمة من الأجزاء المصابة للنباتات وتسبح في التربة في غشاء رقيق من الماء، ويعمل البوغ الساكن الأحادي السوط عند ملائمة الظروف على إذابة ثقب دقيق في جدار بشرة العائل ثم ينفذ من خلاله تاركاً سوطه في الخارج، وبمجرد أن يدخل البوغ الاميبي إلى داخل خلية بشرة البطاطا يبدأ بالنمو والتضخم وببقى أحادي الخلية، وعندما يصل إلى حجم معين يفرز حوله جدار كايتيني غليظ بلون بني- ذهبي ويتحول إلى بثرة أولية Prosorus وتعرف أيضاً بالبوغ الصيفي Summer spore، وتتضخم خلية العائل إلى حد كبير Hypertrophy، وتتحفز في الوقت ذاته الخلايا المجاورة لها على الانقسام المتكرر غير الطبيعي Hyperplasia فينشأ عن هذه الحالة ورم متورد Rosette tumor يظهر على سطح الدرنة بشكل ثآليل صغيرة متقاربة تؤلف بمجموعها تركيباً يشبه القرنابيط الصغيرة التي تعرف بالثآليل Warts والتي اشتق منها اسم المرض. تكون الثآليل بنية سوداء اللون، تضم خلاياها الأبواغ الصيفية أو البثرات الأولية، تبنت البثرة الأولية عند اكتمال نضجها داخل خلية العائل داخل حوصلة Vesicle ذات غشاء رقيق تشبه فقاعة الصابون، تعانى النواة سلسلة من الانقسامات غير المباشرة ثم تتكون عدد من الجدران الشفافة تعمل على تقسيم البثرة الأولية إلى ما يقارب 4-9 أجزاء، يحوي كل جزء على عدد من الأنوية أحادية المجموعة الكروموسومية، يحيط بهذه الكتلة من الحوافظ البوغية جدار مشترك فتسمى عندئذ بالبثرة Sorus، وعندما تمتص البثرة هذه مقداراً من الماء تتضخم وتنفجر لتحرر أعداداً كبيرة من الأبواغ المتحركة يتراوح عددها 500-600 بوغ متحرك لكل منه سوط واحد خلفي وهكذا تزداد مادة الفطر اللقاحية في التربة.

تهاجم الأبواغ المتحركة درنات البطاطا ويتفاقم المرض، أما إذا كانت الرطوبة منخفضة أو إذا سادت مدة جفاف في اوائل الصيف تسلك الأبواغ المتحركة عندئذ سلوكاً جنسياً أي تصبح أمشاجاً متحركة بدلاً من الأبواغ المتحركة، تتحد الأمشاج المتضادة جنسياً والمتآلفة في أزواج وتحصل عملية الاقتران السايتوبلازمي والاقتران النووي وتتكون لاقحة متحركة ذات سوطين تسبح في الغلاف المائي داخل التربة وعندما تصل درنة البطاطا تصيبها بالمرض وبنفس الطريقة التي أحدثتها الأبواغ المتحركة، ثم تفرز اللاقحة داخل خلية العائل جداراً سمكياً نسبياً قد يكون سطحه الخارجي مشوكاً أو مزخرفاً وتتحول إلى حافظة بوغية ساكنة أو مقاومة تعرف بالبوغ الشتوي Winter spore، تبقى بعد مرزها من نسيج العائل في التربة في حالة سكون لعدد من السنين طالما كانت الظروف البيئية غير ملائمة لإنباته، وعند توفر الظروف الملائمة كالحرارة والرطوبة فإنها تنبت بعد أن تعاني نواتها انقساماً اختزالياً يليه عدة انقسامات خيطية ثم تتميز الأبواغ المتحركة التي تتحرر وتعيد دورة الحياة مجدداً.

دورة حياة الفطر Synchytrium endobioticum

Kingdom: Fungi

مملكة الفطريات

Phylum: Zygomycota

شعبة الفطريات اللاقحية

تضم هذه الشعبة فطريات سريعة النمو واسعة الانتشار، رمية في التربة أو على الثمار والمواد الروثية، ومنها فطريات غير مؤذية في القنوات الهضمية للمفصليات، بعضها تعايشية مكونة مايكورايزا خارجية، والبعض الآخر طفيلية على النباتات والحيوان والإنسان والفطريات الاخرى والأميبا، ومع أنها لا تشكل سوى 1% من مجموع الفطريات حيث تضم أكثر من 610 نوعاً موصوفاً، إلا أن أهميتها البيئية والاقتصادية كبيرة، تتميز هذه الشعبة بالصفات التالية:

1- تمتلك غزلاً فطرياً غير مقسم (مدمج خلوي)، ويمكن أن تكون حواجزاً غير منتظمة في الخيوط الفطرية القديمة أو عند قواعد الحوامل البوغية.

2- غياب الأبواغ المتحركة أو الخلايا المتحركة (السابحة) حيث تتكاثر أفرادها لا جنسياً بتكوين أبواغ غير متحركة Aplanospores تتكون داخل حوافظ بوغية Sporangia، أحادية أو متعددة الخلايا، وقد تسلك الحافظة في بعض الأحيان سلوك كونيدة واحدة.

3- يتم التكاثر الجنسي عن طريق تزاوج الحوافظ مشيجية Gametangial conjugation وينتج عنها تكوين أبواغ لاقحية Zygospores مقاومة للظروف غير الملائمة ومنها اشتق اسم الشعبة (Zygomycota).

4- في دورة الحياة، الطور الثنائي المجموعة الكروموسومية (2n) يكون في اللاقحة وعند إنباتها، وفي باقي تراكيب الفطر تكون الخلايا أحادية المجموعة الكروموسومية (1n).

5- جدار الخلايا يتألف أساساً من الكايتين والكيتوسان.

تضم هذه الشعبة صفين هما:

1-Class: Zygomycetes (اللاقحية) صف الزايكومايسيتات واللاقحية)

2-Cladd: Trichomycetes صف الترايكومايسيتات

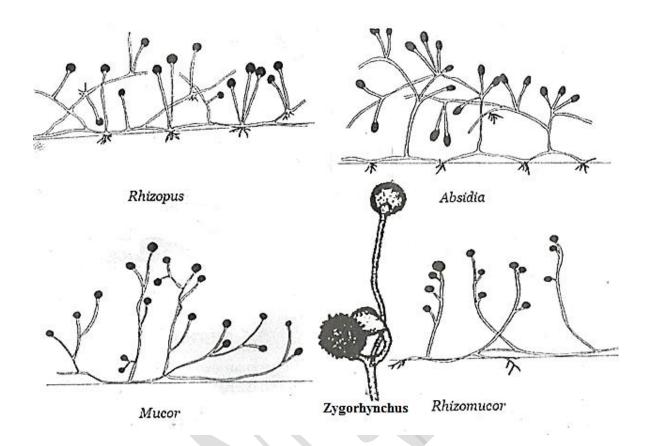
صف الفطريات اللاقحية Class: Zygomycetes

يضم هذا الصف رتبتين:

Order: Mucorales رتبة الميوكرالات –1

تعد هذه الرتبة من أكبر الرتب التابعة لصف الفطريات اللاقحية من حيث عدد الأنواع، معظم أجناس التربة رمية على المواد الروثية والعضوية وفي التربة، بعضهما ممرضة للنبات خاصة على أزهار وثمار القرعيات مثل الفطر Choanophora cucurbitarum مسبباً ضرراً بالغاً لها، كذلك تسبب الثمار أثناء الخزن مثل الفطر Rhizopus stolonifer الذي يسبب مرض التثقيب لثمار الشليك كما يسبب مرض التعفن الرخو للبطاطا عند تخزينها Soft rot disease of Potato، وتضم الشليك كما يسبب مرض التعفن الرخو للبطاطا عند تخزينها Absidia corymbifera وعدة أنواع من الجنس Mucor و كنوعاً ممرضاً للإنسان مثل الفطر Absidia corymbifera وعدة أنواع من الجنس المهاز العصبي الداخلي للإنسان، كما تستخدم بعض هذه الفطريات في الإنتاج التجاري لبعض الأحماض العضوية مثل حامض اللاكتيك Lactic acid وحامض السكسينك Oxalic acid وحامض الاوكزاليك Oxalic acid مثال على

ذلك الفطر Rhizopus stolonifer الذي يستغل في إنتاج حامض الفيومارك Fumaric acid كما يستخدم لإتمام بعض الخطوات في إنتاج الكورتيزون، كما يستخدم الفطر Rhizopus oryzae في إنتاج الكورتيزون، كما يستخدم بعض الفطريات التابعة لهذه الرتبة في الصناعات الغذائية في دول شرق آسيا.


تركيب جسم الفطر

1-تمتلك فطريات هذه الرتبة غزلاً فطرياً جيد التكوين غير مقسم (مدمج خلوي) متفرعاً، وإذا وجدت الحواجز فإنها تكون في قواعد الحوافظ البوغية أو المشيجية وكذلك في الخيوط الفطرية القديمة المتضررة.

2-بعض الأنواع التابعة لجنس Rhizopus و Absidia تكون أشباه جذور في نقطة ملامسة السطوح الصلبة مثل جوانب الطبق الزجاجي الذي ينمو فيه الفطر أو الوسط الغذائي الصلب، تلتصق أشباه الجذور بالطبقة التحتية وتعمل على تثبيت الفطر وتساعده في الامتصاص.

3-الغزل الفطري الذي يربط بين مجموعتين من أشباه الجذور يطلق عليها بالمدادات Stolons.

4-قد تتكون أبواغ كلاميدية Chlamydospores نتيجة تقلص محتويات الهايفة العائدة للخيوط القديمة (المسنة)، وهذه الظاهرة شائعة في بعض الأنواع مثل Mucor racemosus، وإذا ما توفرت الظروف الملائمة تنفصل هذه الأبواغ وتنمو لتكون غزلاً فطرياً.

بعض اجناس رتبة Mucorales

<u>التكاثر</u>

1-التكاثر اللاجنسى:

تتكاثر فطريات هذه الرتبة لا جنسياً بوساطة الأبواغ غير المتحركة التي تتكون داخل حوافظ بوغية (Sporangia) كروية أو كمثرية أو مفصصة أو اسطوانية وغير ذلك، تحمل هذه الحوافظ على حوامل حافظية متفرعة أو غير متفرعة (Sporangiophores) تتشأ قرب نهايات الخيوط الفطرية، قد تكون الحوافظ البوغية صغيرة الحجم ذات عويمدات أو خالية منها وتحوي على عدد قليل من الأبواغ تعرف هذه الحوافظ باسم الحويفظات Sporangiola، وقد تحوي الحافظة على بوغ واحد فتسمى تعرف هذه الحوافظ باسم الحويفظات Arthrosporus sporongium، أو قد يندمج جدار البوغ مع جدار الحافظة فتسلك الحافظة سلوكاً كونيدة واحدة، بعض الأنواع تتكاثر لا جنسياً عن طريق تكوين أبواغ مفصلية Arthrospores أبواغ كلاميدية.

تحمل الحوافظ البوغية على حوامل حافظية قد تكون بسيطة كما في جنس Mucor، أو تكون ذات تفرع سواري (دائري) كما في جنس Thamnidium، وقد يكون الحامل ذا تفرع معقد تظهر فيه

فروع خصبة ملتوية تعرف بالفروع الجرثومية Sporocladia كما هو في جنس Zygorhynchus، وبعد شكل الحوافظ البوغية وتحورات الحوامل الحافظية مهم من الناحية التصنيفية.

2-التكاثر الجنسى

يحصل التكاثر الجنسي في أفراد هذه الرتبة عن طريق تزاوج الحوافظ المشيجية المسلط (Homothallic) or في الفطريات المتماثلة أو المتباينة الثالس (Gametangial conjugation) ويحصل التزاوج ما بين الأجناس (Intergeneric) مثل التزاوج الحاصل بين الفطر Gilbertella persicaria والفطر Gilbertella persicaria والفطر Rhizopus stolonifer وقد يحدث التزاوج بين الأنواع ضمن الجنس الواحد (Intraspecific) كما في الأنواع المختلفة للجنس Rhizopus أو حتى ضمن سلالات النوع الواحد كما في حالة الفطر Mucor hiemalis وقد يحدث أن يحصل تزاوج بين فطريات من سلالة واحدة ناشئة من بوغ واحد كما في الفطر Rhizopus sexualis و الفطر Absidia spinosa.

يحدث التكاثر الجنسي بأن يقترب الخيطان من بعضهما البعض، ثم يتكون من الخيطين المتقابلين فرعان جانبيان يأخذان في التقدم من بعضهما، يعرف هذين الفرعين بالحوافظ المشيجية الأولية Progametangia، عندما يتلامس الفرعان المتضادان ينساب إلى الأطراف المتلامسة سايتوبلازم غزير ونويات عديدة وتتسع تلك الأطراف ثم يتكون حاجز قرب طرف كل حافظة مشيجية أولية ليفصلهما إلى خليتين، حافظة مشيجية طرفية Gametangium وخلية معلقة Suspensor تنوب الجدران الفاصلة بين الحافظتين المشيجيتين المتلامستين عند نقطة التلامس، ويمتزج بروتوبلاست الحافظتين وتقترب الانوية في أزواج وتندمج لتكون انوية ثنائية المجموعة الكروموسومية بعد ذلك تأخذ الخلية الجديدة الناتجة من تزاوج الحافظتين المشيجيتين في الاتساع والتكور ويتغلظ جدارها ويصبح سطحها أسود اللون مثآلل وتتميز إلى بوغ لاقحي Zygospore الذي يمر بفترة سكون المذة أشهر بعدها يبدأ بالإنبات ليكون حاملاً حافظياً تتكشف عند طرفه حافظة بوغية ويتم الانقسام الاختزالي في أثناء عملية إنبات البوغ اللاقحي، تظهر هناك فروقات واضحة بين الأجناس من حيث حجم وشكل الحوافظ المشيجية والمعلقات، وقد تظهر زوائد معينة تحيط بالبوغ اللاقحي كما يتباين حجم وشكل الأواغ اللاقحية في مختلف الأجناس.

في بعض أنواع Mucorales تفشل فيها عملية تلامس الحوافظ المشيجية، أحدهما أو كليهما يكونان تركيب مماثل مظهرياً للبوغ اللاقحي وبطريقة عذرية يسمى البوغ اللالاقحي (Azygospore) أو الحافظة البوغية اللالاقحية (Azygosporangium)، البوغ اللالاقحي يكون كروي مثآلل الجدار محمول على خلية مشابهة للمعلق وأحياناً على حامل حافظة بوغية، هذه الأبواغ تتكون بانتظام في

الفطرين Mucor bainieri و Mucor azygospora، حيث لا يكونان بوغاً لاقحي، كما سجل . وجوده أيضاً في الفطر Rhizopus azygosporus.

تضم رتبة الـ Mucorales عدداً من العائلات منها:

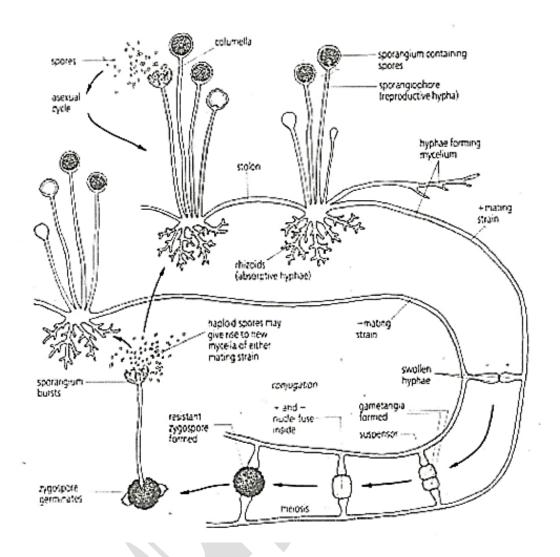
Family: Mucoraceae العائلة الميوكوربسية

تضم هذه العائلة 19 إلى 21 جنس معظمها يعيش رمياً على المواد العضوية المتحللة وروث الحيوانات والتربة، بعضها يتطفل بشكل ضعيف مسبباً أمراضاً للنبات مثل الفواكه والخضراوات ومن أهم أجناس هذه العائلة:

1- جنس Rhizopus: يضم فطربات واسعة الانتشار في التربة وعلى الفواكه والخضراوات المتعفنة وعلى براز الحيوانات والخبز القديم، وتعد هذه الفطريات من الملوثات الشائعة، مع ذلك فهي يمكن أن تسبب أمراضاً خطيرة أو مميتة على الإنسان تعرف بأمراض Mucormycosis مثل الفطر Mucormycosis، وبعض الأنواع تسبب أمراضاً للنباتات مثل الفطر Rhizopus stolonifer المعروف بعفن الخبز Bread mold كذلك يسبب مرض التعفن الطري على الفواكه والخضر Soft rot disease of fruit and vegetables. يتركب جسم الفطر من خيوط جيدة التكوين متفرعة غير مقسمة، تتميز الخيوط إلى جزء زاحف على الوسط يسمى بالمدادات Stolons، ويرسل أشباه جذور في الوسط النامي عليه لغرض التثبيت والامتصاص، ينبثق مقابل كل مجموعة من أشباه الجذور (Rhizoids) مجموعة من الحوامل الحافظية غير المتفرعة، ينتهي كل حامل بحافظة بوغية كروية الشكل تتكشف بداخلها عدد من الأبواغ غير المتحركة Apalnospores. يفصل الحافظة البوغية عن طرف الحامل حاجز مستعرض يمتد وينتفخ داخل الحافظة ليكون ما يسمى بالعويمد Columella بعد نضج الأبواغ يزداد العويمد انتفاخاً إلى داخل الحافظة البوغية مما يؤدي إلى الضغط على الأبواغ والتي تضغط بدورها على جدار الحافظة مما يؤدي إلى تمزقها وتحرر الأبواغ التي تنتشر بوساطة الهواء لتعيد دورة الحياة متى ما توفرت الظروف المناسبة.

من الصفات المظهرية التي تساعد في تشخيص الأنواع التابعة لجنس Rhizopus هي طول أشباه الجذور وحوامل الحوافظ البوغية بالإضافة إلى قطر الحافظة البوغية وشكل العويمد كذلك حجم وشكل وطبيعة سطح الأبواغ الحافظية، كما تختلف الأنواع في درجة الحرارة القصوى للنمو.

2- جنس Mucor. يعد جنس Mucor من الفطريات الشائعة حيث يضم حوالي 53 نوعاً، منه من يتواجد في التربة مثل Mucor hiemalis وغيره والتي هي من الفطريات الروثية، ونظراً والفواكه وعلى الروث مثل Mucor mucedo وغيره والتي هي من الفطريات الروثية، ونظراً لسرعة نمو هذه الأبواغ والأعداد الهائلة من الأبواغ التي تكونها وانتشارها بوساطة الهواء فهي من الملوثات المختبرية الشائعة. بعض أنواع Mucor في المراضاً للإنسان والضفادع والبرمائيات والماشية مثل Mucor racemosus و Mucor circinelloides


يختلف جنس Mucor عن جنس Rhizopus في بعض النقاط ومنها:

1- لا يحوى الغزل الفطري على أشباه جذور Rhizoides.

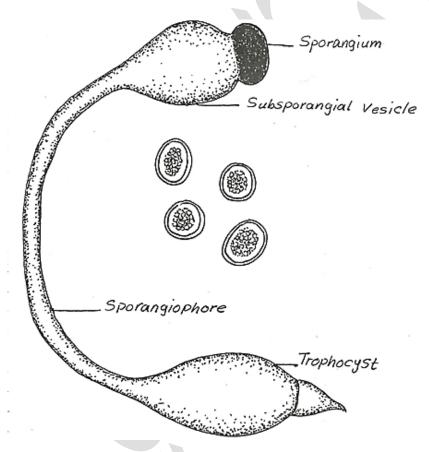
2− لا يكون مدادات Stolons.

3-في الغالب تكون الحوامل الحافظية بسيطة أو متفرعة ويتكون حامل حافظي واحد من نقاط معينة على الهايفة.

3- جنس Absidia: يضم هذا الجنس 24 نوعاً، تنمو فطريات هذا الجنس في التربة ويعد الفطر Absidia corymbifera من الفطريات الممرضة للإنسان. أنواع هذا الجنس تشبه جنس Rhizopus لكن تختلف عنه في أن الحوامل الحافظية لا تنشأ من نقطة مقابلة لأشباه الجذور، وقد تكون الحوامل الحافظية متفرعة.

دورة حياة الفطر Rhizopus stolonifera

Family: Pilobolaceae العائلة البيلوبولاسية –2


العائلة تضم فطريات هي بالأساس روثية Coprophilous or Dung fungi مع أن بعضها تم عزله من التربة. العائلة تضم ثلاثة أجناس هي Pilobolus و Pilaria وهي تعزل من الروث أما Utharomyces فيعزل من فضلات القوارض.

-جنس Pilobolus

يضم الجنس (5) أنواع مثل Pilobolus kleinii و Pilobolus crystallinus، معظم الأنواع مثل أنواع مثل الفطريات على روث الحيوانات المعشبة، و تظهر بعد نمو فطريات متباينة الثالوس، تنمو هذه الفطريات باهتمام خاص كونها تظهر الانتحاء الضوئي لاطلاق حوافظها

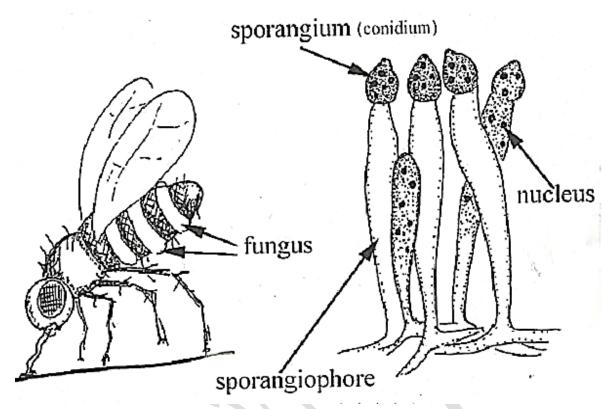
البوغية ودراسة آليات الانتحاء الضوئي. تطلق الحوافظ البوغية باتجاه الضوء بارتفاع 2 م ولمسافة عرضية من 2.5 م ومن هنا اشتقت تسمية الفطر رامي القبعة أو قاذف القبعة عرضية من 2.5 م

يتميز الفطر بأن له حوامل حافظية تحمل مباشرة على الغزل الفطري وكل حامل يتركب من كيس قاعدي منتفخ يسمى بالحويصلة الغذائية Trophocyst. يمتد منها حامل حافظي ينتهي بانتفاخ يسمى بالحويصلة تحت الحافظة البوغية Subsporangial vesicle تتصل بطرفه حافظة بوغية واحدة سوداء اللون بيضوية أو قبعية الشكل، تحاط الحوافظ البوغية بمادة هلامية تساعدها على الالتصاق بالأعشاب التي تأكلها حيوانات الرعي وتدخل داخل جسمها ثم تخرج مع الروث لتبدأ دورة حياتها من جديد.

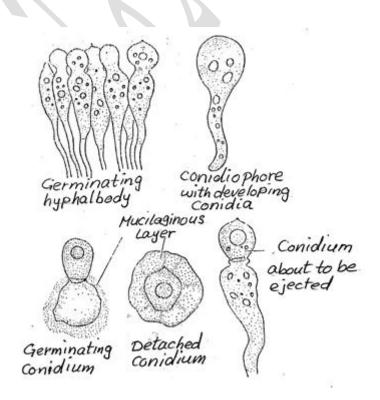
جهاز الحافظة البوغية للفطر Pilobolus

Order: Eutomophthorales رتبة الانتوموفثورالات-2

يشير اسم الرتبة (Entomo تعني حشرات و Phthor مدمر و Eles هي قافية الرتبة) إلى أهميتها لكونها تضم فطريات متطفلة على الحشرات (Entomogenous) كما تضم فطريات ممرضة للإنسان مثل فطر Basidiobolus ranarum، القليل منها يتطفل على النباتات الواطئة كالسرخسيات و الأشنات، كما يعيش بعضها مترمماً على مخلفات الضفادع والسحالي. تكون هذه


الفطريات غزلاً فطرياً جيد التكوين يمكن أن يتجزأ وذلك بتكوين حواجز وبالتالي يتفتت الخيط إلى المجزاء كروية أحادية أو متعددة الانوية تعرف بالأجسام الخيطية الفطرية الفطرية المجلسام بالتبرعم أو الانقسام ولا يلبث كل جسم منها أن ينتج حاملاً كونيدياً يحمل عند طرفه كونيدة واحدة. تتزاوج الأجسام الخيطية وتتكشف إلى الاقحات، في بعض الأنواع مثل كونيدة واحدة. تتزاوج الأجسام الخيطية وتتكشف اللي القحات، في بعض الأنواع مثل على حوامل كونيدية بسيطة أو متفرعة وتقذف الكونيدات بشدة من الحوامل الكونيدية، وتكون على حوامل كونيدية بسيطة أو متفرعة وتقذف الكونيدات بشدة من الحوامل الكونيدية، فإذا ما استقرت على وسط مناسب تنبت وتكون غزلاً فطرياً وإن لم تستطع تنتج كونيدة ثانوية وقد تتكرر هذه العملية حتى يستنفذ البروتوبلازم وتهاك.

