Chapter 2

Normed Linear Space

Definition 2.1.
Let L(F') be a linear space over a field F'. A mapping-||.|| : L — R is called

norm if the following conditions hold
(1) |z]] >0 Vz € L. (Positivity)
(2) ||z|| = 0 if and only if x = O,.
3) llz+y| <zl + lyl| Vx,y e L. (Triangle Inequality)

(4) ||az|| = |a|||z|| Vz e L, Va e F.

(L, || |I) is called normed linear space.

Remark 2.2.

From now on, the field F' is either R or C.

Theorem 2.3.

Let (L, || ||) be a normed linear space. Then, for each x,y € L
(1) Jloc] = 0.
(2) Nzl = ll==l-

(3) llz =yl = lly — =l
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4) | ll=]| = llyll | <llz—=yll.-  (Reverse Triangle Inequality)
G) |zl =yl | < e+ vl - (Reverse Triangle Inequality)

(6) Every subspace of a normed space is itself normed space with respect

to the same norm.

Proof. (1) ||0y|| = ||00y,|| (see Theorem (1.3)(1))

= 0]/0p]| = 0.
) =zl = [=1 =] = |l=]| vz e L.
B) llz =yl == =)l =lly — =] (by part (2)).

(4) We must prove — ||z — y| < ||z| — |lyl| <z —y]|

2]l = lz =y +yll < llz =yl + |yl (by Definition 2.1(3)).

Hence, ||z| = |lyll < [lz — ]| (D)

Similarly, ||y|| = ||y —« + | < |ly — || + ||z|| (by Definition 2.1(3)).
Hence, [ly]| = [[z|| < [l =yl (1I)

Hence, by (I) and (II), we get ||z — y|| > |||z]| — [|y||| Vz,y € L.

(5) We must prove — ||z + y|| < ||lzf| — [jy[| < [l + y]|

|zl = llz + y =yl < [lz+yll + Iyl (by Definition 2.1(3)).

Hence, ||z]| — [ly|| < [l 4yl (L1I)

Similarly, ||y|| = |ly + 2 — z|| < ||y + z| + ||—z| (by Definition 2.1(3)).
Hence, [lyl| = ||| < [l 4yl

]l =yl = = [l +yll (IV)

Hence, by (II) and (IV), we get —[lz+y| < [lzf| = [lyl < llz+yl

Vr,y € L.
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2.1 Examples of Normed Linear Space

Example 2.4.

Let L = R be a linear space over R with || || : L — R such that ||z| = |z|.
Show that (R, || ||) is a normed space.

Solution: We show that

(1) ||z|| = |#| = 0 Vz € R; hence ||z|| > 0.

(2) Let z e R, ||z|| =0 <= |z| =0 <= 2 =0.

(3) Vx € R,Va € R,

loz]] = [ax| = |af [z] = [a] ||z]].

) llz+yll = |z +yl <zl + |yl = |zl + gl Vo, € R

Example 2.5.

Let L = C be a complex linear gpace over C with || || : €' — R such that
|z|| = |2| = Va2 + b2 Vz = a + ib. Show that (C, || ||) is a normed space.
Solution: We show that

(1) ||zl = 2| = Va2 + 12 >0 Vz=a+ibe C; hence ||z|| > 0.

(2) Let z=a+ibe C

2] =2 = Va2 + 12 =0 <= ®>+0P* =0 <= *>=0P =0 < a=
b=0 < 2=04+0:=0.

(3) Let z,w € C

lz+wl’ =lz+wf=(z+w)EFw) (2" =22)
= (2 +w)(Z+ )

=zZZtww+ wz +wz

— 4 WT 4+ wE+wE  (We =Wz = ws
\ > )
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=2Z+ww+ 2Re wz (2+Z = 2Rez)
<zZZ+ww+2w||lz] (Rewz < |w||z])
2 2 2 2
= 2"+ |w]” + 2|w[ 2] = [l2[] + [[w]” + 2 |w]| [=]

= (=l + llwl)*.
2
Thus, ||z +w|” < ([|z[l + [[w]])?, hence, ||z + w]| < [|z]| + [Jw].

(4) Let z € C,a € O, ||az|| = |az] = |a(a + ib)|

= /(aa)? + (ab)? = \/a2(a? + 1?)
= Va2Va2 + 0% = |al|z] = |a] ||2].

As an application to Example 2.5: Let z =2+ 3i,w = 1 — 7, then
Iz +wll =12+ 1) + (3 = )| = |3+ 2i]| = V32 + 22 = V13,

152]| = [|10 + 154|| = v/10% + 152 = /325 = 5/13.

5|2l = 5v/2% + 3% = 5V/13.

Example 2.6.

Show that the linear space C*(R) is a normed space under the norm
I£ll = sup{[f(2)| : # € R}, Vf e CR).
(1) Sinee |f(x)| > 0 Va € R. Then, ||f|| = sup |f(x)| > 0. Hence, || f|| > 0.
@2) [/l =0 < sup{|f(z)[: z € R} =0
<~ |f(z)|]=0 Vz eR
— f(z)=0 Vz €R <= f =0 (zero mapping)
(3) Let f,g € C°(R). Then

If + gl = sup{[f(z) + g(z) : = € R}
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< sup{|f(z)| +[g(z)| : © € R}

< sup{|f(z)] - v € R} +sup{lg(x)| : z € R} = |[f]| + [|gll-
Hence, |[f + gl < [If]] + 4]l

(4) Let f € C*(R),ae € R . Then
lof || = sup{|(af)(z)] : 2 € R}

= supf[al |f(x)] - z € R}

— |a|sup{|f(z)| : © € R} (By Theorem 2.7 below where A = |f(z)]
and 3 = |a)

= lal|lf]-

Theorem 2.7.
If A is a bounded above set and S >0, then SA is bounded above and

sup(BA) = fsup(A).

As an application to Example 2.6: Let f,g € C°(R) such that f(z) =

sin(x) and g(x) = 2cos(x) + 1. Hence,
| fIl = sup{|sin(z)]: x € R} =1 (since |sin(z)| <1, Vx € R).
lgll = sup{|2cos(z) + 1| : x € R}.

But [2cos(x) + 1| < 2]cos(x)| + 1
<2(1)+1=3. (since |cos(z)| <1, Vx € R).

So, [lgll = 3.

Example 2.8.