وكما ذكرنا أن التكاثر الجنسي يحصل في بعض الأنواع ويتم في الغالب بتزاوج أجسام خيطية فطرية ينتج عنها تكوين بوغ لاقحي يشبه في طريقة تكوينه للبوغ اللاقحي في رتبة Mucorales، وقد تتكون الأبواغ اللاقحية في بعض الأنواع بالتوالد العذري. تضم هذه الرتبة 5 عائلات وتعد عائلة Entomophthoraceae من أكبر عائلات هذه الرتبة وتضم 12 جنساً أهمها جنس الذي يضم بدوره حوالي 12 نوعاً ممرضاً للحشرات ومن أهم هذه الأنواع هو:


:Entomophthora muscae

يصيب هذا النوع الذباب المنزلي ويسمى فطر الذباب Fly fungus، تبدأ إصابة الذباب بهذا الفطر في الصيف وبداية الخريف، حيث يلاحظ على زجاج النوافذ والجدران الذباب المنزلي محاطأ بهالة بيضاء من كونيدات الفطر. تحدث الإصابة عندما تسقط كونيديا الفطر على ذبابة فتنبت الكونيديا ويخترق انبوب الإنبات جسم الذبابة وينمو داخلها إلى خيوط فطرية مقسمة تملأ بطن الذبابة لحين نفاذ المواد الغذائية بعدها تتقطع الخيوط إلى أجسام كروية تعرف بالأجسام الخيطية Hyphal لحين نفاذ المواد الغذائية بعدها تتقطع الخيوط إلى أجسام كروية تعرف بالأجسام الخيطية bodies التي تبدأ بالنمو لتخرج من جسم الذبابة من خلال الحلقات البطنية مكونة حوامل كونيدية تتكون عند طرف كل حامل كونيدة واحدة كبيرة الحجم تقذف بعيداً بمسافة 2-3 سم. وتنبت عند مقوطها على ذبابة أخرى. إن فطر E. muscae يمكن أن ينتقل من الإناث المصابة إلى الذكور خلال الاتصال الجنسي.

الكونيديا الأولية تبقى حية لمدة 3−5 أيام وإذا لم تنجح في إصابة الحشرة تكّون كونيدات ثانوية وهذه تتبت بوساطة انبوب إنبات أو تكون كونيدات ثانوبة جديدة.

الحافظة البوغية في فطر Entomophthora muscae

نشوء الكونيدات وتطورها في فطر Entomophthora muscae

<u> Phylum:Glomeromycota</u> <u>شعبة الفطريات المايكورايزية</u>

أول من أطلق مصطلح مايكورايزا كان من قبل العالم الالماني A. B. Frank في عام 1885 ويرجع اصل التسمية الى اليونانية وتتكون من شطرين Myco وهي الفطر و rhiza تعني الجذر، وتمثل المايكورايزا علاقة تعايشية بين بعض فطريات التربة وجذور النباتات. ولأن الاصابة بالمايكورايزا لاتترك أثاراً واضحة في النبات المصاب فقد تأخر اكتشافها الى حين اكتشاف طريقة تصبيغ الجذور التي كشفت عن تراكيب هذه الفطريات في جذور العائل مما ادى الى الاهتمام بدراستها ، تتميز المايكورايزا الداخلية بكونها غير متخصصة لنبات معين، وعدم قدرتها على النمو في الأوساط الصناعية لانها اجبارية التغذية على المادة الحية، ان هذا النوع من التعايش يزود المغنيات الأوساط الصناعية لانها اجبارية التغذية على المادة الحية، ان هذا النوع من التعايش يزود المغنيات بالاتجاهين إذ يتدفق الكاربون الى الفطر والمغنيات اللاعضوية تتدفق الى النبات منتجا تواصلاً وتماساً مابين جذور النبات والتربة، مما يؤدي الى تحسين التغذية وامتصاص المغنيات الكبرى والصغرى في النبات .

أنواع المايكورايزا (Types of Mycorrhizae)

قسمت المايكورايزا في البداية الى ثلاثة مجاميع مايكورايزية وهي: مايكورايزا داخلية وسمت المايكورايزا في البداية الى ثلاثة مجاميع الموقع النسبي الفطريات في الجذور. ولكن تبين فيما بعد (Ectendomycorrhizae) اعتماداً على الموقع النسبي للفطريات في الجذور. ولكن تبين فيما بعد ان المايكورايزا الداخلية تضم مجاميع أخرى مثل المايكورايزا الحويصلية الشجيرية والمايكورايزا الأريكويدية والمايكورايزا في الوقت الحاضر الى سبعة مجاميع الأريكويدية والمايكورايزا السحلبية ، لذلك قسمت المايكورايزا في الوقت الحاضر الى سبعة مجاميع اعتماداً على خصوصية التعايش مع الفطر ونمط استيطان الجذور ومدى وقابلية النبات المضيف على تقبل استيطان الفطر وهذه المجاميع هي:

1- المايكورايزا الخارجية (Ectomycorrhiza) وتكتب إختصاراً ECM:

في هذا النوع من المايكورايزا توجد الهايفات بين الخلايا القشرية للجذور مكونة تراكيب شبكية تدعى Harting net وتغلف بشكل كامل قمة الجذر، كما توجد هايفات خارجية تلف نفسها حول الجذر مكونة مايسمى بالعباءة Mantle او الغمد Sheath كما تتصل به حزم من الخيوط الفطرية الـتي تمتد في التربة وتزيد من المساحة السطحية والامتصاص، وتوجد المايكورايزا الخارجية في النباتات الخشبية ابتداء من الشجيرات الى اشجار الغابات وهناك اكثر من 4000 نوع منها تعود الى الفطريات البازيدية Basidiomycotina وقليل منها يعود الى الفطريات الكيسية المناس المناسبة المناسبة المناسبة الكيسية الكيسية الكيسية المناسبة المناسبة

2− المايكورايزا الخارجية الداخلية (Ectendomycorrhiza) :

يكون هذا النوع من المايكورايزا حالة وسطية بين المايكورايزا الداخلية والمايكورايزا الخارجية لذلك سميت بهذا الاسم، اذ تتكون تراكيب خارجية نموذجية اما الغلاف فيكون خفيفاً أو مفقوداً، كما توجد شبكة هارتك التي تخترق خلايا القشرة، وعند نضوج البادرة يستبدل هذا النوع بمايكورليزا خارجية، تعود هذه الفطريات إلى الفطريات الكيسية وتوجد في الأشجار النفضية والمخروطيات.

3- المايكورايزا الأربكودية (Ericoid):

تعد المايكورايزا الاريكودية من أنواع المايكورايزا الداخلية ولكنها لاتكون تراكيب شجيرية، وسميت بهذا الأسم لأنها تتعايش مع نباتات الرتبة Ericales.

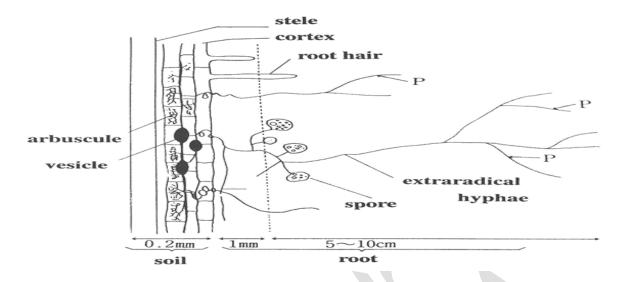
4-المايكورايزا الأربوتودية (Arbutoid Mycorrhiza):

تكون هذه المايكورايزا كتلة سائبة من الخيوط الفطرية على سطح الجذر ولاتمثل هذه الخيوط غلافاً حقيقياً، كما تحتوي خلايا القشرة للنبات على مجموعة كبيرة من الخيوط داخلها، لذلك يعد هذا

النوع من الأنواع الداخلية، الفطريات المكونة لهذا النوع هي فطريات كيسية، يتواجد هذا النوع في الترب الدبالية والحامضية التي تتواجد فيها نباتات الأزاليا Rhododendron والخلنج والعنبية Vaccinium.

5- المايكورايزا المونوتروبويدية (Monotropoid Mycorrhiza):

يعد معيشة أو تكافل هذا النوع نموذجياً اذ تتواجد المايكورايزا مع النباتات غير الكلوروفيلة مثل نبات البيبة الهندية الماندية الماندية الوقت نفسه تقيم هذه المايكورايزا علاقة مع أشجار أخرى تقوم بالبناء الضوئي ويتم من خلال المايكورايزا نقل المواد الكاربونية وغيرها من المواد الغذائية من الأشجار ذاتية التغذية إلى النباتات الطفيلية (غير الكلوروفيلية)، يعد هذا النوع من المايكورايزا الخارجية اذ تكون غلافاً وشبكة هارتك.


6-المايكورايزا السحلبية (Orchid Mycorrhiza):

سميت بالمايكورايزا السحلبية لأنها تكون علاقة مع العائلة السحلبية فيها مواد الصبغة الخضراء الا بعد تخطي مرحلة البادرة)، إذ تكون هذه العائلة بذوراً صغيرة جداً توجد فيها مواد غذائية قليلة لاتكفي لنضوج البادرة، ولاتستطيع الانبات الا اذا أصيبت بالمايكورايزا، وبعد انبات البذور تستعمر البادرة بالمايكورايزا إذ تكون التفافات من الخيوط داخل خلايا البذور، ثم تتحلل الخيوط بعد أيام من الاصابة لتصبح مواد عضوية تستفيد منها البادرات وبذلك تستكمل نموها وتقوم بعدها بالبناء الضوئي، وتبقى المايكورايزا بتزويد النبات بالعناصر الغذائية وغيرها من المواد، أي أن النبات يعتمد على المايكورايزا في جزء من حياته ويسلك خلالها سلوكاً طفيلياً، ان فطريات هذا النوع تصنف ضمن الفطريات البازيدية.

7-المايكورايزا الشجيرية (Arbuscular Mycorrhiza) وتكتب إختصاراً AM:

تغير اسم المايكورايزا الشجيرية عدة مرات خلال مراحل اكتشافها من المايكورايزا الداخلية إلى المايكورايزا الحويصلية الشجيرية VAM) Vesicular-Arbuscular Mycorrhiza) وأخيراً إلى المايكورايزا الشجيرية AM بسبب ان جميعها تكون تراكيب شجيرية عالية التفرعات داخل الخلايا تسمى الشجيرات Arbuscules. بينما لاتكون جميعها حويصلات Vesicles مثل عائلة Gigasporaceae. تتكون الابواغ اللاجنسية لهذا النوع من المايكورايزا داخل الجذور وعلى الأغلب في التربة وهي كبيرة الحجم مقارنة بأبواغ الفطريات الأخرى، وبكتسب البوغ أهمية تصنيفية من خلال اتصاله بالخيط الفطري. تعد أكثر أنواع المايكورايزا انتشاراً في الطبيعة وأكثرها أهمية من الناحية الفسلجية والاقتصادية والبيئية، اذ تتكافل هذه الفطريات مع جذور مايزيد عن 80% من النباتات الأرضية الراقية ومحاصيل الخضر. تبدأ اصابة الجذور بفطريات (AM) عندما يبدأ البوغ او Propagules بتكوين أنبوب انبات واحد أو أكثر ثم يتطور ليكون غزلاً فطرباً يمتد لعدة سنتمترات عند وجود جذور ملائمة لنموه وكاستجابة للافرازات الجذرية Root Exudates التي لها دور أساسي في ارسال اشارات جذب، من هذه الافرازات هي الفلافونات، وفي حالة عدم توفر جذور ملائمة للاصابة فان النمو سوف يتوقف. تتميز الخيوط الفطرية في هذا النوع بانها غير مقسمة (مدمج خلوي) Ceonocytic hyphae ويوجد طوران من الغزول الفطرية، غزل فطري خارجي hyphae ينتشر في التربة يبلغ طول هذه الخيوط بضعة أمتار وقد تتكون خيوطاً ملتفة أو عقدية تعرف بالخلايا المساعدة Auxillary cells وظيفتها غير معروفة، أو تكون تراكيب فطربة تشبه المروحة التي تتألف من تفرعات جانبية التي عن طريقها تتم اصابة الجذور إذ تكون أعضاء التصاق appressoria على بشرة الجذر ثم يتكون خيط فطري رفيع يعرف بقدم الاصابة appressoria الذي يخترق جدار الخلية ويتفرع وينتشر بين وداخل خلايا القشرة الخارجية وهو الطور الثاني من

الغزول الفطرية ويسمى الغزل الفطري الداخلي Intraradical hyphae، وقد تتجمع الخيوط الفطرية داخل الخلايا وتكون تلافيف ذات انتشار محدود، تنمو الخيوط وتتميز في القشرة الوسطية والداخلية إذ تكون الشجيرات Arbuscules والحويصلات Vesicles ، ان عملية اختراق الشعيرة الجذرية من قبل الخيوط الفطرية تكون غالبا ميكانيكية وذلك عن طريق الضغط المباشر الذي يولده الغزل الفطري على نسيج الجذر ، أن المايكورايزا لها القدرة على انتاج أنزيمات متخصصة مع كميات قليلة من أنزيمات Endoglucanase ، Exoglucanase ، Xyloglucanase ، Cellulase ، Pectinase لجدران خلايا الجذر. اما عملية تكوين الشجيرات فتبدأ باختراق الخيوط الفطرية لجدران خلايا القشرة دون تمزيق لها او للغشاء الخلوي اذ ينبعج الأخير، ومن ثم تكون الخيوط تفرعاً شجيرياً كثيفاً وينشأ حيز جديد يمنع التماس المباشر مابين سايتوبلازم الفطر وسايتوبلازم النبات يسمح بالانتقال الفعال للعناصر الغذائية بين المايكورايزا والنبات، ان التركيب الشجيري Arbuscule هو أهم صفة في هذه المجموعة وبتميز بقصر عمره نسبياً إذ لايزبد عن 15 يوماً، وتتكون شجيرات ثانوبة وثالثية وتستمر في التكون ولكن في أماكن أخرى. اما الحويصلات Vesicles فهي تراكيب رقيقة أوسميكة الجدران مليئة بالمواد الدهنية كروبة أو بيضوبة وأحياناً مفصصة إذ تتكون من طرف الهايفة الموجودة في نسيج قشرة الجذر، وتوجد عادة في المسافات البينية، يعتقد إن وظيفة الحويصلات الرئيسية هي خزن المواد الدهنية والمركبات الفسفورية ويمكن أن تقوم بوظيفة الوحدات التكاثرية.

إستيطان الجذر بالفطر المايكورايزي الشجيري وتراكيبه المختلفة.

http://www.tudarmstadt.de/fb/bio/bot/schuessler/amphylo/amphylogeny.html

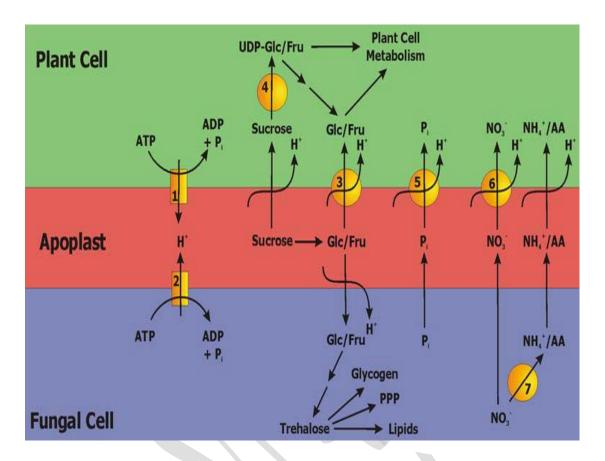
تصنيف المايكورايزا الشجيرية Classification of Arbuscular Mycorrhiza

كان التصنيف التقليدي القديم لاجناس وأنواع المايكورايزا الشجيرية يعتمد في الأساس على المظهر الخارجي للابواغ الكبيرة من حيث الحجم والشكل وطريقة إرتباط الخيط الفطري بالبوغ ، اذ وضعت هذه المجموعة من المايكورايزا في البداية تحت قسم (Subdivision) الفطريات اللاقحية وضعت هذه المجموعة من المايكورايزا في البداية تحت قسم Endogonaceae التي ضمت حينها أجناساً وهي وJygomycotina و Sclerocystis و Acaulospora و Gigaspora و Glomus و Endogone و التشابه المظهري للثمار البوغية (Sporocarps) لأنواع جنس Glomus مع أنواع جنس Endogone وضع الجنس الأول ضمن عائلة Endogonaceae (Mosse, 1970) المرابغ من ذلك فقد وجد ان هذا الشبه غير حقيقي اذ ان أبواغ جنس Glomus تمثل ابواغاً لاجنسية بينما أبواغ جنس Endogone وضمن تحت قسم هي جنسية، لذلك فصلت أنواع الجنس الأول في رتبة جديدة Glomales وضمن تحت قسم الفطريات اللاقحية Tygomycotina نفسه التي ضمت ثلاث عوائل وستة أجناس وحوالي 150 نوعاً

، والعوائل هي Glomaceae التي ضمت الأجناس (Sclerocystis وعائلة Acaulosporaceae واحتوت أجناس (Entrophospora و Entrophospora) وأخيراً عائلة Gigasporaceae والمتضمنة الجنسان (Gigaspora و Gigaspora). بعد ذلك وضع Schubler et (2001) الأجناس الستة التابعة لمجموعة المايكورايزا الشجيرية مع الرتبة نفسها ولكن غير الاسم من Glomerales إلى Glomales وضمت ضمن شعبة جديدة Glomeromycotaنسبة إلى جنس Glomus وضمن مملكة الفطريات Kingdom Fungi وحسب الجدول (1) ، واستحدثت هذه الشعبة استناداً الى مظهر الأبوغ والدراسات الجزيئية المعتمدة على تتابع القواعد النتروجينية في الوحدات الصغيرة لل rRNA التي بينت إن هذه المجموعة سلكت طريقاً تطورياً خاصاً بها يختلف عن الفطريات الأخرى لذلك وضعت في شعبة خاصة . تتميز الشعبة بوجود تكاثر الجنسي وتكوين أبواغ كبيرة الحجم خارج نبات العائل في الغالب وأحياناً داخل جذور العائل، وفي بعض الأحيان تكون ثماراً بوغية Sporocarps، تتميز أبواغ هذه الشعبة عن شعب الفطريات الاخرى بإنها تكون تراكيب تحت خلوية في جدار البوغ وفي بعض الأحيان تتكون جدران انبات داخلية مرنة ، كما ان جدران الخلايا تتألف من مادة الكايتين والسليلوز فضلا عن ذلك فان الخيوط الفطرية عريضة وغير مقسمة (Coenocytic Hyphae) ، ولاتتوفر معلومات تشير الى وجود تكاثر جنسي في هذه الشعبة، وتضم أكثر من 150 نوعاً تعود إلى 10 أجناس وثماني عوائل وأربع رتب وصف واحد وكما موضح في الجدول الأتي:

PHYLM	CLASS	ORDER	FAMALY	GENUS
Glomeromycota	Glomeromycetes	Glomerales	Glomeraceae	Glomus
		Diversisporales	Pacisporaceae	Pacispora
			Diversisporaceae	Diversispora
			Gigasporaceae	Gigaspora
				Scutellospora
			Acaulosporaceae	Acaulospora
				Entrophospora
		Paraglomerales	Paraglomaceae	Paraglomus
		Archaeosporales	Archaeosporaceae	Archaeospora
			Geosiphonaceae	Geosiphon

جدول (1): تصنيف فطريات المايكورايزا الشجيرية حسب (Schubler et al., 2001).


بعد ذلك أضيف جنسان جديدان الى هذه الشعبة وهما جنس Kuklospora وجنس Schussler & (Sieverding & Oehi, 2006) Intraspora (وفي عام 2010 قام الباحثان (Walker, 2010 الذي Glomeromycota أضيف الى شعبة Rhizophagus الذي ضم عدداً من أنواع جنس Glomus ومن ضمنها نوع Intraradices أحد الأنواع المستعملة في بحثنا هذا، وبناء على ذلك غيرنا الأسم العلمي للفطر Glomus intraradices الى الاسم .Rhizophagus intraradices

وظائف المايكورايزا الشجيرية:

ان ميكانيكية نقل المغذيات وكما موضحة في الشكل ادناه تتمثل بأخذ فطر المايكورايزا الكاربوهيدرات من النبات بصيغة كلوكوز وفركتوز، وتبدأ هذه العملية بانتقال الكاربوهيدرات (بنسبة تتراوح مابين 4-20% من صافي البناء الضوئي) من اللحاء الى Apoplast (هو الحيز الفاصل بين الشجيرات والغشاء السايتوبلازمي لخلية الجذر) إذ يتحطم السكروز الى كلوكوز وفركتوز داخل

الأبوبلاست Apoplast ثم يمتص من قبل الفطر عن طريق بروتينات نقل متخصصة ويتحول بسرعة داخل الخلية الفطرية الى تريهالوز الذي يتايض بوساطة مسلك Lipids ، ان هذه المركبات تنتقل اما (PPP) أو يستعمل في بناء الكلايكوجين glycogen والدهون Lipids ، ان هذه المركبات تنتقل اما الله الحويصلات الفطرية fungal vesicles أو الى الخيوط الخارجية الفطرية للمايكورايزا التي تمتلك مساحة سطحية اكبر بكثير نسبة الى الحجم مما تمتلكه الشعيرات الجذرية وتمتد خارجياً حول الجذر لتصل الى مسافة اكثر من 8 سم ابعد من مناطق استنزاف المغذيات مما يساعد في زيادة كفاءة امتصاص المغذيات ، أما النبات فانه يأخذ الفوسفور من المايكورايزا خلال الغشاء البلازمي الشجيري periarbuscular membrane بعملية النقل الفعال بوساطة ناقلات النترات الفوسفات phosphate transporters ، وكذلك يتزود بالنتروجين عن طريق ناقلات النترات nitrate reductase من مانجاه النبات بشكل امونيوم * NH₄ أو أحماض أمينية Amino acids).

فضلاً عن ذلك فقد أشير الى استطاعة فطريات (AM) لامتصاص البوتاسيوم والكالسيوم والكالسيوم والكبريت والحديد والمنغنيز والنحاس والزنك ونقلها الى النبات عن طريق الجذور ، من اهم المواد التي تساعد الهايفات على الاحتفاظ بالمغذيات التي تقوم المايكورايزا بافرازها هي الكلومالين Glomalin التي تغطى هايفات المايكورايزا

نقل المغذيات بين المايكورايزا الشجيرية AM وجذر النبات

وتسلك كمادة كارهة للماء مما يساعد على الاحتفاظ بالمغذيات ومنعها من الفقدان، وتساعد الكلومالين على تكوين تجمعات التربة وزيادة ثباتها من خلال اضافته الى المادة العضوية المحيطة بالتربة. كذلك تستطيع مادة الكلومالين من حجز العناصر السامة ولهذا تلعب المايكورايزا دوراً بيئياً كبيراً في عملية حجز وتثبيت هذه العناصر ومن ثمَّ تتمكن النباتات من العيش في الترب الملوثة. ومن الجدير بالذكر هنا ايضاً ان للمايكورايزا دوراً مهماً في الاقتصاد بكمية الماء وتحسين العلاقات المائية وزيادة كفاءة الجذور في امتصاص الماء مما يزيد من مقاومة النبات للجفاف وزيادة تحمله للملوحة المرتفعة.

Phylum: Ascomycota الكيسية الفطربات الكيسية

الصفات العامة

1- الفطريات الكيسية هي أكبر مجاميع الفطريات حيث تضم حوالي ثلاثة أرباع الفطريات المصنفة، إذ انها تضم 3000 جنساً و 70000 نوع اليها تعود معظم أنواع الفطريات المشتركة مع الطحالب في تكوين الاشنات كما ينتسب إليها معظم الفطريات التي لا يستدل على تكاثرها الجنسي (الفطريات

الناقصة) تضم الشعبة الكثير من أشهر أنواع الفطريات وأكثرها أهمية مثل الخميرة الصناعية Penicillium والفطر الذي كشف عن البنسلين للمرة الاولى Saccharomyces cervisiae والفطر المنتج لسموم الافلاتوكسين Aspergillus flavus والمسبب المرضي Candida albicans للإنسان Candida albicans.

2- الصفة المشتركة والمميزة للفطريات الكيسية كما هو واضح من اسمها، هي تكوينها للكيس (Ascus) الذي يحوي على الأبواغ الكيسية (Ascus) الذي يحوي على الأبواغ الكيسية

3- الغزل الفطري مؤلف من خيوط فطرية مقسمة بشكل منتظم إلى خلايا متجاورة، وبعض الفطريات الكيسية (الخمائر) تكون أحادية الخلية. وفي الحالتين يتكون الجدار أساساً من الكايتين وبيتا-كلوكان بنسب مختلفة، الغزل الفطري السائد تكون خلاياه أحادية النواة وأحادية المجموعة الكروموسومية، أما الطور الثنائي النواة فيكون الخلايا المولدة للأكياس وخلايا الأكياس الأمية.

4- يحدث التكاثر اللاجنسي فيها تكوين الكونيدات لذلك يلاحظ وجود طورين هما الطور اللاجنسي ويدعى الناقص Anamorph، والجنسي يدعى

5-تكون واسعة الانتشار في الطبيعة، منها ما هو مكيف للمعيشة على مخلفات الحيوانات ويطلق عليها الفطريات المحبة لروث الحيوانات Coprophilous، والبعض الآخر متكيف للمعيشة البحرية المالحة وتدعى Marine fungi (الفطريات البحرية). لذا نلاحظ وجود تكيفات مظهرية تصاحب الخلايا التكاثرية (البورات الكيسية) فمثلاً وجود غلاف جيلاتيني Mucilage sheath يحيط بالسبور أو وجود لواحق على جدار السبور.

6- وعدا عن تغذيتها النخرية (Necrotrophic) فإن بعضها إحيائي التغذية (Biotrophic) حيث يقيم علاقات تعايشية مع بعض أنواع الطحالب ليكون الاشنات وجذور الكثير من النباتات ليكون حالة الفطر - جذر (المايكورايزا) أو مع أوراق وسيقان بعض النباتات ليكون مستنبتات (Endophytes)، كما تكون بعض الفطريات الكيسية علاقات تعايشية مع بعض المفصليات حيث يوفر الفطر المادة الغذائية لها مقابل المساعدة على نشره.

التكاثر في الفطريات الكيسية

أولاً: التكاثر الجنسي

1. اتحاد الحوافظ المشيجية المتماثلة:

حيث تلتقي حافظتان مشيجيتان متشابهتان مظهرياً تتماسان عند طرفيهما أو تلتفان على بعضهما وتلتحمان، الخلية الملتحمة تكون الكيس (Ascus). ويحصل الاندماج النووي سريعاً بعد الاتحاد البلازمي. في الخمائر تقوم الخلايا الجسمية الاعتيادية مقام الحوافظ المشيجية وتتحول اللاقحة إلى كيس.

2. اتحاد الحوافظ المشيجية غير متماثلة:

تعبر النواة الذكرية من الانثريدة (Anthcridium) إلى الاسكوكونة (Ascogonium) من نقطة الالتحام بين الحافظتين عبر الشعيرة الانثوية (Trichogene).

3.الاتحاد البذيري Spermatization:

تنتقل البذيرة (Spermatium) وهي الخلية الذكرية التي تتكون داخل حافظة بذيرية (Spermatium) إلى عضو الاستقبال الانثوي حيث تفرغ محتوياتها، ويمكن أن تقوم مقام البذيرات في بعض الأنواع الكونيدات الصغيرة Microconidia أو الكوبندات.

4. الاتحاد الجسمي Somatogamy:

ويتم الالتحام بين خيطين فطربين غير متخصصين ثم تنتقل النوى إلى الاسكوكونة من خلال فتحات الحواجز، هذه الطريقة ليست شائعة في الفطريات الكيسية لكنها شائعة في الفطريات البازيدية.

آلية تكوبن الأبواغ الكيسية داخل الكيس

1- باستثناء الخمائر يمكن أن تتأخر عملية الاندماج النووي إلى أن تحصل في الكيس الحديث. بعد الاندماج النووي يحصل انقسام اختزالي لتتكون 4 نوى أحادية المجموعة الكروموسومية وعادة تتبع بانقسام خيطي واحد لتتكون 8 نوى أحادية المجموعة الكروموسومية أو أكثر من انقسام خيطي واحد لتتكون 9 نوى أحادية المجموعة الكروموسومية أو أكثر من انقسام خيطي واحد لتتج أبواغ بأعداد تتناسب وعدد الانقسامات الخيطية.

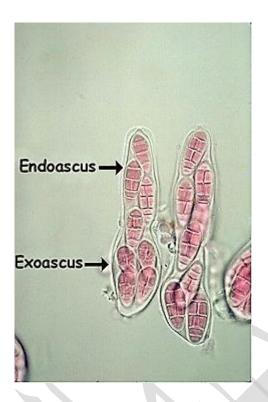
- 2- يتم إحاطة أجزاء من سايتوبلازم الكيس حيث يحتوي كل جزء على نواة بغشاء مزدوج.
 - 3- يترسب جدار البوغ بين طبقتي الغشاء حيث يفصل الطبقتين مع نضج البوغ.

الأكياس Asci

الأكياس يمكن أن تكون حرة كما في الخمائر أو عارية في حالة الفطر الممرض للنبات الثمرة عمل المرض النبات تكون مرتبة ضمن أجسام ثمرية مثل الثمرة Taphrina deformans لكنها في كثير من الحالات تكون مرتبة ضمن أجسام ثمرية مثل الثمرة الكأسية Apothecium في الفطريات القرصية Discomycetes التي تكون كأسية الشكل أو الثمرة الدورقية Perithecium أو الثمرة المغلقة Cleistothecium، إن هذ التراكيب الثمرية تكون كبيرة لما يكفي لتمييزها بالعين المجردة.

الأكياس يمكن أن تكون جالسة أو محمولة على سويقات، الأكياس سواء كانت عارية أو ضمن جسم ثمري تسمى الطبقة الخصيبة Hymenium هناك ثلاثة أشكال مظهريه للكيس.

1-أكياس ابتدائية الغلاف Prototunicate:


حيث يكون للكيس جدراً رقيقاً وتتحرر الأبواغ بتلاشيه وهذا النوع ينتشر في الفطريات التي تكوّن أكياسها في الثمرة المغلقة Cleistothecium وأحياناً الثمرة الدورقية Perithecium وكذلك الحشية الكيسية Ascostroma.

2-أحادى الغلاف Unitunicate:

يحاط الكيس بطبقتين من الجدار، الغلاف الخارجي (Exotunica) والغلاف الداخلي (Endotunica) تتلاصق الطبقتين طيلة حياة البوغ، وتتحرر الأبواغ من خلال فتحة طرفية أو شق أو غطاء يسمى Operculum وهذا النوع نجده في الفطريات الكيسية المكونة للثمار الكيسية من نوع الثمرة الكأسية Apothecia ويمكن أن تكون بعض الفطريات أكياس أحادية الغلاف ولكن غير غطائية وإنما ينتهي الكيس بحلقة مرنة تشبه عمل صمام الضغط حيث يمكن ان تنفتح تحت ضغط الكيس لتتحرر الأبواغ وهذه تشيع في الفطريات ذات الثمار الكيسية من نوع الثمرة الدورقية و بعض الفطريات المكونة للثمار الكأسية.

3- ثنائي الغلاف Bitunicate:

يحاط الكيس بطبقتين من الجدار، الغلاف الخارجي والغلاف الداخلي، لكن الغلاف الداخلي يتمدد إلى ضعف طوله أو أكثر منفصلاً وشاقاً طريقه من خلال الغلاف الخارجي وذلك وقت تحرير الأبواغ وهذا النوع يشيع في الفطريات التي تكون أكياسها في حشية كيسية كاذبة Pseudoascostroma.

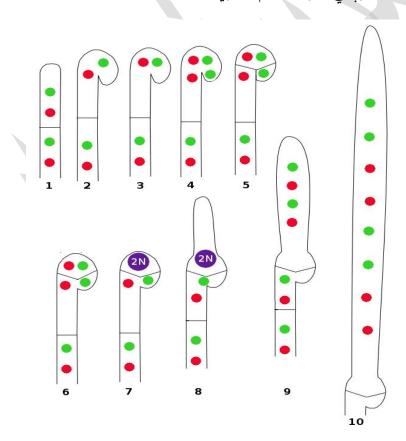
الأكياس ثنائية الأغلفة في الفطر Leptosphaerulina

<u>تكوبن الجسم الثمري والاكياس</u> <u>Formation of Fruiting body and Asci</u>

1- عند إنبات البوغ الكيسي ينشأ غزل فطري مقسم خلاياه أحادية النواة، يكوّن الغزل الفطري حوافظاً مشيجية انثوية تسمى اسكوكونة (Antheridia) وحوافظ مشيجية ذكرية هي الانثريدة (Antheridia) وكلاهما يكونان متعددي النواة.

2− تكوّن الاسكوكونة خيطاً انثوياً Trichogyne تلتحم نهايته الحرة مع الانثريدة حيث تنتقل نوى الانثريدة عبرها إلى الاسكوكونة وتزدوج كل نواة من الانثريدة مع نواة من نوى الاسكوكونة.

3- بعد أن تزدوج النوى تتكون خيوط فطرية مولدة للأكياس Ascogenous hyphae وتعاني النوى المزدوجة انقسامات خيطية متزامنة، فتصبح خلايا هذا الخيط الفطري ثنائية النواة ولمدة طويلة لا يحصل خلالها اندماج نووي. وفي الوقت نفسه تكون الخلية الساقية (Stalk cell) غزلاً فطرياً أحادي النواة ينشأ عنه معظم الجسم الثمري والخيوط الفطرية العقيمة Paraphysis.


4-تنمو الخيوط المولدة للأكياس وتتفرع بصورة متكررة إلى أن تصل أطرافها إلى مواضع تكون الأكياس والأبواغ الكيسية حيث تستطيل الأطراف وتنحني لتكون خطافات (Croziers).

5- يحدث انقسام النواتين في الخطاف وكذلك انقسام خلية الخطاف إلى خلية طرفية وخلية قبل طرفية وهنا يحصل الاندماج النووي والانقسام الاختزالي حيث تتكون الأكياس والأبواغ الكيسية، خلف الخلية قبل الطرفية توجد الخلية الساقية.

6- تندمج نواتي الخلية قبل الطرفية لتكون اللاقحة وهي الخلية الثنائية المجموعة الكروموسومية الوحيدة في دورة الحياة كما في معظم الفطريات.

7- تتبع بانقسام اختزالي لتتكون 4 نوى، يليها عادة انقسام خيطي لتكون 8 نوى والتي تنشأ عنها الأبواغ الكيسية الثمانية. وخلال عملية انقسام النوى وتكون الأكياس يصبح الكيس متطاولاً.

8- خلال تفرع الخلية المولدة للأكياس تتكون الطبقة الخصيبة المؤلفة من الأكياس والأبواغ الكيسية والخيوط الفطرية العقيمة وباقي أجزاء الجسم الثمري الناشئة من الخلايا الساقية.

Ascocarps الأجسام الثمرية

جميع الفطريات الكيسية تنتج أجساماً ثمرية Fruit-bodies) Ascocarps عدا مجموعة الخمائر. تنشأ الأجسام الثمرية عموماً من كتلة من الخيوط الفطرية وبأنماط مختلفة حسب الرتب التصنيفية. يطلق على مكونات الجسم الثمري بمصطلح Centrum وتعني كتلة الخيوط الفطرية والتي

تتطور إلى غلاف يحيط بالأكياس السبورية والخيوط العقيمة تقع ما بين الأكياس ومن هذا التركيب يتطور الجسم الثمري بأنواعه المختلفة.

أشكال الأجسام الثمرية

1- أجسام ثمرية مغلقة Cleistothecia:

يكون الجسم الثمري كروي الشكل محاطاً بجدار خارجي مغلق يحتوي على فتحة لخروج السبورات الكيسية وفي داخله تنشأ الأكياس، تتميز الأكياس بشكلها الكروي أو البيضوي وتكون مبعثرة وتتحرر الأكياس عن طريق تشقق الجدار، وهذا النوع من الأجسام الثمرية هو صفة تتميز بها الفطريات التابعة للصف Leotiomycetes.

2-أجسام ثمرية كمثرية (قارورية) Perithecia

يكون الجسم الثمري كمثري (قاروري) محاطاً بجدار مع وجود استطالة أو عنق ينتهي بفتحة Ostiole لخروج الأكياس السبورية بشكل منتظم عند قاعدة الجسم الثمري ويكون شكلها اسطواني أو صولجاني تتخللها خيوط عقيمة Paraphysis. هذا النوع من الأجسام الثمرية يكون موجوداً في الفطريات التابعة للصف Sordariomycetes.

3- أجسام ثمرية قرصية Apothecia

تكون الأجسام الثمرية قرصية الشكل محمولة على حامل أو جالسة ويكون الجزء العلوي مسطحاً وتنتظم عليه الأكياس السبورية التي تكون اسطوانية الشكل تتخللها خيوط عقيمة وهي تنتج في الفطريات التابعة للصف Pezizomycetes.

4-الأجسام الثمرية المسكنية (الحشوية) Ascostroma:

بعض الفطريات الكيسية تتميز بتكوينها أجساماً ثمرية غير حقيقة وانما تنشئ الأكياس السبورية داخل تجاويف (غرف) في نسيج الحشوة Stroma، أي أنها غير محاطة بجدار حقيقي، ويبدو شكلها قاروري لذا تسمى بالأجسام القارورية الكاذبة Pseudothecia وتنتج من قبل الفطريات التابعة للصف Dothidiomycetes.

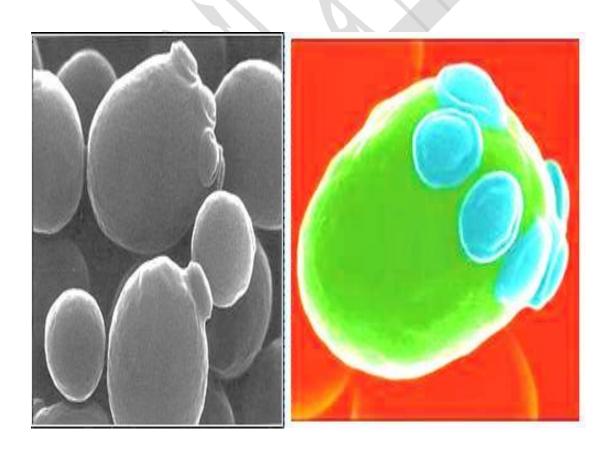
اشكال الاجسام الثمرية

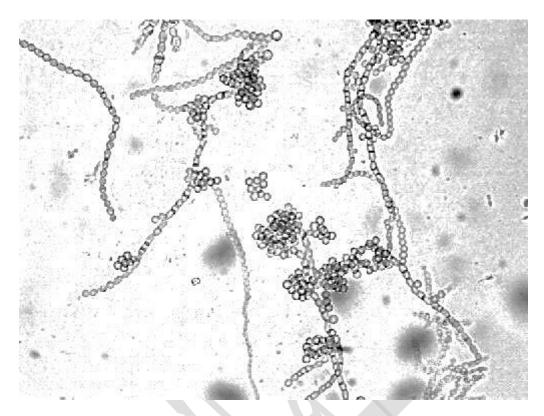
التكاثر اللاجنسي في الفطريات الكيسية

ويحدث بوساطة الانشطار أو التبرعم كما في الخمائر أو بوساطة تجزؤ الخيط الفطري.

Phylum: Ascomycota شعبة الفطريات الكيسية

Subphylum: Sacchromycotina تحت شعبة الخمائر


تضم الخمائر الحقيقة مثل خميرة الخبز والفطر الممرض المعروف Candida albicans التي يتألف جسمها من خلايا مفردة أو تكون سلاسل قصيرة من الخلايا وتتكاثر بوساطة التبرعم. وتتميز أفرادها بغياب الخيوط المولدة للأكياس والثمار الكيسية، والأكياس رقيقة الجدران.


Class: Saccharomycetes

تمتاز أنواع هذا الصف من الخمائر بقدرتها العالية على تخمير السكريات حيث اشتق اسمها من السكر. تقوم فطريات هذه المجموعة بتخمير السكريات وتحويلها إلى كحول وثنائي أوكسيد الكاربون.

الاهتمام الكبير في هذه المجموعة من الخمائر لأهميتها الصناعية في مجال الخبز والمعجنات والمشروبات الكحولية، كما أن احتواء خلايا الخميرة على الفيتامينات جعلها تدخل في تحضير المواد الغذائية.

جسم الخمائر يتألف من خلايا مفردة لها جدار خلية ويختلف شكلها حسب النوع وحتى ضمن النوع الواحد ويكون على العموم كروياً أو بيضوياً أو متطاولاً أو مكعباً. ويمكن أن تلتصق الخلايا ببعضها مكونة سلاسل قد تتطور إلى خيوط فطرية كاذبة.

Pseudomycelium

التكاثر الجنسي: يتم بتكوين أبواغ كيسية داخل كيس.

التكاثر اللاجنسي: يتم بواسطة التبرعم Budding.

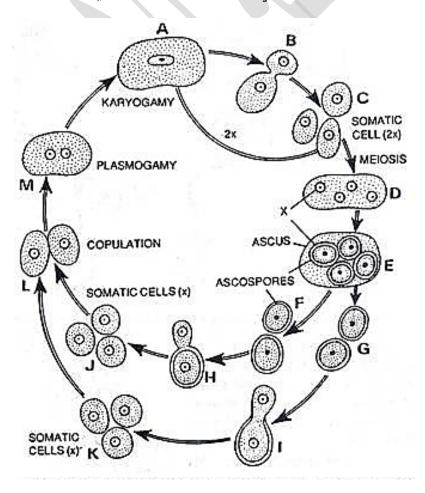
Order: Saccharomycetales

Family: Saccharomycetaceae

تضم العائلة عدداً من الأجناس منها Candida ،Saccharomyces تتميز العائلة بالصفات التالية:

1- جسم الفطر أحادي الخلية يمكن أن يكون غزلاً فطرياً كاذباً Pseudimycelium.

2- التكاثر اللاجنسي بواسطة التبرعم المتعدد الجوانب.


3-تكون الأبواغ الكيسية في كيس حر ينشأ من اللاقحة.

Genus: Saccharomyces

يضم جنس Saccharomyces نوعاً، أهمها الخميرة الخميرة العنب والتمر cerevisiae المعروفة بخميرة الخبز. تتواجد بشكل رئيس على الثمار الحلوة الناضجة كالعنب والتمر وغيرها، هذه الفطريات ترافق الإنسان ومنذ أقدم الأزمان وحتى وقتنا الحاضر في صناعة أهم مادة غذائية وهي الخبز. كما أنها تدخل في صناعة البيرة والنبيذ وغيرها من الصناعات الغذائية بما فيها صناعات الخميرة ذاتها.

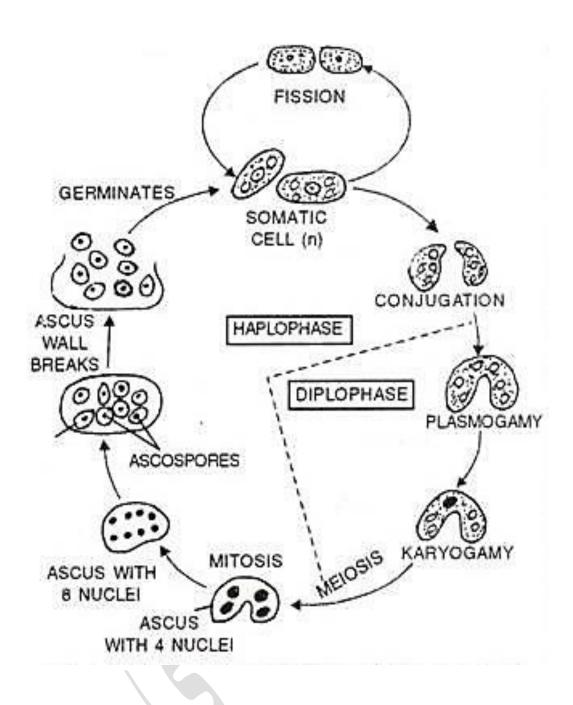
الخميرة الخميرة Saccharomyces cerevisiae وحيدة الخلية ومن الخمائر الصغيرة نسبياً. الخلايا الخضرية للخميرة ثنائية التضاعف (2n)، متباينة الثالوس حيث يتطلب التزاوج وجود طرازين تزاوجيين أو متماثلة الثالوس أيضاً.

وعند تزاوج خليتين من الطرازين تتكون اللاقحة، اللاقحة تستمر بالنمو والتكاثر اللاجنسي فترة من الوقت وهذا يمثل ظاهرة تبادل الأجيال. حيث تتبع بحصول انقسام اختزالي وتتكون (4) أبواغ كيسية أحادية المجموعة الكروموسومية التي تسلك سلوك الخلية الخضرية.

دورة حياة خميرة الخبز Saccharomyces cerevisiae

Phylum: Ascomycota

Sub-phylum: Taphrinomycotina


Class: Schizosaccharomycetes

يضم الصف رتبة واحدة هي Schizosaccharomycetales تتألف من عائلة واحدة Schizosaccharomyces وهذه تتألف من جنس واحد هو Schizosaccheromycetaceae يضم الصف الخمائر المنشطرة التي تتكاثر لا جنسياً بالانشطار وهي صفة غير موجودة في بقية الخمائر أو الفطريات.

Order: Schizosaccharomycetales

يتواجد افراد هذه الرتبة في الإفرازات المخاطية وفي العسل والفواكه ومنتجاتها منها النوع Schizosaccharomyces octosporus حيث يكون الطور الثنائي المجموعة الكروموسومية منحصر في اللاقحة التي تعاني انقساماً اختزالياً. الخلايا الجسمية تكون متطاولة. أحادية النواة (1n). يحصل انشطار عرضي في كل خلية مكونة خلايا بنوية مستطيلة. تتطاول تنضج وتنقسم.

إن أي خلية يمكن أن تكون حافظة مشيجية كامنة، عند اتصال خليتين يذوب الجدار في نقطة الاتصال وتنشأ قناة ضيقة تنتقل إليها النواتان وتندمجا وينساب السايتوبلازم إلى القناة ثم تتوسع وتتحد الخليتان. تحصل 3 انقسامات داخل اللاقحة والتي تصبح كيس اثنان منها اختزالية، مكونة 8 أبواغ كيسية، يتحلل الكيس محرراً الأبواغ الكيسية وتتصرف كل خلية بعدئذ كخلية جسمية.

دورة حياة خميرة السكر Schizosaccharomyces octosporus

Phylum: Ascomycota

Sub-phylum: Tophrinomycotina

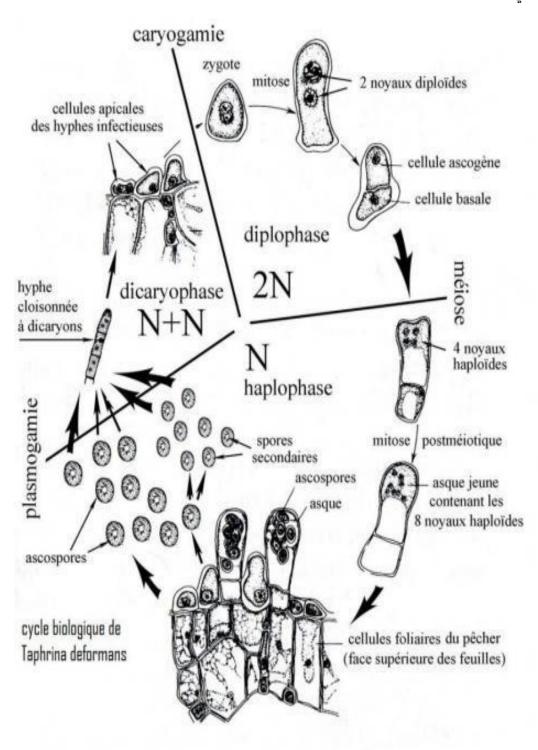
Class: Taphrinomycetes

Order: Taphrinales

تضم تحت الشعبة Taphrinomycotina فطريات خيطية وخمائر انشطارية والممرض الرئوي في اللبائن والإنسان Pneumocystis. تتألف الشعبة من أربعة صفوف منها

Class: Taphrinomycetes

Order: Taphrinales


تضم الرتبة عائلتين منها عائلة Taphrinaceae، أنواع هذه الرتبة ثنائية المظهر حيث يكون الطور الخميري أحادي النواة (1n) رمي المعيشية، والطور الخيطي الممرض والذي يكون ثنائياً أو متعدد النواة مقسم.

تتشابه أفراد هذه الرتبة مع الخمائر في تكوينها للأكياس السبورية العارية وتتكاثر لا جنسياً بوساطة التبرعم. وإن تكوين الأكياس في هذه الفطريات لا ينتج مباشرة من اللاقحة كما يحدث في رتبة الخمائر وإنما عن طريق تراكيب ناتجة من خيوط مظهرية تدعى خيوط فطرية كيسية Ascogenous وبهذه الصفة فهي تختلف عن الخمائر.

من الأجناس والأنواع المهمه لعائلة Taphrina deformans هي Peach leaf curl disease المسبب لمرض التفاف أوراق الخوخ

الفطر T. deformans متماثل الثالوس وخلية الخميرة للفطر تكون ثنائية النواة وتتمكن من اختراق النبات بوساطة أنبوب الإنبات حيث ينتشر الغزل الفطري في نسيج الورقه وتحت طبقة الكيوتكل. تتطور الخلايا الطرفية للغزل الفطري بعد أن تصبح جدرانها سميكة لتعطي سبورات كلاميدية ثنائية النواة وتتحد النواتان ثم تنقسم اعتيادياً الى نواتين بعد ان تستطيل الخلية ويتكون حاجز عرضي تنقسم نواة الخلية العليا اختزالياً لتعطي أربعة انوية أو ثمانية (أحادية المجموعة الكروموسومية). وتحاط كل نواة بكتلة من البروتوبلاست وبجدار لينتج ثمان سبورات داخل الخلية (الكيس) وتظهر الاكياس العارية بهيئة صف على سطح الورقة فتحرر السبورات الى الخارج وتتبرعم

او يحصل لها انبات عند تلامسها لسطح ورقة نبات الخوخ وينجم عند تكوين غزل فطري جديد داخل النسيج النباتي لتتكرر دورة الحياة.

دورة حياة الفطر Taphrina deformans

Phylum: Ascomycota

الفطربات الكيسية الخيطية Filamentous asccomycetes

هذه الفطربات تمتلك غزلاً فطرباً مقسماً. وتكون الأبواغ الكيسية والأكياس داخل تراكيب ثمربة

كيسية، ثمة أربعة أنواع من التراكيب الثمرية الكيسية التي تكونها المجاميع المختلفة من الفطريات

الكيسية الخيطية.

1-الثمار الكروية المغلقة Cleistothecia

2-الكأسية Apothecia

3-الدورقية Perithecia

4-الحشية الكيسية Ascostroma

Sub-phylum: Pezizomycotina تحت شعبة -2

تعد أكبر شعب الفطريات الكيسية، تضم فطريات ذات أهمية بيئية متنوعة تشمل محللات

الأخشاب والمتبقيات النباتية ومتعايشات بضمنها تلك المكونة للمايكورايزا والأشنات. كما تضم

ممرضات مهمة للنبات والحيوان والإنسان، وتضم أنواعاً نافعة منها الفطر

chrysogenum منتج المضاد الحيوي البنسلين. وتضم فطريات صناعية مثل انواع Aspergillus،

تعيش أنواع هذه الفطريات التابعة لتحت الشعبة في بيئات اليابسة والبيئة المائيه.

من خواص تحت الشعبة أن جسمها خيطي والخيوط الفطرية مقسمة بانتظام إلى خلايا تنفصل

عن بعضها بحواجز، والخلايا في معظم الأنواع تمتلك نواة واحدة أحادية المجموعة الكروموسومية.