The linear space C%[a, b] of all real valued continuous functions on [a, b] is

a normed space under the norm defined in Example 2.6. (H.W.)

Example 2.9.
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The linear space C|0, 1] of all real valued continuous functions on [0, 1] is
a normed space with the norm defined as

171 =Jy 1f(@)] dz ¥ € Cl0.1].

solution: (1) Since |f(z)| >0, Vz €[0,1], then fol |f(x)| dz > 0. Thus,
If]l = 0.

) Ifl =0 < Jy|f(@)| dz=0
— |f(z) =0 Vz e0,1]
<~ f(z) =0 Vz €[0,1]
— f =0 (zero mapping).

(3) Let f,g € C[0,1]. Then

If+all = Jy 1f@) + ()| da

sﬂwm+mmwx

= [y |f(@)] dz+ [, ]g(x)] dz = | f]| +|lgl]
(4) Let f € C[0,1],a € R . Then
lafll = [y laf@) dv = [, a||f(z)] dz=|a] [y |f(x)] dz = |a][|f].

As an application to Example 2.9: Let f € C]0,1] such that f(z) =

z* and g(x) = —2*. Find || f]], [lg]l and || f + g]|
1 1 1

Il = [y [f(@)| do = [ |2?] do = [ 2® do = §
1 1 1

gl = fo lg(z)| dx = fo ‘—xQ‘ dr = fo 2% dr = %

1 1
‘”*g“zl’“+”“”'“‘ié S| d

<0
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Example 2.10.
Consider the linear space F" over F' (F = R or C). Define || || : F" - R
by ||z|| = max{|z1]|, ..., |za|} Vo = (21,...,2,) € F". Then (F", ] ||) is a
normed space.
solution: (1) For any z = (x1,...,x,) € F", |z;] >0, Vi=1,...,n.
Then max{|z1|, ..., |z,|} > 0, then ||z|| > 0.
(2) [|z]| = 0, where x = (21, ..., x,) € F"
<~ max{|zri|,...,|z.|} =0
= |r|=...=|1,) =0 <= 51=...=2,=0
— x=(r1,...,2,) = (0,...,0) = Opn
(3) Let © = (21, ..o 0), Yy = (Y1, -y Yn ) EF"
z+y = (Tey1, T2+ Yo, s Tn + Yn)
Iz + yl| = max{|zs + gu] , ..s [0 + ynl}
< max{|z] + [l s |2al + [ynl}
< max{|zi], .., |za|} + max{[yi|, ... lyal} = [lz]l + [y
(4) Let x = (x4, ...,x,) € F" and a € F
||| = max{|azy], ..., |z, |}
= max{|al |71, ... [af [za]} = [o| max{|zi], ... [zn]} = | [l]]

As an application to Example 2.10: Consider the linear space R? over

R. Let = (21,22, 23) = (1,2, -5),y = (¥1,%2,y3) = (0,—7,3). Then ,

(1) [[z]] = max{[1],[2],[=5[} = 5 and

[yl = max{[0[, |=7],[3[} = 7.
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o + 29| = max{[1], |—12] ] 11[} = 12
(2) Find ||2 — y]|, |22+ 3y, ||32]

(3) Show that

max{|z1|+[yil , [w2l+[yal ; lws|+ys[} < max{[za], [2of, ||} +max{lon], [yl [ys[}-
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Exercise 2.11.

(1) Let L = C? be a linear space over F' = C. Define || || : C* — R such
that ||z|| = a || + b|zs|, Vo = (21,29) € C? and a,b > 0. Show that || ||
is a norm on C?. (H.W.)

(2) Consider the linear space R?. Let |z|| = min{|x|,|zs|}, Vo =
(z1,72) € R%. Show that || || is not a norm on R2.

solution: Let z = (0, —3) € R?

i) = ming[0], |-3]} = min{0,3} = 0

Since X # Oge, but ||z|| = 0. Condition (2) of the definition of the norm
is not valid. Hence, || || is not a norm on R2.

(3) Consider the linear space R2. Let ||z||.= |z1|” + |za|”, Vz = (21, 22) €
R?. Show that || || does not satisfies condition (4).

solution: Let x = (1,3),a = 2

el = 2(|a]* + |22l”) = 2(1* + 3%) = 20

law]| = [12(1, 3)[| = [|(2,6)|| = 2* + 6° = 40

Thus, |o| ||z] = 20 # ||azx| = 40.

Some Important Inequalities

To give more examples about normed space, it is important to present
some inequalities.

If 7 = {z = (r1,22,...) : ; € Rlor C) and > 7 ||’ < oo} be a
set of sequence space (see Example 1.6). Let x = (x1,29,...) € [P, y =

(ylay27 ) € 7. Then
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(1) Holder’s Inequality

o0 o0
1

S el < [ |l iZm 7

i=1 =1

Wherep>1,q>1and%—|—$:1.

(2) Cauchy Schwarz’s Inequality

00 00 )1 00 )1
i=1 i=1 i=1
Note that Cauchy Schwarz’s inequality is a special case of Holder’s inequal-
ity where p = q = 2.

(3) Minkowski’s Inequality

Ifp>1

e} o0
1 1

(S e gl < [ Jwl’]? + ZW*

1=1 1=1

Remark 2.12.

‘d

The three inequalities above hold for the linear spaces L = R" and L = C".

Example 2.13.
Let L = R? be a linear space over R. If x = (—1,2),y = (0,5) € R

(1) Verify Cauchy Shwarz inequality (p = ¢ = 2).

(2) Verify Minkowski’s inequality (p = 3).

Now we can give the following examples
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Example 2.14.

(1) Show that the linear space R" over R (or C" over C) is a normed space

1
with [|z]ly, = [ Yy |x2\2] > Ve e R" or C",x = (a1, ..., xp).

(2) Show that the linear space R™ over R (or C" over C) is a normed

1

space with ||z, = [ @l |7 Vo e R" or C", & = (24, ...;x,) and

1 <p<+oc0. (HW.)

(3) Show that (i, ]| ||,)) is a normed space where ||z||, = [ Y.} ]xz\p}%’ Vo =

(21, 29,...) €’ and 1 < p < +00.

Solution (1): Let x = (21, ..., %0),y = (Y1;+,Yn) € R" (or C") and o € R
(or ).

(1) Since |z;] > 0, Vi = 1,..,n. Then, [> 7, \xiﬂ? > 0; that is

[z, > 0.

@) ll2ll, =0 = (Y leP] =0 = Yo |af =0
— |z*=0, Vi=1,...n
<— r;=0, Vi=1,...,.n
<~ == (21,...,2,) = Opn

(3) [z +ylly = (@1 + y1, ooy T+ y) |l

= [ |z + vil” }% <[¥h |$i|2]%+[2?:1 |yi\2]% (Minkowski’s

Inequality)

= [lzlly + 11yl

(4) llazlly = (e, oy aza)lly = [ 30 o]’

N[ =
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1
n 2 273
= [ X ol |=il]

971
= o] [ 2 il ]* = lal [l]l,.

Functional Analysis-Normed Linear Space

Solution (3): Let z = (21,22, ...),y = (y1,¥2,...) € I’ and o € R (or C).

S AL

(1) Since |z;] >0, Vi€ N. Then, [ Y272 |5 | > 0; that is [|z[|, > 0

=

2) lzll, =0 <= [ X ]zl"]" =0 <= X2 |z’ =0
— |z°=0, Vie N
— z1;=0, Vie N

— z = (0,0,:..)

B3) =z +yll, = (@1 + Y1, o 20+ yn) ],

=

= [ i+ ul” ] < [ 22wl 7+ [ 222 il ] (Minkowski’s
Inequality)
=z, + llyll,
(4) lloz]l, = [[(qy; ), = [ 202y low]” ] 7

= [, [af? o]
= Jo] [, "]

D =

= laf [,

As an application to Example 2.14(1):

(1) Let (R3]l ||,) be a normed space and z = (x1,x2,73) = (1,—2,4).
Then, find ||z|],.

2) Let (C?, be a normed space and z = (x1,22) = (1 + ¢, —21).
2

Then, find ||z|],.
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2.2 Product of Normed Spaces

Definition 2.15.
Let (L, [|;), (L, ]| ||,") be normed linear spaces over a field F. Let

Lx L'={(x,y): x € L,y € L'} be the Cartesian product of L and L’

Define + on L x L' by

) ) = ) 3 \ ) , cLxUTL.
(1, 91) + (22, 92) = (@1 + 22, y1 +42), V(z1,91) + (22, 2)

sumon L sum on I/

Define a scalar multiplication

a.(z,y) = (ax,ay), Y(z,y) € L x L' Va € F.

Proposition 2.16.
Show that (L x L', +,.) is a linear space over F. (H. W.)

Remark 2.17.
The product linear space defined above can be made a normed space by

different ways as we show in the following example.

Example 2.18.

Define || || : Lx L' — R such that

(W) o)l = Nzl + [yl
(2) 1z, 9)lly = max{{l]l,, lyllz ¥

(3) (2, y)lls = min{|[z[|,, [yl } (H. W)

Show that (L x L', ||;), (L x L', || ||,) are normed spaces.

Is (L x L', || ||3) is normed space?

Solution (1): To show (L x L’,|| ||;) is a normed space,
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(i) Since ||z||;, > 0 and ||ly||;,, > 0 Vo € L,Vy € L', then
/L +llyll = NIz, )]l = 0.
(i) [[(z,9)ll, =0 <= lzllp + Iyl =0
— |zl = llylly, =0
< x=y=0 ((L,] ||;), (L] ||;) are normed spaces)
= (z,y) =(0,0)
(iii) For each (w1, 1), (22, y2) € L x L'
(@1, 91) + (22, 92) |y = [[(@1 + 22,01 + 92) [
= llzs + 2ol + llvn + 92l
< leallp + 22l + Nyl + llv2ll
= (lzally + llyallg) + Clezllp + llyell)

= [[(z1, y)fly + [[(z2, )],

(iv) For each (z,y) € L x L' and for each a € F

lee(z, y)lly = e, ay)ll, = ezl + llayll
= lal [zl +Hal |yl = lel (el +Hylz) = lal 1tz 9l

Solution (2): Now, we show that ||(z,v)||, = max{||z||;, |yl } is a norm

on L x L'

(i) Since ||z||;, > 0 and ||y

>0 Ve L Vye L then

maxt||z]|,, [yl } = [[(z,9)ll, = 0.

(ii) [z, 9)lly =0 <= max{[lz],, |yl } =0
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= |zll, = llyllp, =0
<~ x=y=0 ((L,]] ||;), (L] ||;) are normed spaces)
= (z,y) =(0,0)
(iii) For each (x1,11), (22, y2) € L x L'
(@1, 1) + (@2, 92) [l = [ (21 4+ 22,91 + 12) ]
= max{|[z1 + 22|, ly1 + 12l }

< max{|lzy|l + 22l Nyl + llv2llz

< max{[lzi]lg, [yill g} +max{{|az| [y

v}
= [[(@1, y)lly + [1(z2, y2) [l
(iv) For each (z,y) € L x L' and for each a € F’
le(z, 9)ll; = l[(aw, ay)ll, = max{{jaz|| , [yl }
= max{|al [lz]|,, [l yll }

= || max{]|z]| ., |yl } = lal |(z,y)l,

As an application to Example 2.18: Let L = (R, | |) and L' = (R?|| ||,)

where ||z, = [Z?:l |xi|2]%. Ifr=3cL=Randy=(1,-2)€ L' =R
Find J|(z,y)l[, and ||(z,y)l,
Solution: [|(z,y)[l, = [|(3, (1, =2))ll; = [13[lx + (1, =2)|g:

=3+ [ 22 ]!

=3+ [P +|-27]? =3+ V5.

Find [|(z, y)[l, (H-W.)
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2.3 Normed space and Metric space

Definition 2.19.
Let X be a non empty set and d : X x X — R be a mapping. Then d is

called metric if
(1) d(z,y) >0 Vz,ye X
(2) d(z,y) =0 <= z=y Ve,ye X
(3) d(z,y) =d(y,z) Vo,ye X

(4) d(z,y) < d(z,z)+d(z,y) Vx,y,z € X.

(X, d) is called metric space

Theorem 2.20.
Let (L,|| ||) be a normed linear space. Let d : L x L — R defined by

d(z,y) = ||z —y|| Vx,y € L. Prove that (L,d) is a metric space. (i.e.,
every normed space is a metric space). The metric d is called metric

induced by the norm.

Proof. To prove (L, d) is a metric space.