يضم تحت الشعبة 10 صفوف منها Eurotiomycetes ،Eurotiomycetes ، Leotiomycetes

.Dothideomycetes 'Sordariomycetes

Phylum: Ascomycota

3-Sub-phylum: Pezizomycotina

i- Class: Eurotiomycetes

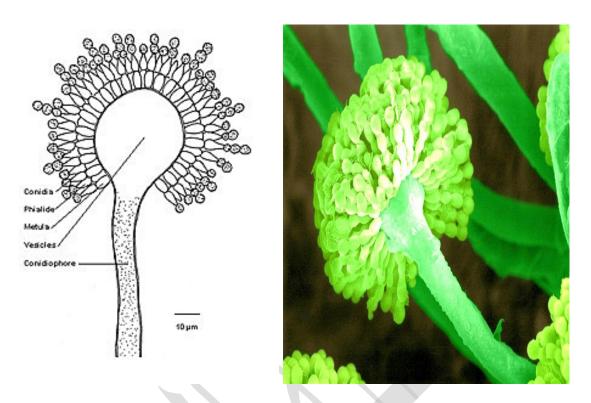
90

إن الفطريات التابعة لهذا الصف تكون أجساماً ثمرية كروية الشكل مغلقة Cleistothecia لا تحوي على فتحة خارجية. وأكياسها كمثرية إلى كروية الشكل ابتدائية الغلاف asci) معنى الجسم الثمري (asci أي الأكياس التي تتحلل جدرانها عند النضج وتتحرر أبواغها الكيسية ضمن الجسم الثمري وليس عن طريق تفريغها عبر فتحة طرفية، في هذا الصنف تعيش الفطريات بصورة رمية أو طفيلية أو مكونة للأشنات.

يضم هذا الصف ثلاث رتب من الرتب الأكثر انتشاراً رتبة:

Order: Eurotiales

Family: Eurotiaceae


تضم معظم الأنواع التي تعيش مترممة والبعض منها متطفل على النباتات والحيوانات والإنسان وتسبب تلفأ للمواد الغذائية، إلا أن العديد من أنواعها ذات أهمية اقتصادية خاصة في صناعة المضادات الحيوية وإنتاج الأحماض العضوية والانزيمات ومن بين أجناسها المعروفة جنس Penicillium و Aspergillus وتتميز الرتبة بالصفات التالية:

- 1- الأكياس كروية إلى بيضوية متلاشية الغلاف.
- 2- الاتحاد الجنسي بواسطة الخيط الانثوي Trichogyne وخيط فطري غير متخصص.
 - 3- البوغ الكيسي أحادي الخلية.
 - 4- الكونيدات جافة قارورية الشكل تنفصل انشطارياً.

الجنس Eurotium) Aspergillus و(Emericella)

يحتوي هذا الجنس على أنواع عديدة تنتشر في التربة والهواء والماء، يعيش معظمها مترمماً على المواد العضوية الميتة ويسبب تعفنا للمواد الغذائية وحبوب المحاصيل الزراعية. لها القدرة على الانتشار السريع على الأوساط التي تعيش عليها وذلك لقدرتها على تكوين أعداد هائلة من الوحدات التكاثرية اللاجنسية (السبورات) ويسبب امتلاكها لأنزيمات مختلفة فهي تستحوذ على المواد العضوية بشكل سريع، أسرع من بقية الفطريات، لذا فهي سريعة النمو على الأوساط الزرعية.

كذلك فإن بعض أنواعها تفرز مواد سامة (سموم فطرية) مثل سموم الافلاتوكسين Aspergillus flavus الذي ينتجه الفطر Aspergillus flavus وبعضها قد تسبب أمراضاً للجهاز التنفسي الإنسان وتسبب ما يعرف بمرض الرشاشيات Aspergillosis والذي يسببه الفطر A. niger و A. niger

المظهر العام للفطر Aspergillus

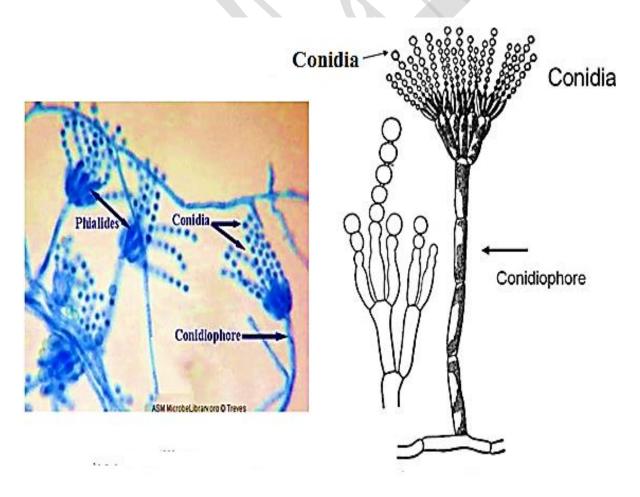
التركيب الجسمي والتكاثر

يتميز الجنس بحامله الكونيدي الذي ينشأ من الخيوط الفطرية، من خلية قاعدية تسمى خلية القدم (Foot cell) ينتهي بحوصلة منتفخة تحمل فاليدات قارورية ويمكن تمييز نوعين من حامل الفاليدات.

Uniseriate-1: حيث تحمل الفاليدات مباشرة على الحوصلة.

Biseriate-2: حيث تحمل الفاليدات على أذرع (Matula) تنشأ على الحوصلة.

الغزل الفطري يكون مقسماً بحواجز ومتفرع وعند نموها على الأوساط الزرعية تعطي مستعمرات مختلفة الأشكال والألوان. الكونيدات تكون بألوان مختلفة حسب النوع والوسط الزرعي وتتكون بسلاسل طويلة على الفاليدات.


يبدأ التكاثر اللاجنسي بتكوين حوامل كونيدية Conidiophore من نهايات الخيوط الفطرية وعادة ما تكون قائمة وغير متفرعة. تحمل في نهايتها تراكيباً حوصلية متضخمة تدعى Vesicles أما عند قاعدة الحامل فتكون خلايا القدم Foot cells. يلحظ في دورة حياتها ان بعض الأنواع منها يتكاثر جنسياً (نادر الحدوث) ويعرف بالطور الجنسي الكامل Cleistothecia وعندها يسمى الجنس حيث ينجم عنه تكوين أجسام ثمرية كروية مغلقة Cleistothecia وعندها يسمى الجنس

Emericella و Eurotium بينما الطور اللاجنسي يدعى Anamorph وهو يمثل الحالة الكونيدية أو يسمى الطور الناقص Imperfects state.

جنس Penicillium

تتميز أنواع Penicillium بالمميزات التالية:

- 1- التراكيب التكاثرية اللاجنسية تشبه الفرشاة.
- 2- الحامل الكونيدي يكون بسيطاً أو متفرعاً وينتهي بتجمعات الفاليدات الدورقية الشكل.
- 3- تتكون الكونيدات من سلاسل جافة على الفاليدات حيث تكون الأحدث تكويناً هي الأقرب إلى الفاليد.

المظهر العام لفطر Penicillium

إن طبيعة تفرع الحامل الكونيدي تساعد في تقسيم الجنس إلى تحت أجناس، يمكن تتميز ثلاثة أنواع من التفرع.

:Monoverticillate-1

يكون الحامل الكونيدي غير متفرع ويحمل مباشرة مجموعة من الفاليدات على قمة الساق.

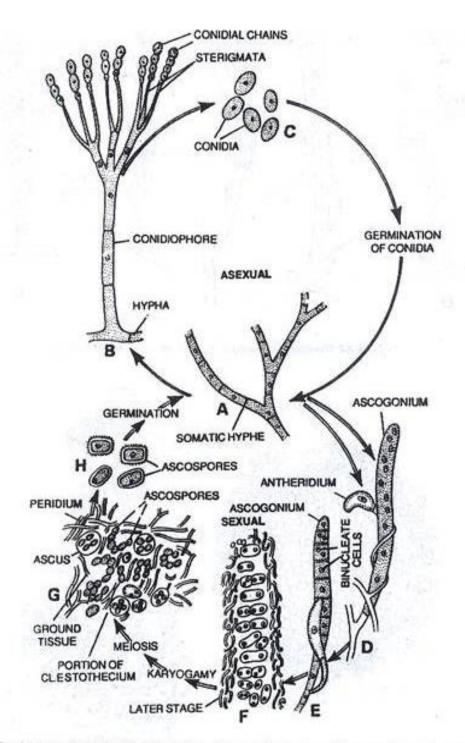
:Biverticillate-2

يمتلك الحامل الكونيدي مجموعة من الأذرع Metula تحمل بدورها مجاميعاً من الفاليدات.

:Terverticillate-3

حيث يمتلك الحامل مجموعة من الفروع (Rami) تحمل بدورها مجاميعاً من الأذرع تحمل مجاميعاً من الفاليدات.

فطر Penicillium من الفطريات الواسعة الانتشار في الطبيعة ويعرف أيضاً بالعفن الأزرق Penicillium وينمو على الحمضيات والفواكه والحبوب وغيرها، ويسبب تعفناً وتلفاً لهذه المواد. لبعض mold وينمو على الحمضيات والفواكه والحبوب وغيرها، ويسبب تعفناً وتلفاً لهذه المواد. لبعض أجناس فطر Penicillium القدرة على إنتاج مواد أيضية ثانوية تسمى بالسموم الفطرية Mycotoxin منها الفطر Patulin الذي يفرز سم (Toxin) يعرف بـ Patulin (باتيولين) هذه السموم الفطرية لا تؤشر على الفطر المنتج ولكنها قد تسبب أضراراً صعبة للإنسان والحيوان إذا ما دخلت أجسامها عن طريق تناول المواد الغذائية الملوثة بالنمو الفطري.


التركيب الجسمى والتكاثر

يتكون جسم الفطر من خيوط مقسمة بحواجز، وينمو بهيئة مستعمرات على الأوساط الزرعية بالوان مختلفة، وهو مشابه لجنس Aspergillus في هذه الصفة. لذا يصعب التفريق بينها بالعين المجردة، الا انه توجد اختلافات مظهرية وتركيبية عند فحصه مجهرياً.

عند حدوث التكاثر اللاجنسي تنشأ حوامل كونيدية Conidiophores متفرعة تنتهي بتراكيب أصبعية الشكل تسمى Phialides تحمل سلاسل من الكونيدات ولا توجد حوصلة. وبهذا يمكن التفريق بين أنواع هذا الجنس عن جنس Aspergillus. أما التكاثر الجنسي فهو محدود حيث يعرف بالطور الجنسي الكامل Teleomorph وينجم عنه تكوين أجسام ثمرية مغلقة Cleistothecia وعندها يسمى الجنس Talaromyces= Penicilium وعندها يسمى الجنس

دورة حياة الفطر Talaromyces) Penicilium

تبدأ دورة الحياة اللا جنسية بأن تتكون في قمة الذنيب Sterigma أنبوبة صغيرة تهاجر إلى قمتها نواة ناتجة عن انقسام نواة Sterigma يلى ذلك تكون حاجز يفصل طرف الأنبوبة عن قاعدتها فيكون القسم العلوي عبارة عن خلية صغيرة هي بداية تكوين الكونيدة، يتطاول بعدها القسم السفلي ليشكل خلية ثانية أحادية النواة تستمر هذه العملية حتى تتكون سلسلة من الخلايا. وتختلف الكونيدات من حيث الشكل والحجم واللون فهي إما كروبة أو بيضوبة أو قد تكون خضراء أو زرقاء أو صفراء. تنفصل هذه الكونيدات لتتطاير وتنتشر بوساطة الرياح وعند استقرارها على أي مادة عضوية تنبت من جديد لتعطى غزلاً فطرباً جديداً. أما الدورة الجنسية فهي غير معروفة كثيراً غير أنها درست في بعض الأنواع مثل الفطر Talaromyces vermiculatus حيث نجد أن عضو التأنيث أو مولد الكيس (الاسكوكونة Ascogonium) ينشأ كفرع من أي خلية من خلايا الغزل الفطري فيكون متطاولاً ثم يظهر العضو الذكري (الانثريدة Antheridium) في فرع آخر مجاور ليتسلق الاسكوكونة ويلتف حولها ثم ينفصل الجزء العلوي من الفرع بواسطة حاجز عرضي، تذوب الجدران الخلوية الفاصلة بينها ويلتقي بروتوبلاست كل منهما بالآخر ويحدث الالتحام النووي، ثم يعقبه الانقسام الاختزالي لتتكون أربعة نوى أحادية المجموعة الكروموسومية يليه انقسام اعتيادى لتصبح ثماني نوى تتكون منها السبورات الكيسية داخل الأكياس المبعثرة في الجسم الثمري المغلق Cleistothecia. تبدأ الأكياس بالظهور وبعد تمام نضجها يتمزق غلافها السميك لتعطي السبورات الكيسية التي تنبت فتعيد دورة الحياة من جديد.

Penicillium. Diagrammatic life-cycle. A, branched and septate mycelium; B, septate and branched conidiophore with sterigmata and conidia; C, uninucleate, smooth conidia; D, antheridium and ascogonium; E, gametangial contact and pairing of nuclei; F, later stage; G, portion of cleistothecium; H, ascospores.

دورة حياة فطر البنسليوم

Kingdom: Fungi

Phylum: Ascomcota

3- Sub-phylum: Pezizomycotina

2- Class: Leotiomycetes

يضم الصف فطريات كيسية تكون ثمار كيسية كأسية Apothecia صغيرة ذات طبقة خصيبة مكشوفة وأكياس أحادية الغلاف (Unitunicate) غير غطائية (Inoperculate) تمتك فتحة طرفية لتحرير الأبواغ الكيسية، الدراسات الجزيئية الحديثة بينت انضمام بعض المجاميع من الفطريات التي تكون ثماراً كيسية كروية مغلفة مثل فطريات رتبة Erysiphales إلى هذا الصف.

مميزات الصف

1 - الأكياس رقيقة أحادية الغلاف ذات فتحة قمية (غير غطائية) على عكس الفطريات الغطائية كما في أنواع Peziza لتحرير الأبواغ الكيسية.

2- يضم الصف بعضاً من أنواع الفطريات التي تعيش معيشة طفيلية كما في فطريات البياض الدقيقي واخرى رمية، برية أو مائية وأنواع مكونة للمايكورايزا أو محللة للأخشاب.

يضم الصنف عدداً من الرتب منها

1-Order: Erysiphales

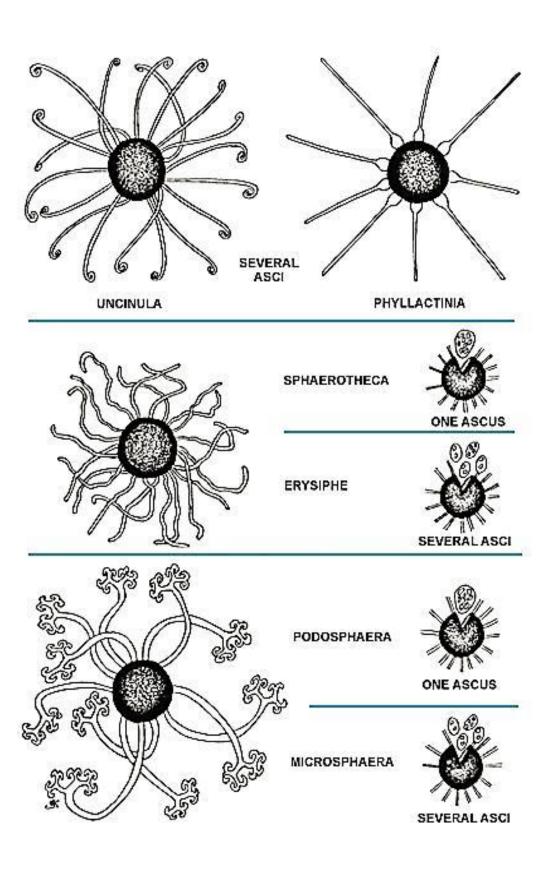
تضم هذه الرتبة عائلة واحدة هي Erysiphaceae نضم فطريات طفيلية مجبرة على النبات مسببة أمراض البياض الدقيقي powdery mildew diseaseعلى طيف واسع من النباتات الزهرية المزروعة والبرية أغلبها من نباتات ذوات الفلقتين.

مميزات الرتبة:

1- الأجسام الثمرية الكروية المغلفة برتقالية إلى حمراء، تصبح سوداء عند النضج وتمتلك زوائداً ذات أشكال معينة وتحمل كيساً واحداً أو مجموعة أكياس تساعد في تصنيفها. إن وظيفة الزوائد ربما تكون المساعدة على تثبيت الجسم الثمري على سطح النبات.

2- تحتوي الأكياس الكروية أو الكمثرية على واحد إلى ثمانية أبواغ كيسية.

3- تخرج الأكياس عند حصول شق في الجسم الثمري ثم ينفجر طرف الكيس لتحرير الأبواغ الكيسنة.


- 4- التكاثر الجنسي بوساطة الأبواغ الكيسية داخل الأكياس التي تتكون في أجسام ثمرية مغلقة تسمى Cleistothecium. هذا النوع من الأكياس في الفطريات الكيسية يكون كروياً ولا يحتوي على فتحة طبيعية بينما تتحرر الأكياس والأبواغ الكيسية عند تشقق الجسم الثمري.
- 5- التكاثر اللاجنسي بواسطة الكونيدات من نوع الأويدات وهي مع حواملها تكسب النبات مظهر البياض الدقيقي Powdery mildew. والكونيدات عالية المحتوى المائي لدرجة تجعلها لزجة تساعدها في الالتصاق على سطح العائل. تحمل الكونيدات بشكل مفرد أو في الغالب بشكل ملاسل لذلك تسمى هذه الرتبة بفطريات البياض الدقيقي Powdery mildew fungi.
- 6- جسم الفطر يتألف من خيوط فطرية مقسمة تنمو على السطوح الخارجية للنبات (Epiphytic) في الغالب على سطح الأوراق خاصة أو الاجزاء الهوائية الاخرى بوساطة اعضاء الالتصاق Appressoria ويأخذ غذائه من خلاليا العائل بوساطة ممصات متفرعة يرسلها إلى خلايا البشرة باستثناء جنس Levellula taurica حيث تبلغ فيه حالة التطفل ذروتها حيث ينمو الغزل الفطري داخل أنسجة النبات (Endophytic) العائل ويتغلغل داخل النسيج النباتي عن طريقة فتحة الثغر ثم يرسل حوامل كونيدية تخرج إلى سطح العضو النباتي.

تصنيف الرتبة

استند تقسيم فطريات البياض الدقيقي سابقاً على الطور الجنسي Telemorph ومظهر الأجسام الثمرية الكيسية Cleistothecia وزوائدها، لكن هذه الصفات المظهرية ليست ثابتة وراثياً كما كان الاعتقاد سائداً، التقسيم الجديد يستفيد من الأشكال الكونيدية (اللاجنسية) أيضاً. وبذلك يعتمد التصنيف على خواص الفطر كله (الطور الكونيدي Anamorph، والطور الجنسي Teleomorph، والطور الجنسي Holomorph.

مفتاح تقسيم رتبة Erysiphales إلى أجناس

1-الكونيدات تتكون في سلاسل حقيقية، الغزل الفطري خارجي، الجسم الثمري يحتوي على كيس
واحد، الزوائد بسيطة تشبه الخيوط الفطرية
.Sphaerotheca
2-الكونيدات تتكون في سلاسل حقيقية، الغزل الفطري خارجي، الجسم الثمري يحتوي على كيس
واحد، الزوائد إبرية متفرعة ثنائياً في نهايتها
.Podosphaera
اما الجسم الثمري يحوي اكثر من كيس فيضم عدد من الاجناس وكالاتي:
3-الكونيدات مفردة، الغزل الفطري جزئياً داخل الأنسجة، الأجسام الثمرية Cleistothecia متعدد
الأكياس، زوائد الجسم الثمري إبرية ذات قواعد بصلية الجنس Phyllactinia.
4-الكونيدات مفردة (أو في سلاسل كاذبة)، الغزل الفطري خارجي، الجسم الثمري متعدد الأكياس،
الزوائد بسيطة تشبه الخيوط الفطريةالجنس Erysiphe.
5-الكونيدات مفردة (أو في سلاسل كاذبة)، الغزل الفطري خارجي، الجسم الثمري متعدد الأكياس،
الزوائد ملتفة أو معكوفة النهايةالجنس
$\cdot Uncinula$
6-الكونيدات مفردة (أو في سلاسل كاذبة)، الغزل الفطري خارجي، الجسم الثمري متعدد الأكياس،
الزوائد متفرعة ثنائياً في نهاياتهاالجنس
.Microsphaera

شكل يوضح اشكال الزوائد وعدد الأكياس في الأجسام الثمرية لفطريات البياض الدقيقي

2-Order: Helotiales

وهي من أكبر الرتب في الفطريات الكيسية القرصية تضم 10 عوائل تحتوي الرتب فطريات رمية في التربة أو على الخشب الميت أو المواد الروثية كما تضم عدداً من الفطريات الممرضة للنبات ذات الأهمية الكبيرة.

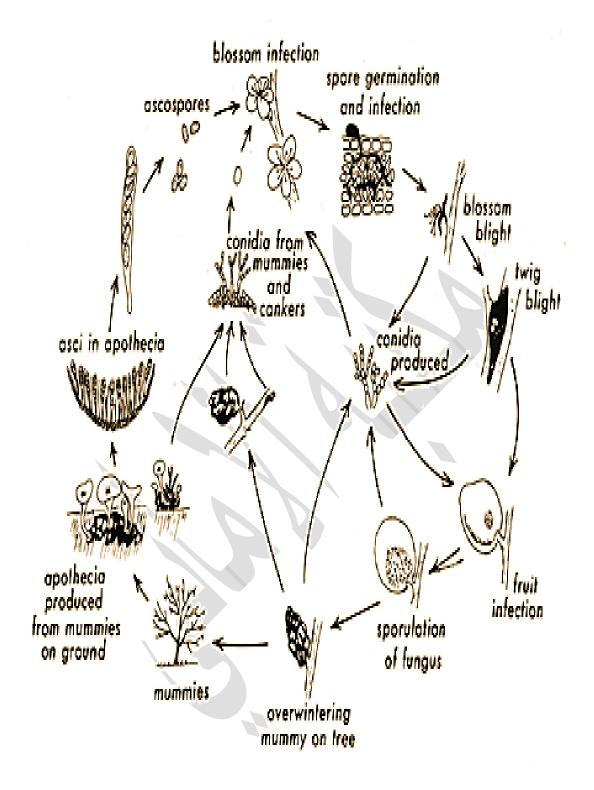
تمتاز الرتبة بالصفات التالي:

- 1- الأجسام الثمرية كأسية أو قرصية محمولة على ساق قصير.
 - 2- الأكياس مثخنة قليلاً في القمة وغير غطائية.
- 3- الأبواغ الكيسية ذات أشكال مختلفة كروية، اهليليجية، متطاولة وأحياناً خيطية.

من الفطريات الممرضة للنبات فقط Sclerotinia fructicola الذي يسبب مرض التعفن البني للثمار الصخربة أو الحجربة.

من العوائل التابعة لهذه الرتبة

Family: Sclerotiniaceae


وهي عائلة كبيرة تضم مسببات مرضية مهمة، أهم ما يميز أنواع العائلة هو تكوين الأجسام الحجرية والحشية الفطرية، تنشأ الثمار الكأسية من حشية فطرية أو جسم حجري. وهي صغيرة متوسطة الحجم بنية وتحمل على سويق الأبواغ الكيسية شفافة أحادية الخلية بيضوية أو متطاولة.

دورة حياة الفطر Sclerotinia fructicola

يصيب الفطر الخوخ والثمار الحجرية الأخرى مسبباً التعفن البني Brown rot يصيب أنواعاً اخرى من الثمار التفاحية. تبدأ الإصابة في فصل الربيع عندما تنطلق السبورات من الأجسام الثمرية الموجودة على الأرض ويحملها الهواء إلى العائل المناسب (أوراق أو أزهار) يأخذ السبور بالإنبات إلى داخل أنسجة العائل مسبباً اللفحة الورقية Leaf blight أو اللفحة الزهرية Blossom blight.

يبدأ الغزل الفطري بالتغلغل وتكوين حوامل كونيدية طويلة متفرعة تولد سلاسل من الكونيدات البيضوية ويطلق على هذا الطور بالطور المونيلي Monilia لأنه يعود إلى جنس Monilia

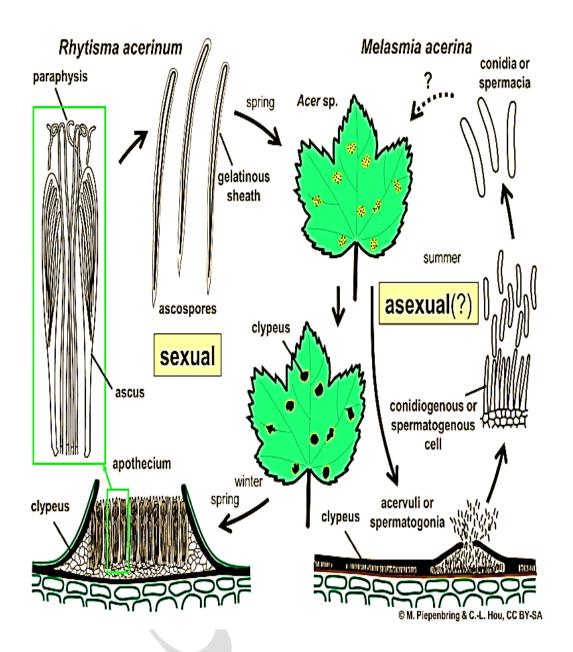
من الفطريات الناقصة. تنتشر الكونيدات في الهواء وتنتقل إلى نباتات اخرى، قد تصاب الثمار أيضاً خاصة الناضجة وتظهر بقع بنية على سطح الثمرة المصابة وذلك نتيجة للانزيمات التي يفرزها الفطر والتي تؤدي إلى تفكك خلايا الثمرة مما يسهل للفطر التغلغل فيها. وهكذا تمتليء الثمرة بالغزل الفطري الذي يحل محل أنسجتها ثم تصغر وتجف وقد تسقط على الأرض أو تبقى معلقة بالاغصان طيلة فترة الشتاء. تسمى هذه الثمار المصابة الجافة والمغطاة بالحوامل الكونيدية والكونيدات بالثمرة الموميائية الشتاء تسمى هذه الثمار المصابة البائمة والمغطاة بالحوامل الكونيدية والكونيدات بالثمرة الموميائية المصابة أو بشكل كونيدات أحياناً، عند توفر الظروف الملائمة تبدأ الثمرة المصابة والموجودة على الأرض بالإنبات لتكون أجسام ثمرية كأسية بنية اللون محمولة على سيقان تنشأ من الحشية الفطرية الموجودة داخل الثمرة المصابة. تنطلق السبورات الكيسية من الأجسام الثمرية وبأعداد هائلة يحملها الهواء إلى الأغصان والأوراق الحديثة مسببة إصابات جديدة.