(i) By definition of norm, |z —y|| 2 0 Vz,y € L. Hence, d(z,y) =
lz—yll =0

(i) d(z,y) = |z =yl = lly — 2| = d(y, »)

(ili) d(z,y) =0 <= [z —y| =0 <= z-y=0 < z=y

(iv) d(z,y) = [z —yll = lz — 2+ 2 =yl <z = 2[[+]lz =yl = d(z, 2)+

d(y, z) O]

Lemma 2.21.
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Let d be a metric induced by a normed space (L,| ||) (i.e., d(z,y) =

|z — y||). Then d satisfies the following;:
(i) d(z +a,y+a) =d(x,y) Vz,y,a € L.
(i) d(azx,ay) = |a|d(z,y) Vx,y € L, Ya € F.
Proof. (1) d(x+ a,y+a)=|lz+a—(y+a)|| =d(z,y) Vr,y,a€ L
(2) d(az, ay) = [lox — ayl| = [la(z —y)|| = ol [z —y| = lad(z,y). O

Remark 2.22.

Not every metric space is a normed space as we show in the next example

Example 2.23.

Let d be the discrete metric on a space X. Then d can’t be obtained from

anorm on L (i.e., (L,| ||), where

0if z=y

1 z#y.

d(z,y) =

Solution: Suppose d induced by a norm on L. Then, by previous

Lemma,
d(az,ay) = |a| d(z,y) Vo,y € X and Vo € F.

Let x,y € L such that x # y. Then azr # ay such that d(z,y) =

L, d(az,ay) =1 (1)
But |afd(z,y) = laf  (2)

Hence, d(ax,ay) = 1 # |a| = |a|d(x,y) for any a # £1. Thus, d can

not be induced by a normed space.
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Example 2.24.
Let d(z,y) = |z| + |y| Vz,y € R. Then, d is a metric on R (check!).
However, d is not induced by a normed space. To show this, let z =1,y =

3,a=2¢€R.
d(z,y) = d(1,3) = |1] + [3] = 4
On the other hand, d(x + a,y + a) = d(3,5) = |3| + |5| = 8

Thus, d(z,y) # d(x + a,y + a). By Lemma 2.21, d is not induced by a

norml.

2.4  Generalizations of Some Concepts from Metric

Space

In what follow, we give generalizations of some known concepts from metric
space such as open (closed) ball, open (closed) set, interior set, closure of

a set, convergent sequence, Cauchy sequence, and bounded sequence.

Definition 2.25.
Let (L, || ||) be a normed linear space. Let o € L,r € R,r > 0. Then the

set

By (xg) ={x € L: ||z — x| <7}

is called an open ball with center xy and radius r. Similarly,

Bi(xg) ={z € L:||x—x <r}

is called an closed ball with center xy and radius r.
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Definition 2.26.
Let (L, || ||) be a normed space and A C L. Then A is said to be

e open set if Vo € A,3r > 0 such that B,(z) C A.

e closed set if A= L\ A is open set

Remark 2.27.

Let (L, || ||) be a normed space. Then

(1) L, ¢ are closed and open.

(2) The union of any family of open sets is open

(3) The union of finite family of closed sets is closed

(4) The intersection of finite family of open sets is open
(5) The intersection of any family of closed sets is closed.

Theorem 2.28.

Any finite subset of a normed space is closed.

Proof. Let L be a normed space and A C L.

If A= ¢, then A is closed (by Remark 2.27(1))

If A= {x} to prove A is closed (i.e., to prove L\ A is open)

Let y € L\ A = L\ {z} so that y # z. Put ||z —y|| = r > 0. Thus,
xr ¢ B.(y) and hence B,(y) C A°= L\ {z}. Thus, A°is open and thus A
is closed.

If A={zy,.,z,},n€ Z;,n>1then A=U" {x;}. By Remark 2.27(3),

A is closed ]
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Exercise 2.29.

Let (L, || ||) be a normed space. Prove that

(i) The set Ay = {x € L : ||z]| <1} is closed
(ii) The set Ay = {x € L : ||z|| < 1} is open

(ili) The set C = {x € L : ||z|| = 1} is closed

Solution:

() Ay = {w € L+ |ja] < 1} = Fu(0).

So, A; is a closed set (by Definition 2.25)

(i) Ap ={x € L :||z|]| < 1} = B1(0).

So, A;p is an open set (by Definition 2.25)

(ili) C ={x € L: |jz|| =1}
L\C={zeL:|z||<1}U{zelL:|z|>1}
Let Cy ={x € L: ||z]| <1} is open set

Let Cy ={z € L :|x| > 1}

So, L\ Co ={x € L : ||z|| < 1} which is closed set. Hence, C5 is an open
set.

Thus, L\ C'= C; U} is an open set (by Remark 2.27(2)).

Definition 2.30.
Let L be a normed space and A C L. A point x € L is called limit point

of A if for each open set G containing z, we have (G N A) \ {z} # ¢.
The set of all limit points of A is denoted by A’ and is called derived set.

The closure of A is denoted by A and is defined as A = AU A’.

Proposition 2.31.



Functional Analysis-Normed Linear Space Dr. Saba Naser, Dr.Zena Hussein, and Dr. Sabah Hassan 49

Let L be a normed linear space and A C L. Then 2 € A if and only if

Vr>0,3y €Az —vy| <r.

Proof. (=) Letz € A= AU A’

If x € A’ then for each open set G, x € G,(GN A) \ {z} # ¢.

Since B,(x) is an open set then Vr > 0, we have B,.(x)N A\ {z} # ¢. Thus,
JyeB(x)NAy#az = ly—z<r (I

If v € A then Jdy = x such that ||y —z||=0<r  (II)

From (I) and (II), we get the required result.

(<) If for each r > 0,3y € A such that ||y — x|| < r; that is Vr > 0,3y €
A,y € B.(z)

— Vr>0,(B.(x)NA)\ {2} #¢ = x € A Thus, v € A O

2.5 Convergence in Normed Space

Definition 2.32.

Let (x,) be a sequence in a normed space (L, | ||). Then (x,) is said to
be convergent in L if dvr € L such that Ve > 0,dk € Z, such that
|z, — x| <€, Vn>k

We write x,, — x as n — oo or lim,_,.(x,) = ; that is

|z, —z|| = 0 <= x, — =.

(x,) is divergent if it is not convergent.

Theorem 2.33.
If (x,) is a convergent sequence in (L, || ||), then its limit is unique. i.e.,

If (x,,) - z and (z,) — y then x = y.
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Proof. Let € > 0. Since (z,,) — = and (x,) — y, then 3ky, ky € Z, such

that
€

% Vn > ko

|z, — z|| < g, Vn > ki and ||z, —y| <
Let k = max{ky, k2}, so Vn > k
[z =yl = llen —y — 20+ 2f| = [[(z0 —y) = (20 — )]

< I+ |<=+==
S || Tp Yy Tp X 5 2—6

— ||z —y|| <e€ Ve>0. Thus, |t —y| =0,s0z=uy. O

Theorem 2.34.

Let A C L where L is a normed space, let x € L. Then

v € A <= I(w,) asequence in A such that (z,) — z.

Proof. (=) Let 1 € A= AU A’

If x € A then the sequence (z,z,z,....) =z  (I)

If v ¢ A i.e.,x € A’ then for each open set G, v € G, (GNA) \ {z} # ¢.
Since B, (x) is an open-set then Vr > 0, we have B,(z) N A\ {x} # ¢. Set
O<r:%€ Zy “Then Vn € Z,, (B, (x) N A)\ {z} # ¢

Let z, € Bi(x) N A, s.t 2y # 2, hence, [z, — || < %, VneZ, (%)
Thus; 3(z,) € A such that ||z, —z|| < <, Vne€ Z,.

To show (x,) — x; that is ||z, — z|| <€, Ve>0

1
Let € > 0 so by Archmedian theorem dk € Z, such that — < ¢

k
1 1
Hence, Vn >k, — < — <€
n
1 1
From (*), Vn > k, ||z, —z|| < — < L <e Thus, =, — « (I1)
n

From (I) and (II), we get the required result.

(<) If 3(z,) a sequence in A such that (x,) — x. To provex € A = AUA’
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Ifrc Athenz € A

If x ¢ A. Let G be an open set in L such that x € G. Then 3r > 0
such that B,(r) € G. Since r > 0 and z, — z,3k € Z, such that
|z, — || <7, VYn>k.

This implies, x,, € B,(x) Vn > k and since z, € A Vn € Z,. Then

(B (z) N A)\ {z} # ¢. Since B,(x) C G, then (GN A)\ {z} # ¢. So,
z € A', and therefore z € A. ]
Theorem 2.35.

Let (x,), (y,) be two sequences in normed space (L, || ||) such that z, — =

and y, — y. Then

(1) (zn) £ (yn) =z £y

(2) Mz,) — Az for any scalar A
(3) (@)l = [l

Proof. (1) Since x,, — x, then
for each € > 0,3k, € Z; such that ||z, — x| < g, Vn > ky

Also sinee 9, — y, then
€

for each € > 0, 3ky € Z, such that ||y, — y|| < 5

Vn > ko
Let k = max{ky, ko}. Then, for each n > k

e = 2l < 5 and ly, =yl < 5 (1)

Now, for each n > k,

ICzn +yn) = (2 + )| = (0 = 2) + (Yo = I < [lzn — 2l + lyn =y

< —|—§:€ (from (1))

N

Thus, z, + ¥, — x* + y as required.
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€

(2) Let € > 0. Since z, — x,3k € Z; st ||z, —z|| < o

€

A

Vn >k  (II)

But |[Az, — Az|| = |A|||zn — 2| <

\ .

A =€

usin;(II)
Thus, A{x,) = A\x

(3) Let € > 0. Since x, —» x,Ik € Z, s.t ||z, —z|| <e, Vn>k (III)

But | [[,]| = [[2]| | < [|zn — 2| <e Vn > k. Hence, ||z,| — [|z|| O

—~
using (III)

Definition 2.36.

Let (x,) be a sequence in a normed space (L, || ||). Then (x,) is said to be

Cauchy sequence if Ve > 0,3k € Z, s.t ||z, — x| <€, Vn,m > k.

Theorem 2.37.

Every convergent sequence in a normed:space (L, || ||) is a Cauchy sequence.

Proof. Let (x,) be a convergent sequence in L. Then dx € L such that
x, — x and so Ve > 0,3k € Z, such that ||z, — x| < % Vn>k  (I)
Now, for n,m > k,

€ €
|0 = 2mll = (2n52) + (2 = 2w)|| < llwn — 2l + llom —2ll <5 +5 =

A\ 7

using (T)
Thus, (x,) is a Cauchy sequence. O

Definition 2.38.

Let (x,) be a sequence in a normed space (L, || ||). Then (z,) is said to be

bounded sequence if 3k € R, k& > 0 such that ||z,|| <k, Vne Z,.

Theorem 2.39.

Every Cauchy sequence (z,) in a normed space (L, || ||) is bounded.

Proof. Let ¢ = 1. Since (x,) is a Cauchy sequence, 3k € Z, such that

|lxn —znl|| < 1, Vn,m > k. Hence, ||z, — x| < 1, Vn > k (by
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considering m =k +1)  (I)

By Theorem 2.3(4), we have | ||z,|| — [[zg | < [|zn — gl <1 VR >k

usiI:g,(I)
Thus, ||z,|| — ||zk] <1 Vo >k

Then, ||z,|| <1+ |[|[zi41l] VYn >k
Lot M = max{[eal, 2all, - Jaell, 1+ lonea |}

Hence, ||z,|| < M  Vn € Z,. So, (x,) is bounded. ]

Corollary 2.40.

Every convergent sequence in a normed space (L, ||-]]) is bounded.

Proof. From Theorem 2.37, Every convergent sequence in a normed space
(L, ]|) is Cauchy, and from Theorem 2.39, every Cauchy sequence in a

normed space (L, || ||) is bounded. O

2.6 Convexity in Normed Linear Space

Definition 2.41. (revisit)
A subset A of a linear space L is said to be convex if Vz,y € A, A € [0, 1]

then Az + (1 — Ay € A.

Example 2.42.

Let A= (1,3) CR. Is A convex set?

Solution: Let z,y € A, A € [0,1]

Since l <z <3 = IA< Az <3x (I)

Since l <y<3 = 1(1-XA)<(1-Ny<3(1-X) (II)

By summing up (I) and (II)

A+ (1 =XN) <X+ (1-Ny<3Xx+3(1-2X)
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I<dr+(1-Ny<<3
Thus, Az + (1 — A\)y € A. Hence, A is convex set.