دورة حياة الفطر Sclerotinia fructicola

3-Order: Rhytismatales

تضم هذه الرتبة فطريات تكون أجسامها الثمرية كأسية مختزلة التخت في حشية فطرية سوداء من الخارج. تتكون الطبقة الخصيبة من أكياس وخيوط فطرية عقيمة تتحرر بعد حصول شق أو شقوق في الحشية الفطرية لتعطي شكلاً نجمياً.

الأكياس غير غطائية وخالية من التراكيب عند طرفها، الأبواغ الكيسية بيضوية إلى خيطية، شفافة أحادية أو ثنائية الخلية.


أهم جنس و نوع تابع لهذه الرتبة جنس Rhytisma acerinum الذي يسبب مرض البقع الجيرية لأوراق الاسفندان Tar-spots of maple leaves.

سمي المرض كذلك بسبب الحشية السوداء التي تظهر على سطح الورقة وتغطي تحتها الأجسام الثمرية المطمورة في نسيج الورقة.

دورة حياة الفطر Rhytisma acerinum

تبدأ دورة الحياة بوجود الأجسام الثمرية القرصية على الأوراق المتساقطة خلال الشتاء وعند تحلل الحشوة الفطرية الناضجة خلال فصل الربيع تظهر الأجسام الثمرية بهيئة تراكيب قرصية Saucer-shape وتتحرر منها السبورات الكيسية الإبرية الشكل وبأعداد هائلة وبصورة كثافة دخانية نافثة منبعثة من الجسم الثمري، وعند ملامستها لجسم النبات تبدأ السبورات بالإنبات وتكون أنبوب إنبات يخترق نسيج الورقة عن طريق الثغور ويبدأ الغزل الفطري بالتوغل داخل النسيج حتى تتكون الحشية (Storma). تبدأ تكوين التراكيب التكاثرية ويفرز الفطر مادة صمغية سوداء تعمل على تماسك الخيوط الفطرية بخلايا المضيف المصاب وتسمى البقع (Tar-spot).

تتكون تراكيب ذكرية السبرماكونيات (الناتجة للسبرمات) في ثقوب صغيرة داخل الحشية ويكون شكلها عصوي Rode-shape تشأ خلايا انثوية (الاسكوكونات) الحاملة للخيوط الشعرية كريا انثوية وتمر عبر الخيوط الشعري إلى الاسكوكونة فتزدوج الأنوية وتمر عبر الخيوط المولده الالكيسية Ascogenous hyphae. والتي عندها يبدأ نشوء الأكياس والسبورات الكيسية وبالطريقة التي تم شرحها سلفاً، إذ تتكون أكياس اسطوانية الشكل حاوية على سبورات خيطية تتجمع داخل جسم ثمري قرصي (كأسي) عند ملائمة الظروف البيئية تبدأ بالانطلاق إلى الخارج لتحدث إصابة لمضيف نباتي مناسب من جديد.

دورة حياة الفطر Rhytisma acerinum

تتحرر الأبواغ الكيسية الإبرية الشكل بعد تشقق الحشية الفطرية مكونة غيمة منظورة تحملها الرياح، وبعد سقوطها على السطح السفلي لأوراق العائل تلتصق لوجود المادة الجيلاتينية على سطح الأبواغ وهذا يؤدي إلى إصابة النبات، الفطر لا يكون كونيدات.

3- Sub-phylum: Pezizomycotina

3- Class: Pezizomycetes

صف الفطريات الكيسية القرصية

تعيش أفراد هذه المجموعة من الفطريات مترممة على بقايا النباتات المتساقطة وكذلك على المخلفات الحيوانية، وتتميز بتكوينها للاجسام الثمرية القرصية Apothecia التي قد تكون محمولة على حامل أو جالسة ويكون سطح القرص معرضاً للوسط الخارجي فيحمل صفوفاً من الأكياس السبورية التي تتخللها خيوط عقيمة تتباين حجوم وأشكال وألوان الجسم الثمري بين نوع وآخر.

وعند فحص مقطع في الجسم الثمري يلاحظ وجود ثلاثة أجزاء هي:

- 1- الطبقة الخصيبة Hymenium layer: والتي تكون مبطنة لسطح الجسم الثمري القرصي ويضم هذه الطبقة الأكياس والشعيرات العقيمة.
- 2- الطبقة تحت الخصيبة Sub-hymenium layer: وتمثل طبقة رقيقة من خيوط فطرية منسوجة تقع تحت الطبقة الخصيبة.
- 3- التخت Excipulum: وهو الجزء اللحمي المكون من نسيج برنكيمي كاذب ويتميز إلى منطقتين.
 - أ- تحت خارجي Ectal excipulum.
 - ب- تحت نخاعي Medullary excipulum.

تقسم هذه الفطريات اعتماداً على طريقة انطلاق السبورات إلى نوعين:

1- فطربات قرصية غطائية Operculate apothecia

حيث تنطلق السبورات من الأكياس عن طريق غطاء خاص يقع في قمة الكيس كما في رتبة Pezizales

2- فطریات قرصیة غیر غطائیة Inoperculate apothecia

وتكون الأكياس غير غطائية (عديمة الغطاء) فتنطلق السبورات عن طريق ثقب أو شق في طرف الكيس.

يضم الصف رتبة واحدة هي رتبة Pezizales التي تحتوي على جميع أنواع الفطريات الكيسية التي تكون أكياساً غطائية، جميع الأنواع تكون أجساماً ثمرية كأسية ما عدا فطريات الكمأة (مثل جنس (Tuber حيث تكون أكياساً ابتدائية الغلاف (Prototunicate) يضم الصف معظم الفطريات الكيسية المكونة للمايكورايزا الخارجية وكذلك فطريات رمية.

Order: Pezizales

من أجناس الرتبة جنس Tuber ، Morchella ، Peziza من أجناس

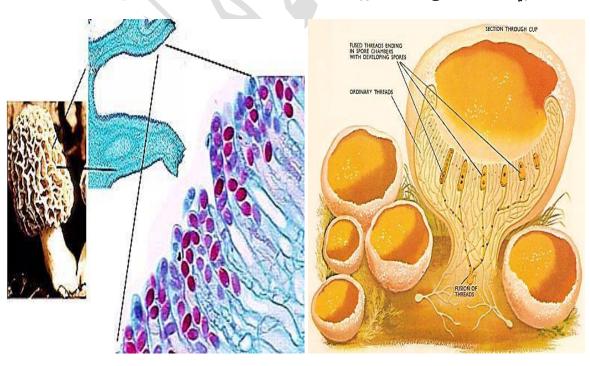
مميزات الرتبة

- -1 رتبة كبيرة تضم الفطريات القرصية المغطاة والأشكال التي تكون أجسامها الثمرية فوق أرضية، شبه أرضية وأرضية. الأنواع تكون رمية أو مايكورايزية أو طفيلية على النباتات.
- 2- الثمرة الكيسية الدورقية مكشوفة الطبقة الخصيبة أو شبه مكشوفة الطبقة الخصيبة أو مغلقة الطبقة الخصيبة.
- 3- تحتوي الأكياس على غطاء (Operculum) أو شق (Slit) أو غطاء تحت قمة الكيس (Suboperculate).
 - 4- البوغ الكيسي أحادي الخلية يتراوح بين الكروي إلى الاهليليجي أو المغزلي.
 - 5- معظم الأنواع تعرف بطورها الجنسي والطور اللاجنسي نادر.

تضم الرتبة عدة عوائل منها:

Family: Pezizaceae

تضم الفطريات المعروفة بالفطريات الكأسية:

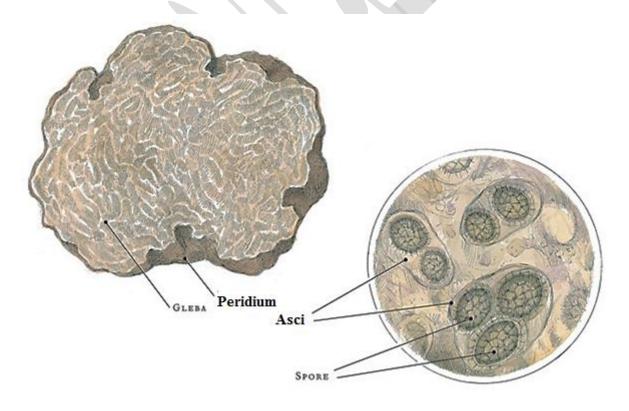

- 1 الأجسام الثمرية كأسية أو قرصية جالسة أو معنقة صغيرة إلى كبيرة جداً.
 - 2- الغطاء في قمة الكيس.
 - 3- البوغ الكيسي أحادي النواة رقيق الجدار.
- 4- العديد من الأبواغ فوق أرضية أو تنمو على المواد الروثية وعلى الأخشاب.

Peziza الجنس

توجد هذه الفطريات في التربة والمواد السمادية والروثية والأخشاب المتحللة والتبن والترب المحروقة. يتميز الجسم الثمري بكونه كأسي الشكل كبيراً في الغالب 2-5 سم أو أكثر، لونه بني شاحب، ملمسه لحمي جالس أو محمول على ساق وسطحه المتعرض يحمل أكياس سبورية متراصة مع بعضها تتخللها خيوط عقيمة وعادة يحتوي الكيس الواحد صفاً واحداً من السبورات الكيسية Operculum إن آلية انطلاق السبورات تحدث عن طريق غطاء Operculum ينشأ عند قمة الكيس.

الجنس Morchella

من الفطريات ذات الأجسام الثمرية كيسية اسفنجية الملمس، جرسية المظهر مسوقة وهي من الفطريات المأكولة المفضلة المعروفة بالموريلات (Morels). بعض أنواع هذا الجنس ذات قيمة غذائية عالية غنية بالبروتينات ويباع بأسعار باهضة في مناطق أوربا وهو يكثر في الغابات وفي المناطق الباردة من العالم، يمكن جمع الأجسام الثمرية في فصل معين من السنة ويتميز باحجام كبيرة نسبياً. يتميز الجسم الثمري إلى حامل Stipe وقلنسوة Pileus تكون منقرة أو ذات حافات وتكون الطبقة الخصيبة مبطنة للنقر أو التجاويف وتتألف من الأكياس والهايفات العقيمة، الأكياس اسطوانية الشكل يحوي كل منها على ثمانية سبورات.


Peziza

Morchella

جنس Peziza و Morchella من الأجناس التي تنمو فوق سطح التربة لذلك تسمى Morchella و fungi.

الاجناس Terfezia و Trimania و Tuber و Trimania و Tuber و Trimania وتسمى Hypogeous fungi حيث أن بعض أنواعها يتعايش مع جذور بعض النباتات ومن الأمثلة الشائعة لدينا في العراق هو الكمأ Truffles تعتبر هذه الأجناس مهمة من الناحية الاقتصادية كونها مصدر غذائي جيد للإنسان لاحتوائها على نسبة عالية من البروتينات اما بالنسبة لجنس Tuber الذي ينتشر في أوربا ويتكامل مع أشجار البلوط والزان أما الأجناس Trimania و Trimania الكمأ الأبيض والجنس Trimania الكمأ الأسود.

وعند عمل مقطع في الجسم الثمري نراه يتألف من غلاف خارجي Outer peridium خلاياه مثخنة الجدران ومنطقة داخلية لحمية خصيبة (Gleba) تتخللها عروق Veins وتكون الأكياس الكروية أو البيضوية في المنطقة الخصيبة، كل كيس يحوي 4-8 سبورات كيسية.

مقطع عرضي في فطر Tuber

Kingdom: Fungi

Phylum: Ascomycota

3-Sub-phylum: Pezizomycotina

4-Class: Sordariomycetes

يضم هذا الصنف معظم الفطريات الكيسية التي تكون تراكيب ثمرية دورقية أو قارورية الشكل Periphysis يحوي على عنق Neck وينتهي بفتحة Ostiole تبطنها خيوط عقيمة Perithecia يعتقد أنها تترتب الأكياس بشكل منتظم داخل الجسم الثمري وتتخللها خيوط عقيمة Paraphysis يعتقد أنها تلعب دوراً في عملية انطلاق الأكياس والسبورات. تتميز أنواع هذا الصف بتكوينها الأكياس الاحادية الغلاف (Unitunicate) غير الغطائية (Inoperculate) داخل الثمرة الكيسية الدورقية.

يضم الصف أنواعاً تغطي بيئات مختلفة حيث تكون ممرضة للنبات أو ممرضة للحشرات أو متعايشة معها وقد تكون طفيلية على الفطريات الأخرى أو محللة للأخشاب روثية أو رمية وقد تكون مائية المعيشة.

يضم هذا الصنف عدداً من الرتب منها:

1-Order: Sordariales

2-Order: Hypocreales

1-Order: Sordariales رتبة

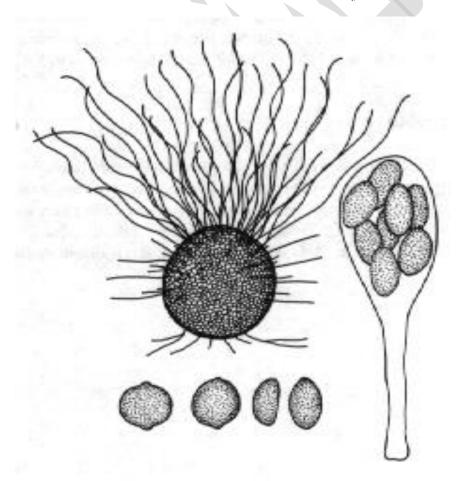
مميزات الرتبة

1- فطرياتها تكون ثماراً دورقية أو غامقة ذات خيوط فطرية عقيمة وغلاف جلدي أو غشائي وتكون مطمورة أحيانا. الأكياس اسطوانية الشكل قاعدية.

2- الأبواغ الكيسية أحادية أو ثنائية الخلية.

3- الفطريات تكون عدداً من الأشكال اللاجنسية والتي لها عمل البذيرات.

4- تضم أنواعاً تعيش رمية على المواد السليلوزية بضمنها المواد الروثية والأخشاب والتربة.


5- من الصفات المهمة لهذه الرتبة هي تعدد أبواغ الكيس من 8 إلى أكثر من 1000 بوغ في الكيس.

1- Order: Sordarides

Family: Chaetomiaceae

تتصف هذه العائلة بإنتاجها للأجسام الثمرية الدورقية (الكمثرية) الشكل والتي تظهر على سطح الوسط الغذائي المتواجد عليه، ويحتوي الجسم الثمري على زوائد كثيرة أو لواحق بأشكال متنوعة وطويلة على سطح الجسم الثمري الذي اشتق منها اسم العائلة والجنس Chaetomium.

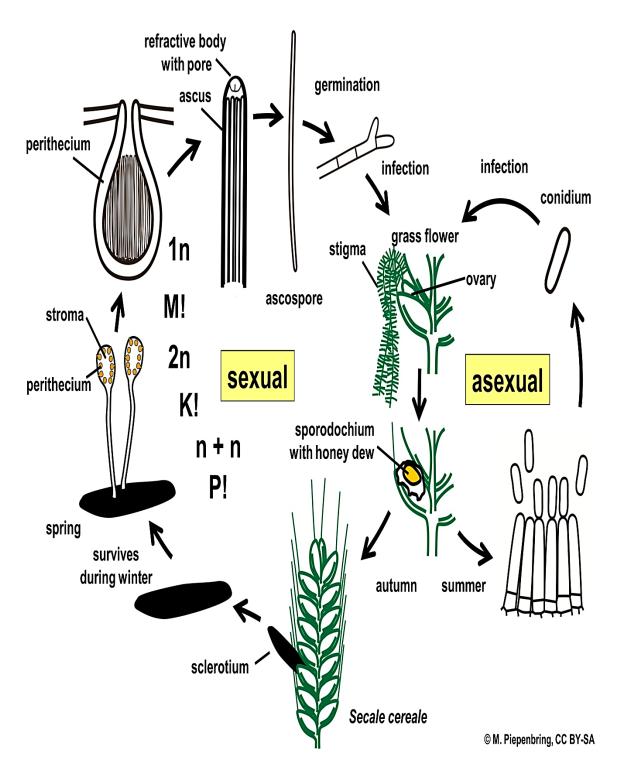
الأكياس السبورية البيضوية أو الكروية الشكل والتي تترتب بصورة منتظمة داخل الجسم الثمري، الأبواغ الكيسية اللزجة تتحرر داخل الجسم الثمري وتخرج بشكل كتلة لولبية وتنتشر بوساطة المطر والمفصليات. أفراد هذه العائلة مترممة المواد العضوية كالمخلفات الحيوانية والنباتية الغنية بالسليلوز نظراً لقدرتها العالية لإفراز انزيم السليوليز ومن المجاميع الفطرية المتكيفة للمعيشة على مخلفات الحيوانات (الروث) فهي من الفطريات المهمة للروث Coprophilous fungi.

جنس Chaetomium

2-Order: Hypocreales

مميزات الرتبة

- 1- معظم الأنواع تكون ثماراً دورقية الشكل.
- 2- الحشية الفطرية لحمية أو شمعية صفراء، برتقالية أو حمراء اللون.
- 3- الأكياس السبورية بيضوية إلى اسطوانية والكيس يحتوي على فتحة قمية مثخنة.
 - 4- الأبواغ كروية إلى إبرية الشكل مؤلفة من خلية إلى بضع خلايا.
 - 5- وتتحرر الأبواغ الكيسية بالقوة.


تضم الرتبة عدداً من العوائل منها عائلة:

Family: Clavicepitaceae

تتميز العائلة بتكوين حشية فطرية ملونة براقة أو برتقالية أو صفراء، الأكياس اسطوانية طويلة وتكون للأكياس قمة مثخنة تحتوي على ثقوب، الخيوط العقيمة تتكون على الجدران الجانبية للثمرة الدورقية وليس بين الأكياس القاعدية، الأبواغ الكيسية تمتد على طول الكيس. بعد تحرر الأبواغ تنبت بتكوين أنابيب إنبات بينما في بعض الأنواع تعطي كونيدات.

من الأجناس المهمة التابعة لهذه العائلة جنس Claviceps purpurea الذي يسبب مرض الأركوت على محاصيل الحبوب Ergot إذ تظهر تراكيب حجرية صلبة سوداء اللون تحتل حبات السنبلة للنبات وتسمى الأجسام الحجرية Sclerotia. وعند ملائمة الظروف البيئية يحصل لها إنبات مما ينتج عنه تكوين حشية تتكون بداخلها خلايا تكاثرية جنسية (انثريدات واسكوكونات) والتي بدورها تؤدي إلى تكوين الأكياس السبورية في داخل أجسام ثمرية كمثرية تترتب داخل الحشية، يحوي الكيس على ثمانية سبورات خيطية أو إبرية الشكل (Filiform) عند نضج السبورات تتحرر وتنطلق بوساطة الرياح لتصيب أزهار الشيلم في وقت تفتحها. فإذا استقر السبور على الزهرة يبدأ بالإنبات مكوناً انبوب إنبات يخترق المبيض وينمو الغزل الفطري داخله مسبباً تلف أنسجته ومكوناً حصيرة سرعان ما تكون حوامل كونيدية قصيرة بشكل كويمة كونيدية ونيدا الإصابة إلى أزهار جديدة وبذلك تعاد دورة الحياة.

تحوي الأجسام الحجرية على قلويدات سامة Alkaloids إذا أكلت من قبل الإنسان أو الحيوان فإنها تسبب حالة تسمم تدعى Ergotism قد تؤدي في النهاية إلى الموت نتيجة تأثيرها على الجهاز العصبى فتحدث حالة من الهلوسة.

دورة حياة الفطر Claviceps purpurea

Kingdom: Fungi

Phylum: Mycota

3-Sub-family: Pezizomycotina

5-Class: Dothidiomycetes

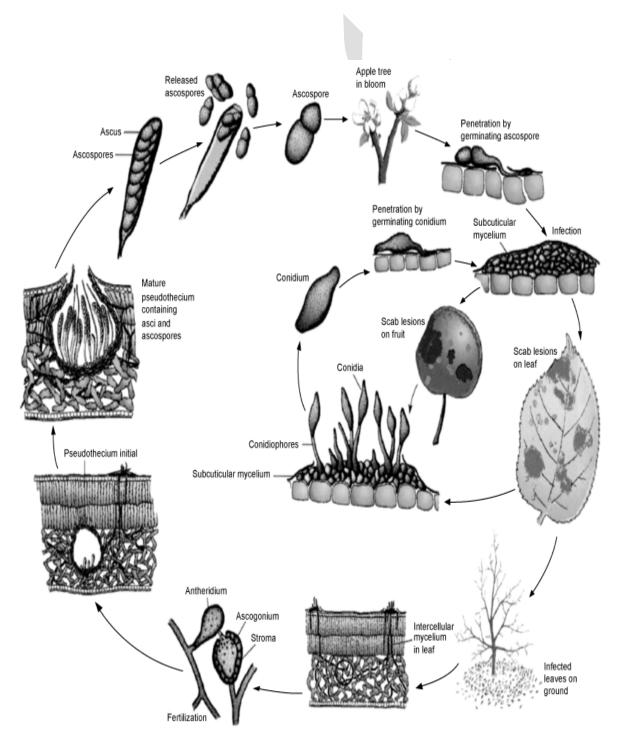
يضم هذا الصف معظم الفطريات التي تكون التراكيب الثمرية الكيسية في حشية فطرية المحدد والغلاف (Ascostroma الأكياس السبورية ثنائية الغلاف الداخلي للكيس بكون سميكاً قابلاً للتمدد والغلاف الداخلي يكون رقيقاً غير قابل للتمدد. تتكون الأكياس داخل فراغات أو مساكن ضمن الحشية الفطرية الكيسية معظم الأنواع تتحرر أبواغها الكيسية عن طريق خروج الكيس مع الغلاف الداخلي وتمزق الغلاف الخارجي.

الأنواع التابعة لهذا الصف تعيش كفطريات ممرضة على النباتات الحية أو كرميات على المتبقيات النباتية وتوجد بعض الأنواع المكونة للأشنات أو المتطفلة على الفطريات الاخرى أو على الحيوانات.

من الرتب التابعة لهذا الصف:

Order: Pleosporales

تضم فطريات ممرضة للنبات والحيوانات وفطريات رمية وفطريات مكونة للاشنات، كما تضم فطريات مائية. وتحتوي الرتبة على الفطريات الروثية الكيسية تنشأ الأكياس بين الخيوط الفطرية العقيمة الكاذبة وهذه تتكون من الجزء العلوي للجسم الثمري وتنمو إلى قاعدته حيث تتحد وتكون مقسمة وعريضة. الأكياس قاعدية، الأبواغ الكيسية شفافة أو داكنة ومختلفة الأشكال.


Family: Venturiaceae

Venturia inaequalis

تتطفل أنواع هذا الجنس على النباتات مسببا لها مرضاً يعرف بجرب التفاح Apple scab حيث يتكون نسيج الحشوة Storma تنتج عنها حوامل كونيدية وكونيدات شبيهة بلهيب الشمعة. تنبت الكونيدات لتكون خيوطاً فطرية وتتخصص بعض خلاياها إلى انثريدة واسكوكونة يحصل بينهما اتحاد خلوي وتكوين خيوط كيسية Ascogenous hyphae تعطى خلايا مولدة للأكياس. تنشأ عنها أكياس

سبورية اسطوانية الشكل في داخل تجاويف (غرف) شبيهة بالجسم الثمري القاروري (غير حقيقية) تحوي داخلها على سبورات كيسية، تتميز السبورات بأنها مكونة من خليتين غير متساويتين في الحجم.

تتميز كونيدات الفطر V. Inaequalis بكونها مفردة تحمل على حوامل قصيرة وعادة ما تنتج على سطح الورقة وتنشر بوساطة قطرات المطر لتسقط على نباتات التفاح لتكرر الإصابة بعد الإنبات وتكوين غزل فطري داخل نسيج النبات، إذ عادة ما يتوائم انتشارها وموسم تبرعم أشجار التفاح لتعيد دورة حياتها.