Proposition 2.43.
Let L linear space. Then

(1) Every subspace of L is convex

(2) If A, B C L are convex sets then AN B is convex (H.W.)

(3) If A, B C L are convex sets then A 4+ B is convex

Proof. (1) Let L be a linear space over a field £/ = R or C, let A be a

subspace of L. Hence, by Theorem 1.13, Vz,y € A and Va, § € F we have

ar + Py € A.

Take o = A € [0,1] and 5 =1 — X: Hence, ax + 8y = Az + (1 — )y € A.

Thus, A is a convex set.

(3) Let ay + by, a2 + by'€ A+ B, then aj,as € A and by, by € B.

To prove A(ay + b1) 4+ (1 — XN)(ag + b)) € A+ B, VA€ [0,1].

Since A convex'and aj,as € A = A1+ (1—-Naz € A VA€ [0,1] ()

Since B.convex and b1, by € B = A1 +(1-N)bs € B VA e [0,1]  (II)

By summing up (I) and (II) we get

Aap 4+ (1 —Nag+ b1+ (1 —N)bs € A+ B

i.e., May+0b1)+(1—=A)(ag+b2) € A+ B. Thus, A+ B is a convex set. [J

Remark 2.44.

The union of two convex sets is not necessary convex. For example, let

A= (3,7)U(7,12). Then A is not convex. To show this, take z = 6,y =
1 1

1
8,/\:§then/\x+(1—)\)y:5(6)+§(8):7¢AUB.
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Proposition 2.45.

Let (L, ]| ||) be a normed linear space, let 2y € L. Then B,(z,) and B,(x)

are convex sets.

Proof. To prove B,(xy) is a convex set. Let x,y € B,.(xg), and let A € [0, 1].
Then,

|z — xo|| <7 and ||y — x| <7 (I)

We must prove A\x + (1 — A\)y € B,(xg); that is we must prove

I Ax + (1 =Ny — x| <7

IAx + (1 = Ny —xo|| = ||[Az+ Axo — Axo + (1 — N)y — x¢|| (adding and

subtracting A\xg)
= [[A(z = @0) + (1 =X)(y — 20)|

< Az = o)+ [1 = Alfly — zol| < Ar+ (1= A)r =7
(by (I) and since A > 0 then |A\| =X, |1 = Al =1—-))

Thus, Az+(1—M)y € B,(x) and hence B, (z) is convex. Similarly, B, (z)

1S a convex set. []

Proposition 2.46.
Let (L;]l']]) be a normed linear space and A C L and convex then A is a

convex set.

Proof. Let z,y € A and X € [0,1]. To prove Az + (1 —=\)y € A

Let r > 0. Since z,y € A then by Proposition 2.31, Ja,b € A such that
o —al <rand Jy—bl <r (D

Since A is convex then Aa+ (1 —A\)b € A

Now, [[Az + (1 =Ny — (Aa+ (1 = N)b)|| = [Mz —a) + (1 = X)(y — b)]|
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<Az —all+ (1 =A) [ly = b

<Ar+(1—=XNr  (from (I))

I
ﬁ

Thus,||(Az + (1= X)y) — (Aa+ (1= Ab) | <

7

~"

S

Thus, from Proposition 2.31, Az + (1 — \)y € A. O

Remark 2.47.

The converse of the above proposition is not. true. For example, let A =
[1,2)U(2,5] C (R, | |) then A = [1,5] is a convex set. But A is not convex,

1
sinceif:vzl,y:&/\:5then/\x+(1—)\)y=%+%(3):2¢A.

2.7 Continuity in Normed Linear Space

Definition 2.48.
Let (L, || ||.), (L4} 1|") be normed linear spaces. A mapping f : L — L'

is called continuous at xy € L if for each ¢ > 0,35 > 0 (depend on z)

such that

Ve e L, if |lz—axl, <0 then |f(z)— f(zo)l|.’ <e.

ie,VreL, if xe Bs(x) then f(x) € B(f(x))

Theorem 2.49.
Let (L, ||;), (L',]| ||,") be normed linear spaces. A mapping f : L — L'

is continuous at xy € L if and only if V(z,) € L with x, — z( implies that

f(@n) = f(20)-
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Proof. (=) Let f be a contiunuous mapping at xy and let (x,) be a sequence
in L such that x,, — . To prove f(x,) — f(xo).

Let € > 0, then 46 > 0 such that Vo € L

if ||z — xol|;, < 6 then || f(x) — f(zo)||,’ <€ (From continuity of f at zy).
Since x,, — x¢ and § > 0,3k € Z such that ||z, — zo||, <9I, Vn > k.
Hence, ||f(z,) — f(x0)|l, <€, Vn > k;that is f(x,) — f(x0).

(<) Suppose that x, — xy implies that f(x,) — f(zg).. To prove f is
continuous at xy.

Assume that f is not continuous at x(, so de > 0 such that Vo > 0,dx € L
and

= zoll, < 6 but (=) — Flao)ll, > e

Now, Vn € Z+,% > (0, then dx,, € L.such that

|zn — ol < % but || f(z,) = f(x0)||;" > €. This means x, — xy but
f(x,) - f(xp) in L' which.is a contradiction. Thus, f is continuous at
0. []
Theorem 2.50.

Let (L, || ||) be a normed space and let f : (L, ||) — (R,]||) such that

f(z)=||lz|| Yz € L. Then f is continuous at x.

Proof. Let x,, — xy in L. Then Ve > 0,3k € Z, such that

|lzn — 20| <€ Yn>k (1)

But | flzall — 2ol | < ln — 20 ¥n > k

— | laall = aoll | <€ ¥n>k (Using (I))

— [f(@a) — f(w)l <€ Vn>k (Using (since f(z) = [lo]))

f(x,) — f(xo); that is f is continuous at . O
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Remark 2.51.
Let (L1, || |ly), (L2, ] ||s) and (Ls, || ||3) be normed spaces and let f : Ly X
Lo — L3 be a mapping. Then f is continuous at (xg,y9) € L1 X Lo if and

only if V{(zn,yn)) € L1 X Ly and {(n, yn)) — (20, %0) then f(zn, yn) —
f(l'o,yo)-

Theorem 2.52.

Let (L, || || be a normed space over a field F'. Then

(1) The mapping f : L x L — L such that f(z,y) =x+y Vx,y € L is
continuous at any point in L X L.