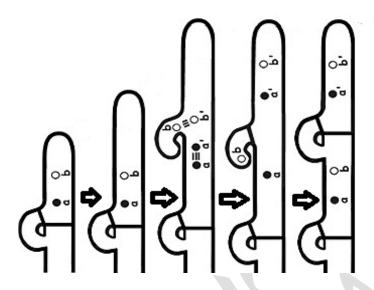
دورة حياة الفطر Venturia inaequalis

Kingdom: Fungi

Phylum: Basidiomycota

Sub-phylum: Basidiomycotina

شعبة الفطريات البازيدية


المميزات العامة للفطريات البازيدية:

- 1- الغزل الفطري جيد التكوين مقسم، كثير التفرع، الحواجز العرضية متعددة الثقوب وفي الغالب يحتوي على تراكيب متميزة تتكون عند الحواجز العرضية تسمى بالاتصالات الكلابية (Clamp connection) توجد في الغزل الفطري الثانوي والثالثي.
- 2- ناتج التكاثر الجنسي تكوين أبواغ بازيدية (Basidiospores) تتكون على ذنيبات خارج تركيب هراوي الشكل يسمى بالبازيدات (Basidia).
- 3- معيشة هذه الفطريات إما رمية أو طفيلية إجبارية أو اختيارية وقد تكون متعايشة مع جذور بعض النباتات وتكون جذوراً فطرية Mycorrhiza.
- 4- الغالبية العظمى تكون أجساماً ثمرية بازيدية تسمى Basidiocarp التي تحمل البازيدات والبازيدات تحمل الأبواغ البازيدية.
- 5- التكاثر اللاجنسي إما ان يتم عن طريق الكونيدات وهي غير شائعة أو عن طريق تكوين الأويدات أو التبرعم والتجزئة وتعد الأبواغ اليوريدية (Urediospores) والأبواغ الآشية (Aeciospores) كونيدات ثنائية الأنوية.
- 6- لا تحوي الفطريات البازيدية على تراكيب جنسية متخصصة ولكن تحصل عملية التكاثر الجنسي بطريقتين: إما الاقتران الجسدي (Somatogamy) بين خيطين من سلالتين مختلفتين جنسياً وهما يمثلان الغزل الفطري الابتدائي (Primary mycelium)، أو عن طريق الاقتران البذيري (Spermatization) حيث تتكون وحدات تكاثرية جنسية ذكرية (Spermatization) تتحد مع خيوط الاستقبال (Receptive hyphae) لسلالة ثانية وناتج التكاثر الجنسي تكوين غزل فطري ثنائي الأنوية.
 - 7- الغزل الفطري في الفطريات البازيدية، يكون بثلاثة أنواع:
 - أ- الغزل الفطري الابتدائي Primary mycelium:

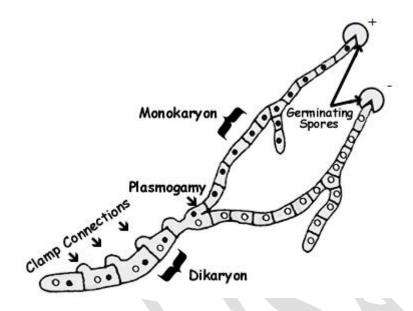
- 1- ينشأ من إنبات الأبواغ البازيدية Basidiospores.
- 2- يكون متفرع جيد التكوين خلاياه أحادية النواة وأحادية المجموعة الكروموسومية.
 - ب-الغزل الفطري الثانوي Secondary mycelium:
- 1- ينشأ من الغزل الفطري الابتدائي نتيجة التكاثر الجنسي بين سلالتين مختلفتين جنسياً إما بالاقتران الجسدي أو البذيري.
- 2- غزل فطري جيد التكوين مقسم، خلاياه ثنائية الأنوية أحداهما تكون (+) والأخرى (-) أي مختلفين جنسياً، أحادي المجموعة الكروموسومية.
 - ج- الغزل الفطري الثالثي Tertiary mycelium:
 - 1- ينشأ من الغزل الفطرى الثانوي.
 - 2- خلاياه ثنائية الأنوية وهو متخصص لتكوين الأجسام الثمرية البازيدية.

طريقة تكوين الاتصالات الكلابية:

توجد هذه الاتصالات في الخيوط الفطرية الثنائية النوى حيث تتكون عند الحواجز العرضية في الخيط الفطري. الاتصال الكلابي عبارة عن نمو خارجي من الجدار يشبه الجيب يتكون عندما تتهيأ الخلية للانقسام عند منتصف المسافة بين النواتين اللتين تشرعان بالانقسام في آن واحد. [1] ينتظم انقسام أحد النواتين بصورة مائلة بحيث تصبح إحدى النواتين الجديدتين داخل الكلاب والأخرى ضمن الخلية الأصلية، أما النواة الثانية فينتظم انقسامها بطول المحور الطولي للخلية المنقسمة. [2] يزداد انحناء الكلاب أثناء انقسام النوى. [3] وينفصل عن الخلية الأصلية بحاجز مكوناً ما يسمى بالخلية الكلاب أثناء انقسام النوى. إلى وينفصل عن الخلية الأصلية بحاجز مكوناً ما يسمى الخلية الأصلية فيشكل بذلك جسراً يعرف بالاتصال الكلابي، ويتكون أسفل الجسر حاجز آخر بصورة عمودية يقسم الخلية الأصلية إلى خليتين تحوي إحداهما على نواتين بينما تحوي الأخرى على نواة واحدة، وتصبح هذه الخلية فيما بعد ثنائية النوى بعد أن تمر إليها النواة الموجودة في الاتصال الكلابي.

انقسام الخلية الثنائية النوى بواسطة الاتصال الكلابي

<u>التكاثر اللاجنسي</u>


- 1- تكوين الكونيدات وهذه ليست شائعة وتتكون في الغزل الفطري الثانوي وتعتبر السبورات اليوردية Uredospores في فطريات الصدأ كونيدات.
 - 2- تكوين الاويدات Oidia (أحادية أو ثنائية الأنوية) تبعاً للغزل الفطري الذي يكونها.
 - 3- التبرعم والتجزئة.

التكاثر الجنسي

في معظم الفطريات البازيدية لا توجد تراكيب جنسية كالانثريدات أو الاسكوكونات كما أن الغالبية منها متباينة الثالس Heterothalic إلا أن الغزل الفطري متماثل المظهر ولا يختلف عن بعضه إلا في السلوك الجنسي وعليه فلا يحصل تكاثر جنسي إلا إذا تواجدت سلالتين مختلفتين (+، -) تتكاثر الفطريات البازيدية جنسياً بإحدى الطريقتين:

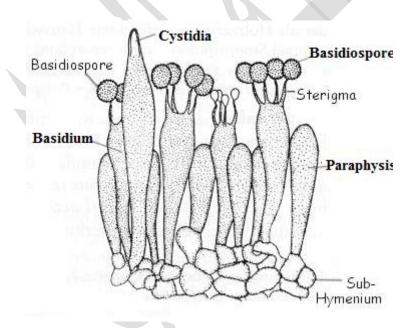
1-الاقتران الجسدي Somatogamy: وفيه يصبح خيطان فطريان من الغزل الفطري الابتدائي والتابع لسلالتين مختلفتين جنسياً في تماس مع بعضهما ثم ينحل الجدار الخلوي عند منطقة التماس فتمر نواة أحد الخلايا الجسدية إلى الخلية المقابلة الأخرى فتصبح الخلية الثانية ثنائية الأنوية.

2-الافتران البذيري Spermatization: وهذه شائعة في فطريات الصدأ Rust حيث تتكون ضمن تراكيب خاصة، أعداد كبيرة من وحدات أحادية النواة تعرف بالبذيرات Spermatia تحمل إلى خيوط الاستقبال Receptive hyphae للسلالة الجنسية الاخرى، وتلتصق بها وينحل الجدار عند نقطة التماس وتنقل النواة من السلالة الأولى إلى السلالة الثانية فتصبح الخلية ثنائية الأنوية.

طريقه حدوث الاقتران الجسدي Somatogamy

تكوين البازيدات والسبورات البزيدية

البذيرات هي عبارة عن تراكيب بسيطة مقسمة أو غير مقسمة هراوية الشكل تنشأ من خلايا طرفية لخيوط الغزل الفطري الثانوي، تعرف هذه الخلايا في البداية بالبزيدات الأولية Probasidia تتكون بأعداد كبيرة في وقت واحد وبنفس المستوى في الجسم الثمري (البزيدات في فطريات التفحم والأصداء تتمثل بسبورات خاصة سميكة الجدران تسمى بالسبورات التيلية Teleotospore). البزيدة الأولية عند أول تكونها تكون طبقة متطاولة ثنائية الأنوية مفصولة عن الغزل الفطري المكون لها بحاجز مستعرض ويشاهد عند قاعدتها اتصال كلابي. تزداد البزيدة بالحجم وتصبح أكثر عرضاً وتتحد نواتاها مكونة نواة واحدة ثنائية المجموعة الكروموسومية والتي سرعان ما تعاني انقساماً اختزالياً لتكون أربع أنوية (1n). يطلق على المرحلة أو جزء البزيدة الذي يحدث فيه الانقسام الاختزالي بالبزيدة التالية واحدة منها نواة وتنفتح قمتها لتكون أربع سبورات بزيدية.


تقسم البزيدات إلى نوعين:

- 1- البزيدات غير المقسمة (الكلية) Holobasidia وتكون فيها البازيدة التالية Metabasidia عير مقسمة هراوبة أو اسطوانية حاوبة على 4 ذنيبات Stregmata.
- 2- البزيدات المقسمة Phragmobasidia وتكون فيها البزيدة التالية مقسمة بحواجز إلى عدد من الخلايا (أربعة عادة) كل منها امتداد ينتهى بالذنيب، الحواجز قد تكون متعامدة بعضها على

بعض أو موازية لبعضها و يشار إلى جسم البزيدة التالية بالبزيدة السفلى Hypobasidium أما امتداداتها فتعرف بالبزيدة العليا

الجسم الثمري في الفطريات البزيدية Basidiocarp

بعض الفطريات البازيدية تفتقر إلى الأجسام الثمرية ولكن العديد منها يكون أجساماً ثمرية بأشكال وألوان وأحجام مختلفة فقد تكون رقيقة كالقشور أو جلاتينية أو جلدية أو فلينية أو خشبية. البعض منها مجهري بينما يصل قطر بعضها إلى (1م). تتكون الأجسام الثمرية من الغزل الفطري الثالثي الثنائي الأنوية Tertiary mycelium تتكون البزيدات في الجسم الثمري ضمن طبقات تعرف بالطبقات الخصيبة المجسم الثمري فيما بينها على تراكيب عقيمة يصعب تميزها عن البازيدات إضافة إلى ذلك يحتوي البعض الآخر منها ضمن الطبقات الخصيبة وبين البزيدات على تراكيب اخرى عقيمة أكبر من البزيدات تعرف بالحويصلات العقيمة مقيمة أكبر من البزيدات تعرف بالحويصلات العقيمة العقيمة عقيمة بين البريدات تعرف بالحويصلات العقيمة أكبر من البزيدات تعرف بالحويصلات العقيمة المناس ا

الأهمية الاقتصادية للفطريات البزيدية

للعديد من الفطريات البزيدية أهمية اقتصادية فالبعض منها تعد من أكثر مسببات الأمراض ضرراً، مثل مسببات الصدأ Rust والتقحم Smut، كما أن بعضها مسؤول عن التعفن الذي يصيب الأخشاب، قسم منها سام يسبب الوفاة مثل Amanita بعض العراهين تؤكل. كما يشكل العديد منها مع جذور بعض الأشجار كالصنوبريات تراكيب تعرف بالمايكورايزا تساعد في تغذية النبات.

1-Order: Uredinales

المميزات العامة لفطربات الأصداء Rust fungi

- 1- جميع هذه الفطريات إجبارية التطفل فهي لا تنمو إلا على عوائل نباتية وتسبب جميعها مرضاً نباتياً يدعى الصدأ Rust تصيب محاصيل الغلال وهي شديدة التخصص العائلي.
- 2- الغزل الفطري مقسم ومتفرع تكون خلاياه أحادية النواة في مراحل النمو المبكرة ثم تصبح ثنائية النوى خلال المراحل المتأخرة من النمو والغزل الفطري لهذه الفطريات ينمو في المسافات البينية لخلايا النبات العائل ونادراً ما يحصل النمو داخل الخلايا.
- 3- تعد هذه المجموعة من الفطريات البازيدية واطئة بسبب افتقارها للأجسام الثمرية البازيدية كما في الفطريات البازيدية الراقية.
- 4- دورة حياة فطريات الأصداء معقدة ذات أطوار وأشكال متعددة Polymorphism حيث تظهر خمسة أطوار مختلفة من الأبواغ في دورة الحياة النموذجية، قد يختفي طور أو أكثر حسب نوع الفطر غير أن جميع فطريات الأصداء تكون الطور التيلي.
- 5- حصول ظاهرة متباين العوائل Heteriecious أي أن الأبواغ المختلفة للفطر الواحد قد تتكون على عائلتين مختلفتين.
- 6- وجود حالة التخصص الفسلجي في بعض فطريات الأصداء، أي أن الفطر المعين يصيب صنفاً نباتياً معيناً دورة غيره فيسمى أحادي العائل أو ذاتي Autoecious.

في دورة الحياة النموذجيه لفطريات الاصداء هنالك خمسة اطوار مختلفه من الابواغ تكون مختلفه ومتعاقبه بانتظام وهي كما ياتي:

الطور صفر (stage 0) الطور البكني pycnial stage ويسمى ايضا الطور الشكل تعرف spermogonial : ويتصف هذا الطور بتكوين الفطر لتراكيب دورقيه الشكل تعرف بالاوعيه البكنيه pycnia على السطوح العليا لاوراق النبات العائل . تحتوي هذه الاوعيه بداخلها على خيوط خصيبه تحمل الابواغ البكنيه pycniospores الوحيدة الخليه كما انها احاديه النواة احاديه المجموعه الكروموسوميه تقوم بدور الاعضاء التكاثريه الذكريه كما يوجد في قمة هذه الاوعيه ايضا خيوط الاستقبال Receptive hyphae التي تقوم بوظيفة الاعضاء التكاثريه الانثويه .

الطور الاول (stage 1) الطور الايشي Aecial stage هذا الطور بتكوينه لتراكيب كاسيه الشكل تسمى Aecial عللى السطوح السفليه لاوراق النبيات العائل وتكون مقابله للاوعيه البكنيه. تتكون داخل هذه التراكيب الكاسيه ابواغا ايشيه Aeciospores بهيئه سلاسل تفصلها الخلايا البينيه الفاصله كل بوغ ايشي يحوي على نواتين احاديه المجموعه الكروموسوميه.

الطور الثاني (stage 11) الطور اليوريدي Uredial stage يتكرر هذا الطور عدة مرات خلال مدة نمو النبات لذا يسمى بالطور المتكرر Repeating stage فيؤدي الى سرعة انتشار المرض . البثرات التي يكونها هي البثرات اليوريديه والتي توجد في داخلها الابواغ اليوريديه النوى المتوافقه الابواغ تكون محموله على حوامل شهله الانفصال .تتخلل الابواغ اليوريديه عادة الخيوط العقيمه.

الطور الثالث (stage 111) الطور التيلي (Telial stage) يمتاز بوجود البثرات التيليه التي تتكون قرب نهايه موسم نمو النبات هذه البثرات التيليه . يختلف شكل وتركيب الابواغ التيليه بأختلاف الفطر الذي تعود اليه.

الطور الرابع (stage 1v) الطور البازيدي Basidial stage يمتاز بتكوينه للابواغ البازيديه Basidial stage. تتكون الابواغ البازيديه على الجسم البازيدي او مايعرف بالغزل الفطري الاولي وهي احادية الخليه صغيرة الحجم, ذات نواة واحدة احاديه المجموعه الكروموسوميه يحصل الانقسام الاختزالي في خلايا الغزل الفطري الاولي وقبيل نشوء الابواغ البازيديه. تمتاز هذه الابواغ بعدم أصابتها للعائل الذي نشأت عليه ولكنها في الغالب تصيب نباتا أو عائلا اخر يسمى بالعائل الثانوي . ليبدأ تكوبن الطور البكني الذي وصف سابقا .

تقسم فطريات الاصداء الى عدد من العوائل على اساس طبيعه وشكل وتركيب الابواغ التيليه ومن هذه العوائل عائلة

Family: Pucciniaceae

مميزات العائله

- 1 تعد اكبر عائله ضمن الرتبه وتمتاز بابواغها التيليه المعنقه والتي يختلف شكلها وتركيبها بأختلاف الاجناس التي أما أن تكون من خليه واحده أو من خليتين أو عدد من الخلايا.
- 2- تحمل الخلايا التيليه أما فرادى أو في مجاميع والحوامل أما بسيطه أو مركبه وتتكون داخل بثرات تحت بشرة العائل وهي أما مغطاة أو عاربه.
- 3- الخلايا التيليه عادة سميكه الجدران, بنيه محمره , ملساء أو ذات زخارف أو قد تكون محاطه بغلاف شفاف .

تضم العائله عدد من الاجناس المهمه ومن اهم اجناسها جنس Puccinia ويضم الجنس عدد من الانواع اشهر الانواع هي التي تصيب محاصيل الحبوب ذات الاهميه الاقتصاديه. تعيش جميع انواعها متطفله اجباريا على نباتات العائله النجيليه كالحنطه والشعير والشيلم والشوفان وتسبب مرض الصدأ Rust diseases الابواغ التيليه لافراد هذا الجنس تتكون من خليتين.

من اهم الانواع هو Puccinia graminis الذي يسبب مرض الساق الاسود على محاصيل الحبوب وهو من اخطر الانواع حيث يعد هذا الفطر شديد التخصص حيث يحتوي عدد من النويعات والتي لاتختلف عن بعضها من ناحيه الشكل ولكنها مختلفه فيما بينها من الناحيه الفسلجيه حيث ان كل منها متخصص في اصابه نوع معين من افراد العائله النجيليه.

Puccinia graminis var.tritici يصيب نبات الحنطه

Puccinia graminis var.avenae يصيب نبات الشوفان

Puccinia graminis var.oryzae يصيب نبات الشيلم والشعير

يعد هذا الفطر من الفطريات طويلة دورة الحياة Macrocyclic التي تكمل دورة حياتها على عائلين مختلفين هما الحنطه (العائل الاولprimary host) ونبات البربري Barberry العائل

الثانوي او المناوب (Alternate host) . كما انه يكون خمسه انواع مختلفه من الابواغ بالثانوي او المناوب (Aecio spores والايشيه pycniospores على نبات البربري. اما الابواغ اليوريديه Uredio spores والابواغ التيليه Teliospores والبازيديه على عائلين يسمى متعدد العوائل فتتكون على النبات النجيلي. الفطر الذي يقضي دورة حياته على عائلين يسمى متعدد العوائل او متباين العوائل (Heteroecious) والفطر الذي يقضي دورة حياته على عائل واحد يسمى ذاتي أو احادي العائل (Autoecious) .

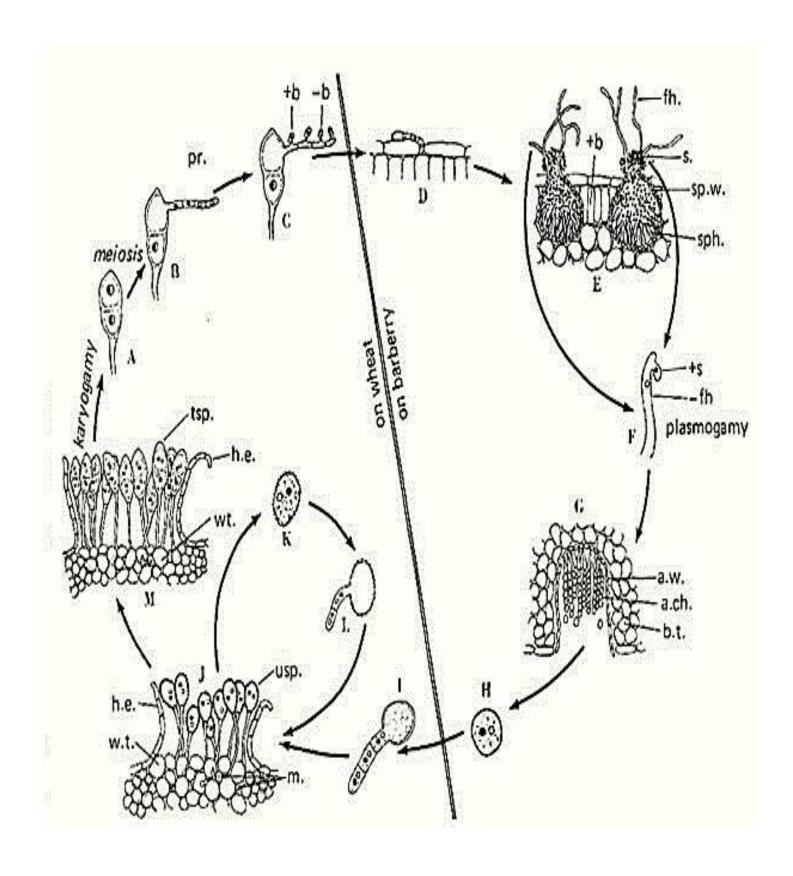
دورة حياة الفطر Puccinia graminis

تنتج الاصابات الاولى على الحنطه عن طريق الابواغ اليوريدية , تتطاير من اماكن بعيده او من خلال الابواغ الايشيه المتكونه على نبات الباربري, كلا النوعين من الابواغ تكون ثنائيه النوى وعندما تتجرثم على ورقه الحنطه وتكون أنابيب انبات والتي تدخل الورقه من خلال الفتحات الغزل الفطري ثنائي النوى يتوغل مابين الخلايا ويتغذى من خلال ارسال الممصات دون ان يقتل او يحدث ضررا في الانسجه, بعد مده من الزمن تتجمع الخيوط في اماكن متعددة تحت الادمه وتتكون الابواغ اليوريديه, يظهر الطور اليوريدي بهيئه بثرات صدأ ذات لون احمر وتنشأ فيها الابواغ اليوريديه uredio spore نتيجه للضغط الذي يحدثه نشوء وتطور الابواغ , تتمزق الادمه فتنكشف الابواغ الاحاديه الخليه المعنقه ذات الجدار السميك البيضويه الشكل.

الابواغ تمتلك اربعه ثقوب انبات استوائيه الموقع لها القدرة على الانبات الفوري على اوراق الحنطه مسببه عدة اصابات متعاقبه لنشر الفطر والمرض من حقل الى اخر, عند انتهاء موسم الحنطه يتناقص انتاج الابواغ اليوريديه ويزداد انتاج الابواغ التيليه الناتج الابواغ اليوريديه الى ابواغ تيليه. الابواغ التيليه تنتج بشكل مستقل م الغزل الفطري الناتج عن الاصابات المتأخره.

الابواغ التيليه ذات لون اسود ومتطاوله ,البثراتتتكون على الساق , ثنائيه الخليه , مغزليه الشكل , بنيه غامقه. توجد منطقه عند القمه سوداء غامقه جدارها رقيق كل خليه تكون ثنائيه النوى وتمتلك ثقبا للانبات عند القمه بينما الخليه السفلى

يكون ثقب انباتها على الجانب ويمثل طور التشتيه الذي يظهر الاجهزه الجنسيه والتي يحصل فيها اندماجا نوويا ثم انقساما اختزاليا. النواتان تندمجان فتكونان نواة ثنائية المجموعه الكروموسوميه في كل خليه ثم تمر بفترة سكون. تحت هذه الظروف تلتصق بقش الحنطه او في التربه.


عند عودة الظروف الملائمه في الربيع تنبت الابواغ التيليهز كل خليه تشكل غزل فطري أولي مائل . النواة الثنائيه المجموعه الكروموسوميه diploid يحصل فيها انقساما اختزاليا meiosis في الغزل الفطري الاولي فتتكون اربعه نوى احادية المجموعه الكروموسوميه haploid المغزل الفطري الاولي مختلفتين . تتكون حواجز لتفصلهم الى اربعه خلايا من الغزل الفطري الاولي. كل خليه تنتج بوغا بازيديا يولد بشكل غير متناظر على ذنيبه دقيقه اثنان من الابواغ البازيديه هذه يكونان من نفس السلاله والاثنان الاخران من سلاله اخرى. الابواغ البازيديه دقيقه الجدران والتي سوف تتحرر بقوة بطريقه الفقاعه المائيه.

الابواغ البازيديه تستطيع ان تصيب فقط نبات البربري وليس نبات الحنطه تحمل الرياح هذه الابواغ وتوصلها الى اوراق الباربري لتتجرثم وتنبت في قطرة من الماء , ينحل انبوب الانبات الى داخل الورقه بطريقة اليه خلال طبقة الادمة. في الداخل يتكون غزلا فطريا احادي النواة تكون سلالته (+ أو – أعتمادا على نوع البوغ البازيدي) يتغذى من خلال الممصات النواة تكون سلالته (با أو باعتمادا على نوع البوغ البازيديه كل واحد من هذه الابواغ ينشئ غزلا فطريا ابتدائيا. كل بقعه مريضه تنشئ وعاء قاروري يسمى بكينا pycnium والذي يفتح على السطح العلوي للورقه بوساطه فتحه ostiole . جدار الوعاء البكني من الداخل مبطن بطبقه من حوامل البذيرات spermatiophores عند القاعده . هذه القطع الدقيقه المفرده الخلايا والاحاديه النواة والتي تدعى البذيرات spermatia تتسرب نحو الخارج خلال الفوهه مع محلول سكري ذي رائحه زكيه. الفوهه محاطه بحزمه من الشعيرات تدعى البذيرات فهنالك خيوط طويله متعرجه تدعى خيوط الاستقبال فضلا عن حوامل البذيرات فهنالك خيوط طويله متعرجه تدعى خيوط الاستقبال الفوهه, خيوط الاستقبال تمثل من الجدار الجانبي للوعاء البكني وتنمو نحو الخارج خلال الفوهه, خيوط الاستقبال تمثل الاعضاء الجنسيه الانثويه في حين تمثل البذيرات الامشاح الذكريه غير ان هذه الاعضاء الاعضاء الجنسيه الانثويه في حين تمثل البذيرات الامشاح الذكريه غير ان هذه الاعضاء الاعضاء الجنسيه الانثويه في حين تمثل البذيرات الامشاح الذكريه غير ان هذه الاعضاء

تكون عقيمه ذاتيا. عدد من الاوعيه البكنيه مختلفه الطراز التزاوجي (+ أو _) فتكون على نفس الورقه.

ألاقتران البذيري spermatization يحصل عن طريق الحشرات التي تنجذب للروائح العطرة حيث تلتقي بذيره لاحدى السلالات مع خيوط استقبال لسلاله مغايرة فتصبح خليه خيط الاستقبال ثنائيه النوى. النواة الذكريه تنقسم انقساما اعتياديا لتكون نواة ذكريه ثنائيه تذهب الى خليه اخرى وهكذا تحصل عدة انقسامات اعتياديه وفي جميع الخلايا الغزل الفطري الابتدائي ثنائيه النوى ليتحول الى غزل فطري ثانوي, ينمو هذا الغزل الفطري ويتفرع داخل نسيج الورقه ويتجه نحو السطح السفلي لورقة البربري حيث ينتج تراكيب اخرى تكون كأسيه الشكل تدعى Aecia تكون مطمورة داخل نسيج العائل ومحاطه بطبقه من جدار عقيم من خلايا الفطر المنضغطه يسمى الغشاء الثمري peridium وعند قاعدة الكأس توجد عدة صفوف من خلايا عماديه ثنائيه النوى تدعى الخلايا المولده للابواغ الايشيه حيث تبدأ هذه الخلايا بالانقسام لنكون سلاسل من الابواغ الايشيه Aeciospores , تتبادل مع خلايا فاصله ثنائيه النوى تسمى الخلايا البينيه.

الابواغ الايشيه احادية الخليه ثنائيه النوى احاديه المجموعه الكروموسوميه برتقاليه اللون مكرويه الشكل في بداية تكوينها ثم تصبح بعد ذلك مضلعه, جدرانها سميكه ملساء, عندمل تتضج الابواغ الايشيه تبدأ الخلايا البينيه بالانحلال والاختفاء لتحرير مابينها من ابواغ ايشيه والتي تنطلق بقوة لتنشر بواسطه الرياح فتصيب الحنطه وتنبت لتكون انابيب انبات تخترق سطوح الاوراق أو قواعده عن طريق الثغور . ينمو الغزل الفطري بين الخلايا وينتشر بين المسافات البينيه . الغزل الفطري هذا مقسم بجدران عرضيه تحتوي كل من خلاياه على نواتين متوافقتين Dikaryons . بعد مرور 10-12 يوم من الاصابه يبدأ الغزل الفطري في تكوين البثرات اليوريديه , حيث يتفرع الغزل الفطري تحت بشرة العائل وتنشأ من هذه الخيوط الابواغ اليوريديه المحموله على حوامل منتصبه تضغط على البشرة لتمزقها فتنكشف الابواغ للخارج التصيب نباتات اخرى من الحنطه وهكذا يعيد الفطر المسبب لمرض صدأ الساق الاسود في الحنطه.

دورة حياة الفطرPuccinia graminis var. tritici

Class: Teliomycetes

2-Order: Ustilaginales

مميزات فطريات التفحم Smut fungi

1- فطرياتها تسبب أمراض التفحم وهي من الأمراض ذات الأهمية الاقتصادية الكبيرة حيث تصيب محاصيل الحبوب وغيرها.

2- الغزل الفطري ينمو ما بين خلايا العائل، والخلايا ثنائية النواة.

3- تتميز هذه الفطريات بتكوين الأبواغ التيلية السوداء في كتل تسمى البثرات (Sori) التي تتكون في المبايض وأجزاء الزهرة الاخرى أو في البذور والأوراق والسيقان وحتى الجذور.

4- يمثل البوغ التيلي بازيدة أولية Probasidium ثنائية النواة في البداية ثم تصبح أحادية النواة ثنائية المجموعة الكروموسومية من خلال الاندماج النووي.

5- الأبواغ البازيدية تتكون على الغزل الفطري وتسمى أيضا بالسبوريدات الأولية (Sporidia) والتي لا تتحرر بالقوة.

تعتمد طريقة إنبات السبور التيلي أساساً لتحديد عوائل هذه الرتبة منها.

Family: Ustilaginaceae

Family: Tilletiaceae

الصفات التي تختلف بها رتبتا الأصداء والتفحمات عن بعضها:

فطريات الأصداء	فطريات التفحم
- بعض فطريات الأصداء أحادية العائل	1- فطريات التفحم جميعها أحادية العائل
والبعض الآخر ثنائية العائل Heteroeious.	·Autoecious
- يكون نمو الغزل الفطري ما بين الخلايا	2- ينمو الغزل الفطري ما بين الخلايا
عادة Intercellular.	Intercellular وأحياناً داخل الخلايا
	.Intracellular
- الروابط الكلابية قليلة الوجود في الغزل	3- وجود الروابط الكلابية Clamp
الفطري.	connection بصورة مستمرة في الغزل
	الفطري.
- الأبواغ التيلية تتشكل من الخلايا الطرفية	4- الأبواغ التيلية تتشكل من الخلايا البينية
للغزل الفطري.	للغزل الفطري وهي تتشابه بذلك الأبواغ
	الكلاميدية.
- الأبواع التيلية تكون معنقة في معظمها	5- الأبواغ التيلية غير معنقة و تتكون من
وتتكون من خلية واحدة أو خليتين في كل خلية	خلية واحدة ذات نواتين.
نواتين.	
- تنشأ الأبواغ البازيدية على ذنيبات تتكون	6- تنشأ الأبواغ البازيدية على الحامل البازيدي
على الحامل البازيدي محدودة العدد أربعة أبواغ	مباشرة وغير محدودة العدد.
عادة.	7- الأبواغ البازيدية لا تنفصل بقوة عند
- تنفصل الأبواغ البازيدية بقوة عند نضجها	نضجها.
بطريقة آلية قطرة الماء.	
	8- تقتصر دورة حياتها على طورين بوغين
-تشتمل دورة حياتها في الحالات النموذجية	فقط هي الطور التيلي والطور البازيدي.
على خمسة أطوار بوغية.	

نقاط التشابه بين فطريات الأصداء Rust وفطريات التفحم Smut

- 1- تشترك الرتبتان في طبيعة الغزل الفطري الابتدائي الأحادي النواة Mono Karyone والغزل الفطري الثنائي النوى Dikaryone.
- 2- تكون الأبواغ التيلية من الغزل الفطري الثنائي النوى الذي يبقى لمدة طويلة وهو الجزء الأهم في صورة حياة هاتين الرتبتين من الفطريات.
- 3- تفتقر هاتان الرتبتان للأجسام الثمرية منهما في هذه الصفة، تتشابهان في كونها أكثر الفطربات البازيدية بداءة.
- 4- الأبواغ التيلية لكلا فطريات التفحم والأصداء تبقى محتفظة بحيويتها وقدرتها على الإنبات لعدة سنوات فهي تبقى كافة في التربة أو مخلفات النباتات المصابة وحين تتوفر الظروف الملائمة تتبت لتعطى الأبواغ البازيدية.

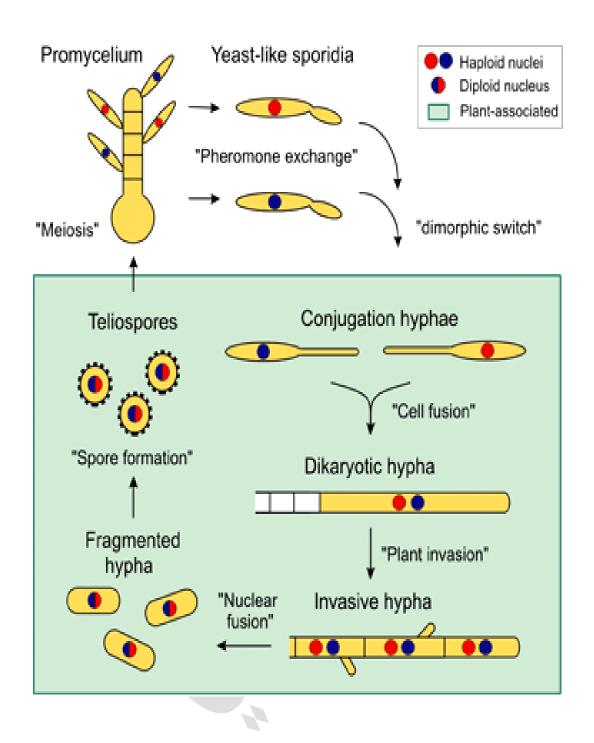
Class: Teliomycetes

2-Order: Ustilaginales

1-Family: Ustilaginaceae

1- تتميز هذه العائلة بأن الغزل الفطري الاولي او البازيدة التالية Metabasidium تكون مقسمة بحواجز عرضية الى أربع خلايا والابواغ البازيدية تحمل بصورة جانبية على الغزل الفطري.

2- افراد هذه العائلة لا تكون اجساماً ثمرية بازيدية؟


3- الابواغ البازيدية كروية أو بيضوية تتكون في سلاسل وتبقى متصلة بالجسم البازيدي.

من الاجناس التابعة لهذه العائلة:

جنس Ustilago hordei الذي يسبب التفحم المغطى على الشعير (النتن).

جنس Ustilago Maydis الذي يسبب التفحم العقدي على الذرة الصفراء.

جنس Ustilago nuda الذي يسبب التفحم السائب على الحنطة والشعير.

دورة حياة الفطر Ustilago maydis

Class: Teliomycetes

2-Order: Ustilaginales

2-Family: Tilletiaceae

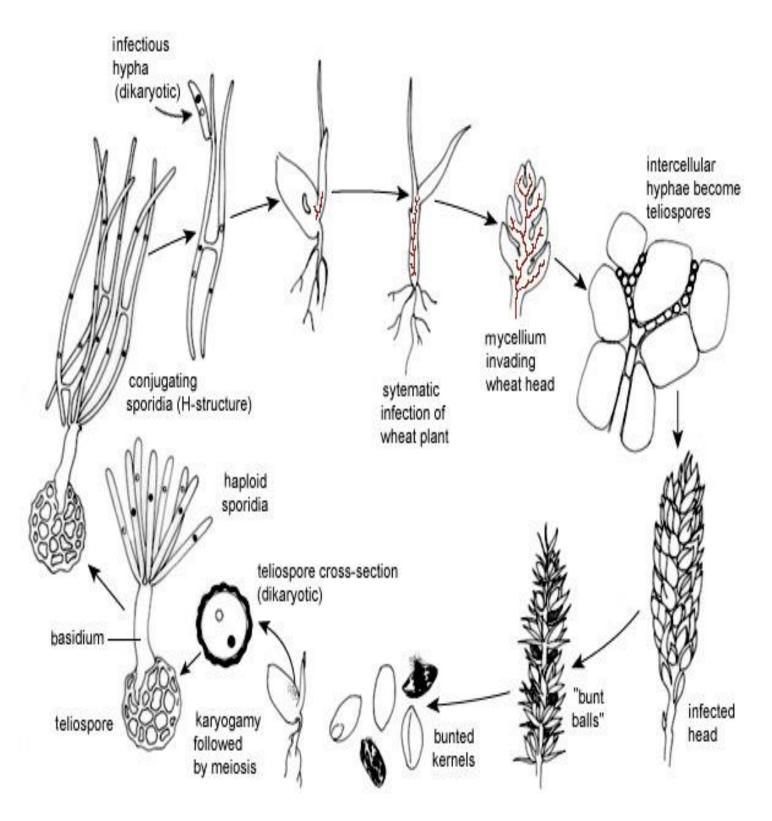
1 تتميز هذه العائلة بأن الغزل الفطري الأولي غير مقسم والأبواغ البازيدية تحمل على طرف الغزل الفطري بشكل خصلة من الأبواغ البازيدية يتراوح عددها ما بين 8 أو أكثر.

2- الأبواغ البازيدية طويلة أو ضيقة رفيعة Filiform تدعم أيضاً سبوريدات Sporidia وغالباً ما تتحد في ازواج لها القدرة على التزاوج أثناء وجودها على الجسم البازيدي أو بعد سقوطها.

-3 لا تكون أجسام ثمرية بازيدية.

من الأجناس التابعة لهذه العائلة جنس Tilletia.

يضم هذا الجنس عدة أنواع جميعها فطريات ممرضة تسبب أمراض التفحم على نباتات الحشائش ومحاصيل الحبوب منها القمح والرز، البوغ التيلي يبقى في التربة وعلى سطح البذور، الإصابة جهازية وتسبب مرض التفحم المغطى.


البوغ التيلي متكيف على الانتشار مع تذرية الحبوب حيث يلتصق بها ومن ثم تنبت أبواغه مع أنبات البذور وتكوبن البادرات.

دورة الحياة

- ينمو السبور التيلي إلى غزل فطري أولي غير مقسم والذي يحمل في نهايته الأبواغ البازيدية. يتكون أنبوب تزاوج بين كل اثنين من الأبواغ البازيدية المتوافقة وهي ما تزال على الغزل الفطري مكونة شكل حرف H.

- يحصل الاتحاد البلازمي وتتكون السبوريدات الثانوية (الكونيدات) على أحد فرعي شكل حرف H محمولة على ذنيبات. وعند إنبات السبوريدات الثانوية يتكون الغزل الفطري الثانوي الذي يتمكن من إصابة العائل.

- بعد نمو الغزل الفطري في انسجة العائل يكون اخيراً الأبواغ التيلية التي تكون ذات زخرفة شبكية تبقى في التربة وعلى سطوح البذور وتنتشر مع تذرية الحبوب.

دورة حياة الفطر Tilletia caries

2-Class: Hymenomycetes

- 1- يعد أكبر الفطريات البازيدية عدداً وتنوعاً حيث تشاهد نامية في الحدائق والغابات والبراري وتضم العراهين (عش الغراب) السامة وغير السامة والفطريات الرقية والمرجانية Polypores والفطريات متعددة الثقوب Polypores.
- 2- تتميز بانتظام البازيدات فيها على هيئة طبقة خصيبة Hymenium تكون مفتوحة كلياً عند النضج، حيث تتكشف الطبقة الخصيبة بشكل كامل على سطح الجسم الثمري قبل أن تنضج الأبواغ البازيدية.
- 3- تتباين أحجام وأشكال الأجسام الثمرية لهذه المجموعة من الفطريات فقد تكون جلدية أو خشبية أو لحمية
 - 4- الجسم البازيدي صولجاني غير مقسم يحمل أربعة أبواغ بازيدية على ذنيبات.

يضم هذا الصف مجموع من الرتب هي:

1-Order: Agaricales

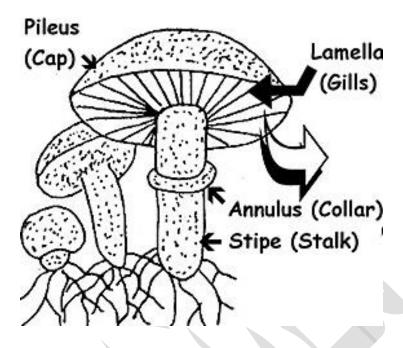
- 1- تسمى أفراد هذه الرتبة بالفطريات الغلصمية أو الخيشومية Gill fungi وتضم الفطريات التي يطلق على أجسامها الثمرية بالعراهين أو عيش الغراب التي تؤكل Mushrooms والعراهين السامة Toadstools.
- 2- أغلبها رمية التغذية تعيش في ترب الغابات الغنية بالمادة الدبالية وفي الحدائق المنزلية والواحات الخضر.
- 3- لبعض أفرادها علاقة تعايشية مع بعض اشجار الغابات كالصنوبر والزان تدعى .Mycorrhiza

- 4- تتميز أفرادها بأن حامل الأبواغ يكون صلباً قوياً يحمل في نهايته قلنسوة مظلية الشكل تتدلى منها الغلاصم نحو الأسفل.
- 5- أجسامها الثمرية لحمية طرية سريعة التلف والحوامل البازيدية غير مقسمة وشكلها صولجاني في تحمل أربعة أبواغ بازيدية على ذنيبات في طرف الحامل البازيدي.
- 6- معظمها تتكاثر جنسياً والقليل منها تتكاثر لا جنسياً عن طريق الاويدات Oidia. حيث تنبت الاويدات لتكون الغزل الفطري أو تتحد الاويدة مع أحد خيوط الغزل الفطري الابتدائي المتوافق معها جنسياً فتسلك سلوك البذيرة Spermatium.
- 7- الأجسام الثمرية تتألف من نسيج برنكيمي كاذب ويكون مظلي الشكل يتألف من الحامل (الساق) Stipe ويكون موقعه مركزي عادة والرأس Pelius ويكون قبعي الشكل ويحتوي على صفائح خيشومية (الغلاصم) على السطح السفلي للرأس تمتد من الحافة من الحامل ومرتبة بصورة شعاعية.
- 8- تنشأ الأجسام الثمرية من الغزل الفطري الثانوي بهيئة عقدة في البداية وتكون كثيفة الخيوط، ثم تستمر بالنمو لتصبح تركيب بيضوي أو كروي أبيض يدعى الطور الزراري Button ثم تستمر بالنمو لتصبح تركيب بيضوي أو كروي أبيض يدعى الطور الزراري Inner تتصل حافة الرأس بالحامل في بعض الأنواع بغشاء يعرف بالقناع الداخلي stage لائول بعد اتساع الرأس لتصبح بقاياه على الحامل بهيئة حلقة تدعى veil
- 9- تحاط الأجسام الثمرية لبعض العراهين مثل فطر Amanita بغشاء يعرف بالقناع العام Universal veil في الطور الزراري ما يلبث أن يتشقق بعد نضج الجسم الثمري ليكون تركيباً كاسياً يحيط بقاعدة الساق يعرف باللفافة Valva.

*الغلاصم Gills (الخياشيم)

تكون بهيئة صفائح أو أشرطة تمتد من حافة القبعة الداخلية باتجاه الحامل وهي تختلف باللون من جنس لآخر، والغلاصم تركيب معقد من الخيوط الفطرية المتماسكة تتألف من المناطق الآتية:

1-التراما Tramae:


المنطقة الداخلية للغلاصم وتتألف من نسيج بلكتنكيمي من الخيوط الفطرية المتشابكة.

2–الطبقة تحت الخصيبة Sub hymenium:

وتتكون من الفروع الجانبية لخيوط التراما والتي تمتد نحو سطحي الغلصمة مكونة نسيجاً متماسكاً على جانبها يتألف من مجموعة من الخلايا الصغيرة.

3-الطبقة الخصيبة Hymenium:

تكون من طبقة قراصة من البازيدات والتي يتخللها تراكيب عقيمة هي الحويصلات Cystidia والشعيرات Paraphysis تحمل كل بازيدة عادة أربعة أبواغ بازيدية.

Agaricus الشكل المظهري لفطر

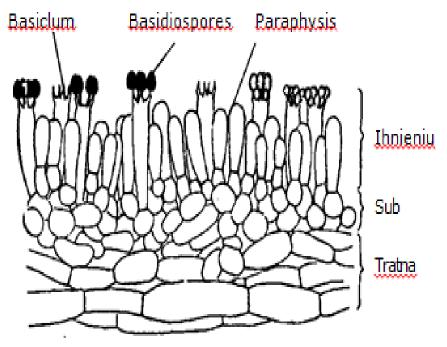


Fig: Section of gill

مقطع مكبر لمنطقه الغلاصم في فطر Agaricus يوضح الطبقات المكونه لها

تضم الرتبة عدداً من العوائل منها:

1-Family: Agaricaceae

تعد أهم عائلة وتضم معظم العراهين وتتصف بالصفات الاتية:

1- اللون الأسود أو البني للأبواغ البازيدية.

2- وجود الطوق Annulus

3- سهولة إزالة الحامل Stipe من الرأس Pelius.

4- الصفائح Lamellae حرة.

تضم هذه العائلة ثلاثة أجناس منها أهم جنس هو:

Agaricus جنس

يعيش هذا الجنس مترمماً في الترب الغنية بالمواد الدبالية والأوراق المتفسخة والأخشاب وأكوام السماد، الجسم الثمري مظلي الشكل يؤكل بشغف في كل شعوب العالم. أحياناً تظهر الأجسام الثمرية بهيئة دوائر ولا سيما في الأراضي العشبية، الأجسام الثمرية أعمارها قصيرة تبقى لأيام معدودة فقط. تنطلق الأبواغ البازيدية بقوة بطريقة الفقاعة المائية وبأعداد هائلة تسقط كالمطر خلال (2-3) يوم من وجود الجسم الثمري.

من الأنواع التابعة لهذا الجنس:

Agaricus campestris (Mushroom)

Agaricus bisporus

2-Family: Amanitaceae

تتميز أفراد هذه العائلة بالمواصفات التالية:

1- الصفائح تكون حرة ومنفصلة عن الحامل، كما تمتلك تراما (Trama) ثنائية الجانب.

2- الأبواغ والغلاصم ذات لون أبيض.

- 3- الحامل منفصل عن الرأس القبعي.
- 4- اللفافة والطوق يظهران في الأجسام الثمرية الناضجة.

من أهم الأجناس التابعة لهذه العائلة هو جنس:

Genus: Amanita جنس

يعد جنس الأمانيتا أحد الفطريات الأوائل التي عرفها الإنسان وتمثل أعلى درجة من التطور من بين جميع الفطريات الغلصمية. معظم الأنواع تنمو تحت الأرض بهيئة علاقة جذرية Mycorrhiza مكونة أجساماً فطرية خارجية بهيئة كتل حول قاعدة الاشجار من أنواع هذا الفطر:

فطر كرسي الموت Amanita pholloides

فطر الملاك الفتاك Amanita verna

أعطيت هذه الأسماء للأنواع على أساس الطبيعة السمية العالية التي يظهرها الفطر. الأعراض الأولية للتسمم تظهر بشكل تشنجات بدنية وإسهال وقيء يتبعها خمول أو توقف الكبد والذي يؤدي أخيراً إلى الإغماء ثم الموت.

2-Order: Polyporales (Aphyllophorales)

- 1- أفراد هذه الرتبة تلعب دوراً في تحلل الأخشاب ومخلفات النباتات العشبية حيث أغلبها تعيش مترممة المعيشة غير أن بعضها منها تتطفل على أشجار الغابات ونباتات الظل مسببة لها أمراض تعفن الجذور الطري Soft root-rot.
 - 2- الطبقة الخصيبة تقع داخل ثقوب خيشومية كثيرة في جسم الفطر.
- 3- الأجسام الثمرية لأفراد هذه الرتبة متباينة في أشكالها وأحجامها غير أن معظم أنواعها تكون أجسامها الثمرية بهيئة قلنسوة جلدية أو فلينية أو خشبية سميكة محمولة على الحامل البازيدي. تضم هذه الرتب عددا من العوائل من أهمها:

1-Family: Polyporaceae

1- تعرف أفراد هذه العائلة بالفطريات ذات الثقوب Pore fungi وذلك لاحتواء أجسامها الثمرية على الثقوب التي تبطن بالطبقة الخصيبة وتسمى أحياناً بالفطريات الرفية Shelf fungi على الثقوب التي تبطن بالطبقة الخصيبة والمخلة.

2- الأجسام الثمرية كبيرة الحجم بسبب استمرار نموها السنوي، قوامها خشبياً او فلينياً أو جلدياً.

3- الطبقة الخصيبة تبطن السطح الداخلي لتراكيب انبوبية تفتح للخارج تسمى الثقوب.

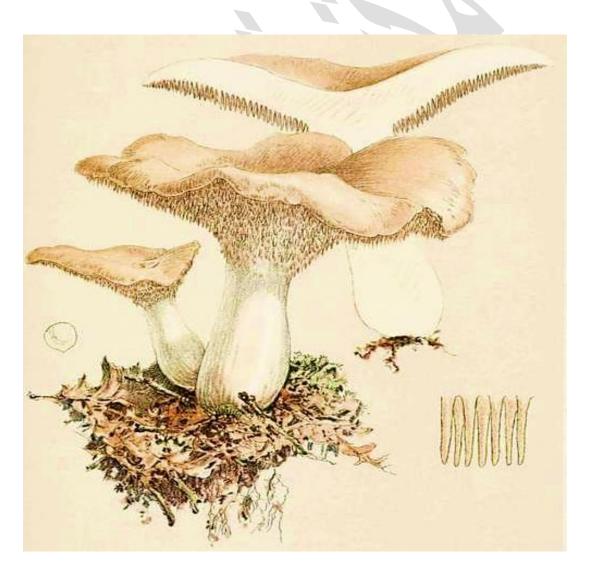
4- تصيب أشجار الغابات وتسبب لها أمراضاً نباتية.

تضم العائلة العدد من الأنواع من أهمها جنس Polyporus.

Genus: Polyporus جنس

يعد هذا الجنس من الأجناس الشائعة في العالم يضم العديد من الأنواع التي تسبب تلفاً كبيراً للأخشاب من خلال تطفلها على الأشجار مثل الفطر Polyporus sulphurous الذي يسبب تعفن أشجار البلوط ويطلق عليه عرهون الكبريت يشاهد بوضوح على جذوع أشجار الغابات المتساقطة ويكون لون الجسم الثمري أصفر كبريتي وشكله نصف دائري توجد تراكيب انبوبية بهيئة ثقوب على السطح السفلي من الجسم الثمري البازيدي وتكون مفتوحة نحو الخارج ومبطنة بطبقة خصيبة.

فطر Polyporus


2-Family: Hydnaceae عائلة

- 1- تدعى أيضاً بالفطريات القنفذية أو فطريات الهايدنوم.
- 2- الطبقة الخصيبة تكون محمولة على بروزات أو أشواك تشبه الأسنان تغطي الطبقة الخصيبة ومتجهة نحو الأسفل.
- 3- تختلف أشكال أجسامها الثمرية فهي إما تكون مرجانية الشكل أو شحمية الأجسام الثمرية تأخذ عدة سنوات حتى تنضج ولهذا السبب لا تصادف هذه الفطريات باستمرار.
- 4- تعيش على الأرض أو على الأخشاب بعض أفراد هذه العائلة تعيش على أشجار الصنوبريات وتنمو جيداً في البيئات الباردة والرطبة.

من الاجناس التابعة بهذه العائلة جنس:

Genus: Hydnum

وهو من الفطريات التي تعيش في الأراضي الخشبية الدبالية يضم نوعاً واحداً هو القبعة ذات repandum الأجسام الثمرية تكون قبعية يشبه العرهون وهو من الفطريات التي تؤكل والقبعة ذات نسيج لحمي ناعم الملمس أو حرشفي بسيط الأشواك مختلفة الأحجام يتواجد في المناطق الكثيرة الأشجار.

فطر Hydnum

الفطريات الناقصة Deuteromycota

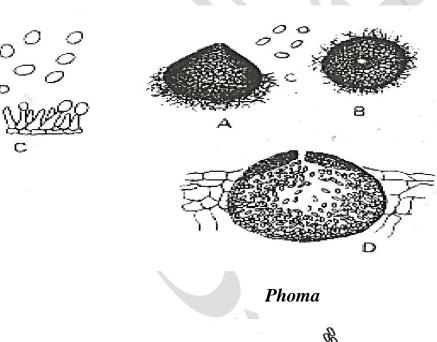
تعتبر هذه الفطريات كمجموعة Polyphyletic أي أن لها مصادر اجداد متعددة تعتبر هذه الفطريات، تتكاثر لا جنسياً خلال دورة حياتها لذلك تسمى بالفطريات الناقصة multiple ancestral sources أعلم المسمى النطويات الناقصة Imperfect fungi كما تسمى النطأ أغلب أنواعها تتقارب أو تعود إلى أنواع أخرى لشعب اخرى لذلك من الصعوبة اعتبارها كشعبة حقيقية، لهذا السبب يعدها العلماء Form phylum. أغلب أنواعها تعيش على الياسة باستثناء القليل من أنواعها تكون مائية المعيشة. أشارت الدراسات الجزيئية إلى أن أقرب الشعب الفطرية لهذه المجموعة هي الفطريات الكيسية، وذلك لتشابه الأطوار الكونيدية لها، البعض الآخر يعود إلى الفطريات البازيدية.