(2) The mapping g : F' x L — L such that g(A\,z) = Az Vr e L,VA€F

is continuous at any point in F' X L.

Proof. (1) Let (z¢, yo) be an arbitrary point in Lx L and (x,,, y,) — (zo, Yo)-
Then, x,, — ¢ and y, — yp such that

|zn — 20|l = 0 and ||y, —yo|| = 0 as n — +oo.

We must prove f(z, yn) = f(z0, y0). ie., [|f(zn,yn) — f(2o,90)[ = 0
Now, || f(n, yn) — f(z0, o)l = [ (zn +yn) = (20 + yo) |

= (@ = 20) + (Yn — w0) |

< [Jn — zoll + [lyn — woll
Thus, ||f(zn, yn) — f(x0,y0)|| = 0 as n — +oo; that is f is continuous at
(x0,90). Since (xg,yo) is arbitrary, f is continuous at L x L.
(2) Let (Ao, zg) be an arbitrary point in F' x L and (A,,xz,) — (Ao, Zo).
Then, A\, — A\ and x,, = xy.

Hence, |\, — Xo| = 0, ||z, — 2¢]| — 0 as n — +o0.
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We must prove g(An, x,) — g( Ao, o). 1€, ||g(An, xn) — g(Xo, z0)|| = 0

19(An; 2n) — g( Ao, 20) || = [|Anzn — Aozol|
= || AnZn—AnXo + AnXo — Aoo||
= [An(@n = 20) + (An — Xo)zoll
< [Anf lzn = zoll + A0 = Aol [l
But ||z, — x| = 0 and |\, — A\g| — 0 so that

lg( A, ) — g( Ao, zo)|| — 0 as n — oo; that is g( A, ) — g(Xo, z0). Thus,

g is continuous at (Ao, o). O

Theorem 2.53.
Let (L, ||;), (L', ]| ||,") be normed spaces and let f : L — L' be a linear

transformation. If f is continuous at 0 then f is continuous at any point.

Proof. Let xy € L be an arbitrary point and let z,, — xy.

To prove f(x,) — f(x¢) (using Theorem 2.49).

Since x, — xy, then z,, — g — 0

But f is eontinuous at 0, thus f(x, — z9) — f(0)

Since f is a linear transformation, then f(x,) — f(z¢) — f(0) =0

It follows that f(z,) — f(xo). O

Remark 2.54.
The condition f is a linear transformation in the above theorem is necessary
condition. For example: consider the normed space (R, | |). Let f is defined

as
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T if <1
f(x) =
r+1 if x>1.

It is clear that f is continuous at 0 and discontinuous at 1.

Also f is not linear transformation because if t =5,y =6 and a = =1
flax+By) = f(5+6)=f(11)=114+1=12

and af(z) + Bf(y) = f(5) + F(6) = (5+ 1)+ (6.+ 1) = 13

Hence f(az + By) # af(z) + Bf(y).

Theorem 2.55.
Let (L, ||;), (L', ]| ||,") be normed spaces and let f : L — L' be a linear
transformation. If f is continuous at a point x; € L then f is continuous

at each point.

Proof. Let x1 € L and assume that f is continuous at z;. Let 9 € L be
any point. To prove that f is continuous at zs. Let z,, — 29 in L. Then,
Tn — o — 0 and hence x,, — x9 + 1 — x1. Since f is continuous at x; then
f(xn — 29+ 31)— f(21).

Since f isa'linear transformation, then f(x,) — f(z2) + f(z1) — f(x1).
Hence, f(z,) — f(x2) — 0, and thus, f(x,) — f(z2).

Therefore, f is continuous at zs. Thus, f can not be continuous at some

points and discontinuos at some points. ]

Example 2.56.
Let f: R x R — R defined by
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fey) ﬁyyg if (z,y) # (0,0)
x,y) =

0 if (z,y)=(0,0).

Show that f is not continuous at (0, 0).

1
Solution: Let z, = — and y, = — Vn € N.
n n

Then, z, — 0 and y,, — 0. Thus, (z,,y,) — (0,0). But
l(—_l) = -1

f@nyn) =5 =% = =
ST

Hence, f(zq.y,) — 3 but f(0,0) = (0,0). Thus, f(z,.5,) + £(0,0).

Thus, f is not continuous at (0, 0).

2.8 Boundedness in Normed Linear Space

Definition 2.57. Bounded Set
Let (L, || ||;) be a normed space and let A C L. A is called a bounded

set if there exists k£ > 0 such that ||z|]| <k Vz € A.

Example 2.58.
Consider (R, | |) and let A =[—1,1). Since |z| < 1, then A is bounded.

Example 2.59.

Consider (R?,]| ||) be a normed space such that,
x| = [Z?:l |xi|2]% be the Eucledian norm, for each x = (zy,25) € R2

Let A= {(x1,20) € R*: =1 <121 <1, x5 >0}. Then, A is unbounded.
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Theorem 2.60.
Let (L, || ||;) be a normed space and let A C L. Then the following state-

ments are equivalent.

(1) A is bounded.

(2) If (x,,) is a sequence in A and (a,,) is a sequence in F' such that a,, — 0

then oy, — 0.

Proof. (1)=(2) Since A is bounded, 3k > 0 such that ||z,|| < k Vz, € A.
Since ay, — 0 as n — oo, then |a,| — 0. Hence,

loman = Ol = [lomzall = lan| [[2n]] < lan| k- (since [lz,| < k)

But |a,| — 0, thus |a,|k — 0. Therefore, ||a,z, — 0| — 0 and hence
oy, — Ox.

(2)=(1) Suppose A is not bounded. Then, Vk € Z,,3x; € A such that

1
Put o = T Hence, a; — 0. But

1 1
_ |1 a2 _
Then, ||agxy| > 1, thus gz - 0 which contradicts (2). O

Definition 2.61. Bounded Mapping
Let (L, || ||.), (L', ]| |,") be two normed space and f : L — L’ be a linear

transformation. f is called bounded mapping if for each A C L bounded

then f(A) ={f(a):a € A} is bounded set in L'

Example 2.62.

Let Consider (R, | |) and (R?, || ||) be a normed space such that
1

2 2 2 271 1
ol = [ 25 il 2 = [laa " + 2ol ]2 =[] + 23]z V(21,22) € R2.