للعديد من هذه الفطريات أهمية اقتصادية إذ يسبب بعضها أمراض نباتية مهمة اقتصادياً مثل مرض الانثراكنوز وأمراض الذبول وغيرها. إن السبب في افتقارها للتكاثر الجنسي قد يعزى إلى فقدان هذه الصفة خلال مرحلة التطور لهذه الفطريات بالمقابل قد يكون الباحثين غير مكتشفين للظروف التي يمكن ان تؤدي إلى التكاثر الجنسي، هناك ما يقارب 1500 نوعاً من الفطريات الناقصة والتي هي في تناقص مستمر بسبب اكتشاف الطور الجنسي لها ونقلها إلى الشعبة الخاصة بها، لذلك لهذه الفطريات اسمين مختلفين اسم جنسي واسم لا جنسي.

صنفت هذه الفطريات ضمن مملكة الفطريات بسبب أن الطور الجسدي لها بشكل خيوط جيدة التكوين مقسمة تشبه ما هو موجود في الفطريات الكيسية والبازيدية وقد يكون الثالوس أحادي الخلية، كما أنها تكون حوامل كونيدية قائمة Erect conidiophores.

قد تكون الحوامل الكونيدية قصيرة أو طويلة، بسيطة أو متفرعة، مقسمة بحواجز وغير مقسمة، مفردة أو متجمعة بشكل ثمار لا جنسية (حوامل كونيدية مركبة) بشكل ظفيرة كونيدية أو كويمة كونيدية أو وسادة فطرية أو بشكل بكنيديا.

تصنيف الفطربات الناقصة اعتماداً على الصفات اللاجنسية

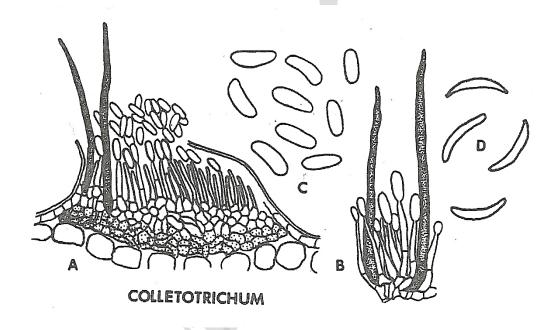

Class: Coelomycetes-I

يضم الصف رتبتان هما:

Order: Sphaeropsidales-1

تتميز أفراد الصف بالصفات التالية:

تكون أفراده أوعية بكنيدية قارورية الشكل ذات فتحة طبيعية أو بدون فتحة، منفصلة أو متصلة بحشية فطرية Stroma، وقد تكون بعض أفراده حوامل كونيدية بسيطة أو متفرعة، الكونيدات عديمة اللون أو ملونة، مقسمة أو غير مقسمة حسب نوع الفطر، تضم الرتبة عدة عوائل منها Family: Sphaeropsidaceae أفرداها تكون ثماراً بشكل بكنديا سوداء اللون قارورية جلدية القوام هشة، أشهر الأجناس Sphaeropsis ، Phoma ، Septoria ، Diplodia



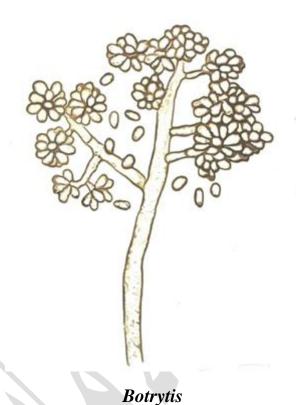
Sphaeropsis

Order: Melanconiales-2

تتميز أفراده بتكوين ثمار لا جنسية من أنواع الكويمة الكونيدية Acervulus وقد تكون حوامل كونيدية مفردة قصيرة وبسيطة منفصلة أو مرتبة الواحد جنب الآخر بصورة مزدحمة، وتحمل الكونيدات أما بصورة مفردة أو بهيئة سلاسل بسيطة بالكونيدات عديمة اللون أو ملونة مقسمة أو غير مقسمة من أهم العوائل هي Family: Melanconiaceae فطرياتها تسبب أمراضاً للنباتات مثال على ذلك فطر أهم العوائل هي Colletotrichum الذي يسبب مرض الانثراكنوز Anthracnose على الرقي والباذنجان والفاصوليا.

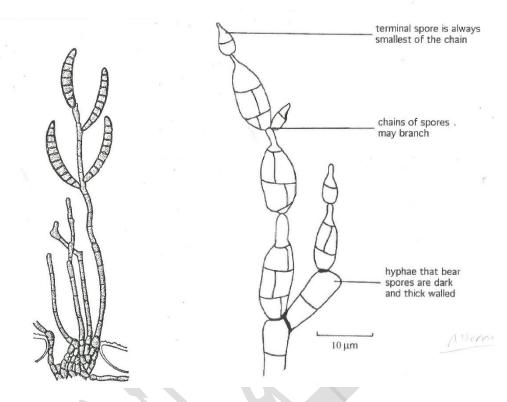
Class: Hyphomycetes-II

يضم أفراداً تكون كونيدات على حوامل عديمة اللون أو على حوامل كونيدية متخصصة، الحوامل الكونيدية أما أن تكون بسيطة مفردة أو مركبة بهيئة وسادة سبورية Sporodochium أو ظفيرة كونيدية Synnema.


يضم الصف عدداً من الرتب منها رتبة Order: Moniliales التي تضم عدة عوائل منها:

Family: Moniliaceae-1

وهي أكبر عائلة تضم جميع الفطريات الناقصة التي تتكون فيها الكونيدات على حوامل كونيدية عديمة اللون، منتظمة في تراكيب ثمرية معينة أو تتكون بصورة مباشرة على خيوط فطرية

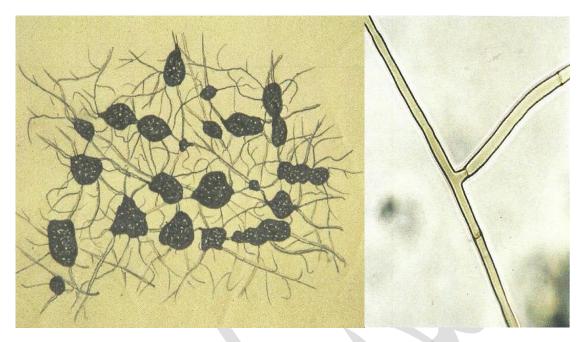

عديمة اللون، معظم أفرداها رمية المعيشة إلا أن عددا قليلاً منها يتطفل على النباتات والإنسان والحيوان.

أمثلة على ممرضات النبات: فطر Verticillium وفطر Botrytis المسبب لمرض التعفن العنقي للبصل.

Family: Dematiaceae-2

تمتاز أفرادها باحتوائها على غزل فطري وحوامل كونيدية وكونيدات داكنة اللون، معظمها رمية دراكنة اللون، معظمها رمية دراكنة اللون، معظمها رمية دراكني الله المعيشة، بعضها يتطفل على النباتات والحيوان والإنسان أمثلة: «Cladosporium على النباتات والحيوان والإنسان أمثلة: «Alternaria solani ، Helminthosporium الذي يسبب مرض اللفحة المبكرة على الطماطم Early blight disease

Helminthosportum

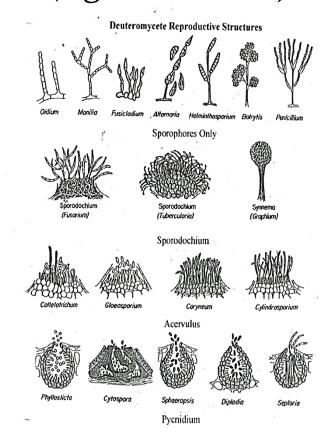

Alternaria solani

Family: Tuberculariaceae-3

تضم الأفراد التي تمتاز بكون الكونيدات فيها محمولة على حوامل كونيدية قصيرة مكونة وسادة سبورية Sporodochium، مثال فطر Fusarium الذي تضم أنواعه رميات وطفيليات نباتية مثل النوع Fusarium المسبب لمرض الذبول Damping off العدد من النباتات مثل الطماطة.

Class: Mycelia sterilia-III

يضم مجموعة من الفطريات التي لا تكون أبواغاً لاجنسية وتكون بشكل خيوط عقيمة تتكاثر لا جنسياً بوساطة الأجسام الحجرية Sclerotia أو إلى مايكورايزا، أمثلة على ذلك Sclarii لا جنسياً بوساطة الأبول للعديد من النباتات.



Rhizoctonia sclerotia

Rhizoctonia

Reproductive Structures of Deuteromycetes (Agrios:442-444)

- Conidia on conidiophores
- Sporodochium
- Synemma
- Acervulus
- Pycnidium

تصاحبات الفطريات

الفطر – طحلب (الاشنات) Lichens

الاشنات هي احياء مزدوجة تتالف من اثنين من الاحياء المختلفة كلياً وهي عباره عن تصاحب ثابت ومدعم ذاتيا مؤلف من فطر وطحلب. ويعرف الجزء الفطري بالمتعايش الفطري mycobiont ويعرف المكون الطحلبي بالمتعايش التمثيلي

يمكن للطرف الطحلبي النمو بمعزل عن الطرف الفطري وفي بعض الحالات قد يظهر الاشن وجود أكثر من طحلب واحد وفي هذه الحاله يسمى بالكايميرات Chimeras. ومن الناحية الوظيفية يقوم الطرف التمثيلي بصنع غذائه بنفسه بعمليه البناء الضوئي في حين يحصل الطرف الفطري على هذا الغذاء بطريقه الترمم ونادراً ما يحصل عليه عن طريق التطفل وبذلك تكون الاشنات عبارة كائن هي بتغذيه حيوية biotroph اذ يحصل على غذائه من الطرف الطحلبي بوساطة ممصات يرسلها الى داخل الخلايا الطحلبية.

من الناحية الفسلجية هناك فائدة متبادلة بين الفطر والطحلب في الاشن اذ يحصل الفطر على الكربوهيدرات من الطحلب وكذلك على مركبات نتروجينية عندما يكون الطرف الطحلبي من الطحالب الخضر المزرقة (احياء مثبته للنتروجين) وبالمقابل توفر تعضية الفطر الحماية للطحلب من الاضرار الفيزياوية لاسيما تحت ظروف الحرارة المتطرفة كما يعمل الفطر كمرشح او فلتر ضد اضرار الاشعة عالية الشدة فضلا عن قيام الفطر بنقل الماء والعناصر المعدنية مثل الفسفور الى الطحلب في الاشن ومن جهته فقد يستلم الطحلب الاشني فضلات نتروجينية وبعض مواد النمو مما يحفز او يشجع عملية البناء الضوئي في الطحلب .

تقسيم الاشنات

تضم الاشنات 1/ 5 الفطريات المعروفة في العالم ولا توضع الاشنات في قسم مستقل اذ كثيرا ما توضع ضمن الفطريات لان نمو الفطر هو أسرع من نمو الطحلب وإن الفطر يشغل معظم جسم الاشن فضلا عن ان مايسليوم الفطر يكون شبكه تتكشف بداخلها الخلايا الطحلبية وإن الاجسام التكاثرية في الاشن هي ذات طبيعة فطرية.

تقسيم العالم Hawksworth وجماعته عام 1983 وشمل هذا التقسيم كل من الفطريات الاشنية وغير الاشنية معاً وعلى النحو التالى:

Ascomycota

Basidiomycota

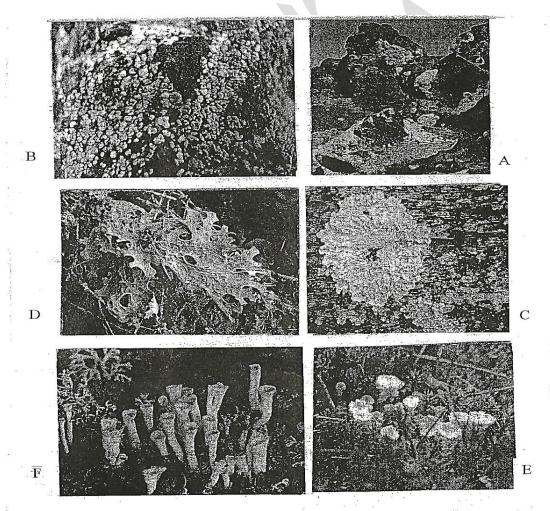
Deuteromycota

أما الطحالب التي ترافق الاشن فتعود الي Chlorophyta و Cyanophyta.

الطبيعة والموطن

تفضل الاشنات في نموها ظروف البرودة والبيئة غير الملوثة والاماكن الرطبة قليلة المطر وتغطي احتياجاتها اعتمادا على الوسط النامية عليه. للاشنات القدرة على استيطان مواطن بيئية مختلفة مما جعلها واسعه الانتشار في العالم وتكمن الاسباب في معيشتها التكافلية وطرق تكاثرها الكفؤة ومقاومتها للتطرف في درجات الحرارة والرطوبة.

تقسم الاشنات على اساس الموطن الطبيعي الى خمسة مجاميع:


- 1. Saxicolous: وهي الاشنات النامية على الصخور الجرداء في المناطق الباردة
 - 2. Endolithic: وهي الاشنات النامية داخل الصخور او التراكيب الاسمنتية
 - Terricolous .3: وهي الاشنات النامية على سطح التربة
- 4. Folicolous: وهي الاشنات النامية على الاوراق النباتية في المناطق الاستوائية
- Corticolous: وهي الاشنات النامية على جذوع الاشجار في المناطق الاستوائية
 وشبه الاستوائية.

المظهر الخارجي للثالوس

تظهر الاشنات تغايرات في اشكالها والوانها فهي عاده بلون رمادي او اخضر وقد تكون بالوان اخرى (اصفر، برتقالي واحمر). وتقسم الاشنات على اساس مظهرها وطبيعة اتصالها بوسط النمو الى:

1. اشنات قشریة Crustos Lichens

تظهر ثالوسا بشكل قشرة رقيقه منبسطة ويتصل جزءه السفلي وبقوة بسطح وسط النمو مثل الصخور والحصى وقلف الاشجار اذ لايمكن فصله عن الوسط دون تحطيمه.

شكل (93) أنواع الاشنات. \mathbf{B} ، \mathbf{A} اشنات قشرية ، \mathbf{D} ، \mathbf{C} : اشنات ورقية ، \mathbf{F} ، \mathbf{E}

2. اشنات ورقية Foliose Lichens

وهي ذات ثالوس منبسط عريض يشبه الورقة النباتية الجافة سطحه العلوي مفصص وبلون رمادي او اخضر رمادي وسطحه السفلي ابيض اللون يتصل بوسط النمو بوساطة تركيب مؤلف من هايفات تشبه اشباه الجذور.

3. الاشنات الثمرية او العشبية Fruticose Lichens

وهي ذات ثالوس معقد جدا كثير التفرع وفروعه شريطية او اسطوانية الشكل لكنه غير متميز الى سطحين ظهري وبطني ويتصل بوسط النمو بوساطة قرص منبسط.

4. الاشنات الحرشفية وثنائيه الشكل Squamous Lichens, Dimorphic Lichens

التركيب الداخلي للاشن:

تقسم الاشنات استناداً الى تركيبها الداخلي الى مجموعتين:

1. الاشنات المتجانسة التركيب الداخلي Homoiomerous Lichens:

وهي ذات ثالوس بسيط في تعضيته وإغلبها من نوع الاشنات القشرية يتركب الثالوس في هذه الاشنات من كتلة مفككة الحياكة من الهايفات الفطرية، تتوزع خلالها الخلايا الطحلبية بصورة غير منتظمة وذلك في مادة بينية جيلاتينية أصلها من الفطر (كما في الجنس Collema).

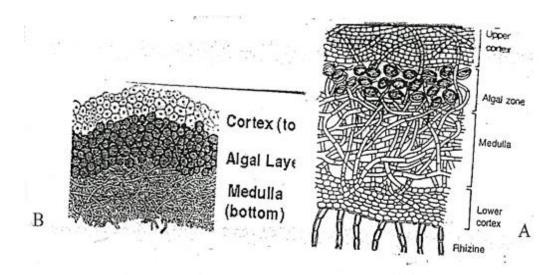
2. الاشنات غير المتجانسة التركيب الداخلي Heteromerous Lichens:

وهي ذات ثالوس معقد جداً على مستوى التعضية اذ يتميز عادة الى أربعة مناطق وينحصر وجود الطرف التمثيلي (الطحلب) في منطقة محددة من الثالوس (شكل 95) وهذه المناطق هي:

أ- القشرة العليا Upper Cortex:

وهي الطبقة العليا السميكة الواقية من ثالوس الاشن وننتظم الفطرية في هذه الطبقة بصورة افقية لحد ما متخذة شكل نسيج محكم الحياكة Pseudoparanchyma، الطبقة الخارجية منه تعمل كنسيج بشرة.

ب- المنطقة الطحلبية Algal Zone:

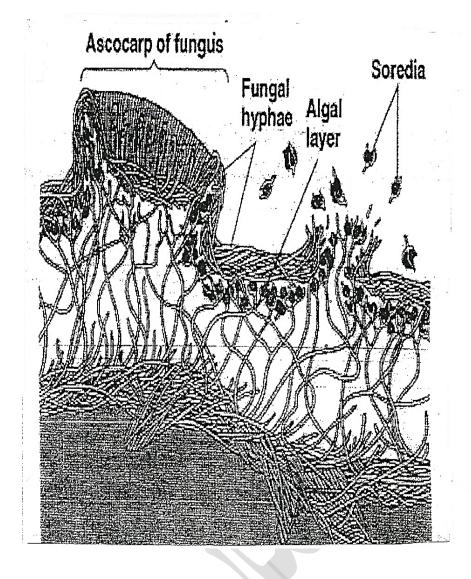

هذه المنطقة تلي القشرة العليا وتكون بلون اخضر مزرق وتوجد الخلايا الطحلبية للطحالب الخضر او الساينوبكتريا بين هايفات مفككة النسجة في هذه المنطقة. وتمثل هذه المنطقة موقع البناء الضوئي في الاشن وفي بعض الأنواع يمكن ملاحظة وجود ممصات الفطر داخل الخلايا الطحلبية في هذه المناطق.

ج- النخاع Medula:

وهي أوسع منطقة في الثالوس وتحتل موقعاً مركزياً فيه وتتصف الهايفات الفطرية في هذه المنطقة بانها ذاد جدران سميكة وتنمو باتجاهات مختلفة منتظمة بشكل نسجة مفككة تضم مسافات بينية (أو فراغات) كثيرة.

د- القشرة السفلي Lower Cortex:

وتمثل المنطقة لسفلى من جسم الاشن وتضم هايفات فطرية بوضع افقي وتنظم بشكل نسجة محكمة الحياكة وترسل من سطحها السفلي اشباه الجذور (يطلق عليها مصطلح rhizinae) تثبت الاشن على وسط النمو. وتفتقد بعض أنواع الاشنات هذه المنطقة وتحل محلها صحيفة رقيقة من الهايفات وتبع ذلك يوصف الثالوس بانه تحتي Hypothallus (أي ثالوس فاقد القشرة السفلى) كما في الاشنات القشرية والاشنات الثمرية.



شَكُل (95) تشريح الأشنات غير المتجانسة. A: مخطّط الاشن رباعي الطبقات ، b: مخطط الاشن ثلاثي الطبقات

التكاثر في الاشنات

تتكاثر الاشنات خضريا فضلا عن التكاثر الخاص بكل من الطرف الطحلبي والطرف الفطري التكاثر الخضري في الثالوس

- 1. **طريقه التجزؤ الثالوس Fragmentation** الى قطع بعوامل فيزياوية او بموت وتفسخ الاجزاء القديمة منه واذا ما احتوت القطعه على المكونين الطحلبي والفطري فانها ستنمو الى ثالوس جديد وتعتبر هذه من اكفأ طرق التكاثر في الاشنات.
- 2. تكوين السوريديا Soridia وهي تراكيب مدورة صغيرة رمادية اللون تتكون على السطح العلوي للثالوس ويحتوي السوريديوم الواحد على خليه طحلبية او اكثر محاطة بهايفات فطرية.
- 3. تكوين الاسيديا Isidia وهي تراكيب بسيطة متفرعة تتكشف على السطح العلوي لبعض الاشنات وتتركب الاسيديا من هايفات قشرية تحيط بعدد قليل من الخلايا الطحلبية.

النَّكَاشُ المُفْرِي بالسوريديا هي الانشات

الاهمية البيئية والاقتصادية للاشنات

1. الدور البيئي

ينتج عن تنفس الاشنات غاز CO_2 الذي يتحد مع الماء ويكون حامض الكاربونيك الذي يعمل على اذابة سطوح الصخور لتكون طبقة رقيقة من التربة تنمو عليها الاشنات وبهذه الطريقة تحول الصخور الجرداء مع الزمن الى غابات.

2. مصدر الغذاء

بعض انواع الاشنات صالحة للاكل وتستخدم كمصادر غذائية للانسان في اجزاء مختلفة في العالم. كما تستخدم بعض انواع الاشنات كمصادر غذائية للحيوانات.

3. دور طبي

استخدمت انواع كثيرة من الاشنات لمعالجة امراض مختلفه قبل ظهور علم الطب الحديث وتشير الدراسات الى ان الاثر العلاجي يعود لمادة اللايكنين ومواد فعالة اخرى.

4. انتاج المضادات الحيوية

5. دور صناعی

6. تستخدم بعض الاشنات في صناعة الصابون والعطور وتستخدم كمصادر لاصباغ مختلفة وكذلك لدباغة الجلود وفي صناعه الكحول.

7. دورها ككواشف تلوث بيئي

8. تلعب الاشنات دوراً مهما في الكشف عن التلوث البيئي فهي حساسة جدا للملوثات الغازية مثل SO_2 وتفضل النمو في بيئات غير ملوثة، وتستخدم الاشنات في الكشف عن المواد المشعة في التربة.

- 1.Swanson, A. R.; Spiegel, F. W. & Cavender, J. C. (2009). Taxonomy, slime molds and the question we ask, Mucologia., 94(6): 968-979.
- 2.Rossman, A. Y. & Palm, M. E. (2006). Why are *phytophthora* and other oomycota not true fungi. http://www.aspent.org/online/feature/oomycets.
- 3. Webster, J. & Weber, R. W. S. (2007). Introduction to fungi third Ed. Cambridge: 841 pp.
- 4.Moore, D. & Frazer, L. N. (2002). Essential fungal genetics. Springer Verlag, New York. Inc.: 343 pp.
- 5.Beakes, G. W. & Sekimoto, S. (2009). The evolutionary phytogeny of Oomycetes insights gained from studies of holocarpic parsites of algae and invetebrates. Chapter one page 1-24. In: Oomycetes genetics and genomics, diversity by Kurt Lamour and Sophien Kamo un copyright 2009 John Wiley and Sons Inc.
- 6.Barr, D. J. S. (2000). Slide collection. The mycological society of America. www.bsu.edu.edn/classes/ruch/msa/barr.html.
- 7. Johnson, T. W. Jr.; Seymour, R. L.; & Padgett, D. E. (2002). Biology and systematics if the Saprolegniaceae. On-line publication.
- 8.Dick, M. W. (2001). The peronosporomycetes. Pages 39-72. In: the mycota VII part A systematics and evolution. Ed. McLeuvlin and Lemke.
- 9.The taxonomicon. (2009). Taxon: class Oomycetes winter in Rabenhorst, 187 Oomycetes. http://taxonomicons.taxonomy.nlltaxon???=2539.
- 10.Hott, J. R. (2006). Phylum zygomycota. In: systematic biology. http://comenis.susau.edu/bi/202/fungi/glomeromycota.htm.
- 11.Larone, D. H. (1995). Medically important fungi-A Gu: det-identification, 3rd ed. ASM press. Washington. D. C., 1853.
- 12, Davis, S. R.; Ellis, D. M.; Goldwater, P.; Dimitriou, S. & Byard, R. (1994). First human culture proven Australian case of entomophthoromycosis caused by *Basidiobolus ranarum*. J. Med. Vet. Mycol., 32: 32: 225-230.
- 13. Walker, S. D.; Clark, R. V.; King, C. T.; Humphries, K. E. H.; Lytie, L. S. & Butukus, D. E. (1992). Fatal disseminated *Conidiobolus caronatus* infections in renal transplant patient. J. Clin. Pathol., 98: 559-564.

- 14.Ng, K. H.; Chin, C. S.; Jalleh, R. D.; Sair, C. H.; Ngui, C. H. & S. P. (1991). Singram S. P. Nasofacial zygomycosis.oral.surg oral. Med. Oral. Pathol., 72: 685-688.
- 15. Hibbett, D. S.; Binder, M.; Bischoff, J. F.; Blacwey, M.; Cannon, P. F. Eriksson, O. E. & other coauthors. (2007). A higher level phylogenetics classification of the fungi. Mycological. Res., 111: 509-547.
- 16.Freeman, K. R.; Martin, A. P.; Karki, D.; Lunch, R. C.; Mitter, S. M.; Meyer, J. E.; Langcore, D. R.; Simmonsand, S. K.; Schmidt. (2009). Evidence that chytrids dominate fungal communities in high elevation soils. PNAS., 106(43): 18315-18320.
- 17. Wong, G. (2003). Fungi and Insect symbiosis.

المصادر العربية:

1- الإبراهيمي ، ثامر عبد الشهيد محسن. (2015). تأثير فطريات المايكورايزا الشجيرية والمادة العضوية في مرض الذبول المتسبب عن الفطرLycopersicon esculentum

2-علي، بتول زينل؛ خالد عبد الرزاق حسن وتوفيق مجد محسن (2006). علم الفطريات مطبعة بغداد.

3-شريف، فياض محد (2012). تصنيف وتقسيم الفطريات. الذاكرة للنشر والتوزيع.