Functional Analysis-Normed Linear Space Dr. Saba Naser, Dr.Zena Hussein, and Dr. Sabah Hassan 63

Define f : R? — R such that f(x1,22) = 1 + 22 V(21,22) € R% Show
that f is a linear transformation (H.W.). Let A C R? and A is bounded.
Show that f(A) is bounded.

Solution: Let A C R? and A is bounded to prove f(A) = {f(z1,x2) :
(1, 29) € A} is bounded.

Note that V(z1,22) € A = f(21,22) = 21 + 29 € f(A)

|[fo1, 2o = |y + 2| <[] + |2 (I)

Since A is bounded then 3k > 0 such that ||(z1,29)|| < k' V(x1,20) € A
— (@242 <k = 2242l <k?

Since z < 2?2 + 23 < k?, then 23 < k? = || <k (IT)

Similarly, 23 < 2% + 23 < k?, then 23 < k? = |2o| <k (I11)
Substitute (IT) and (III) in (I)

|f(z1, )| = |21 4+ 22| < 21| + |22 <k +k =2k

by (IT) and (ITT)
i.e., |f(z1,22)] < 2k. Thus, f(A) is bounded, and hence, f is bounded.

Theorem 2.63.
Let (L, || ||;)s(Z,] ||,") be normed spaces and f : L — L’ be a linear
transformation. Then f is bounded if and only if d& > 0 such that

If(@)l, <klzl|, Vzel

Proof. (=) If f is bounded and let A = {x € L: ||z||, < 1}.

It is clear A is bounded, and hence, f(A) is bounded in L' (by definition
of bnd function).

Thus, 3k > 0 such that || f(z)||,' <k Ve A (I)

(1) If = = Oy, then £(0y) = 0}, and thus, | £(01)| = 0 < & [|0g]| = 0.
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(2) If x # Oy, put y = H i such that ||y|| = H H |lz|| = 1.
Hence, y € A. Thus, || f(y)|| < k (IT)

£l = || 72| = | e >H @l

By (I0), |f(s)| < & , thus IIf( W< ke, 1@ < k] as
required.

(<) Let A be a bounded set. Then, 3k > 0 such that ||z|| < k; Ve e A
Since || f(z)|| < k||z|| Vx € X, hence ||f(z)|| < k||z|]| Vz € A. Then we
get || f(x)|| < kky Vo € A. Thus, ||f(z)]| < k2 Vz € A where ky = kky;

that is, f(A) is a bounded set. O]

Theorem 2.64.

Let (L, || ||;), (L',]| ||;") be normed spaces and f : L — L’ be a linear

transformation. Then f is bounded if and only if f is continuous.

Proof. (<) Suppose that. f is continuous and not bounded,

hence Vn € Z,,3x, € L such that ||f(x,)]|;," > n ||z,

B _ ISl nHwnH
Thus, IIf(yn) O = Il > L ien f) - FO) (D)
but gl = || || = el = 1

as'n — oo, we get ||y,|| — 0, and hence, y,, — 0.

It follows that f(y,) — f(07) =0}  (Since f is a linear transformation)
—_—

By Theorem 1.19(i)
This contradicts (I), thus, f is bounded.

(=) Assume that f is bounded to prove f is continuous for all x € L. Let
29 € L and € > 0, to find 6 > 0 such that

Ve e L, ||z —zol| <d = ||f(z) — f(zo)]| <e.
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| f(x) = f(xo)|| = ||f(x —z0)|| (f is linear transformation)

Since f is bounded, then 3k > 0 s.t. ||f(x)|| < k||z|]| Vxe L (I)

Hence, || f(z) — f(xo)|| = ﬂf(x — xo)|| < klz — xOH,
By (1)

< ké (Since ||z — xo|| < 0)

(By choosing 6§ = £ =€)

— k € =

T
Thus, ||z — x|l <0 = || f(x) — f(x0)| < e.
Hence, f is continuous at xy € L. Since x( is an arbitrary, then f is

cont. Vx € L. ]

Theorem 2.65.
Let (L, ||;), (L',]| |,") be normed spaces and f : L — L’ be a linear
transformation. If L is a finite dimensional space then f is bounded (hence,

continuous).

Example 2.66.
Let f:R? — R defined as f(z,y) =2 +y V(z,y) € R%
f is a linear transformation function (check!)

and dim(R?) = 2. Hence, f is bounded (hence, continuous).

2.9 Bounded Linear Transformation

Definition 2.67.
Let (L, ||.), (L, | ||.’) be normed spaces over a field F'. The set of all

bounded linear transformation mappings from L to L’ is defined as

B(L,L")y={T :T:L— L is a linear bounded (hence, cont.) trans.}
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Theorem 2.68.

Prove that B(L,L') is a linear subspace (over a field F') of the space of
linear transformation mappings with respect to usual addition and usual

scalar multiplication.

Proof. Let o, p € F and Ty, T, € B(L,L"). To prove o171 + 15 € B(L, L)
Since T7, T, are linear transformations, then by Theorem 1.30, a7y, 515 are
linear trans.

Now, oTh, BT are linear trans., by Theorem 1.30,a7} 4 (375 is linear trans-
formation.

Next, we show a1} + ST is bounded.

Since Ty, T5 are bounded, then dkq, ks > 0 such that Vo € L we have
IT3(@) ), < b flall, and [T, <Folall, (D)

Then, [|(aT1 + BT2)(x)|;, = [[(eT1)(x) + (BT2)(=)Il7
= |l Ty (x) +B.To()]|} (Definition of scalar multiplication)
< lleTa(2)|7 + 118.Ta(2)l7
= o T3 ()7 + B T2(2)II%
< |k [l=llp + 18] ka2 ||zl
= (lalky + |8 ko) [zl = K]l (k= lol ki +
8] k2)
Hence, oT7 + (15 is bounded.
Since oI + (715 is bounded and linear transformation, then o1} + 15 €

B(L, L. m
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Theorem 2.69.
Let (L, ||;), (L',]| ||;") be normed space. Prove that B(L, L") is a normed
space such that VI' € B(L, L") we have

17| = sup{[[T(2)[|, : @ € L, |||, <1}

Proof. To prove || || is a norm on B(L, L")
(1) since || T(x)||;, >0 Va € L,||z]|;, <1, then ||T]| > 0.

2) [Tl =0 < sup{|T(@)||p : x € L, |l=]lp <1} =0
= [[T@)), =0 vee Lz, <1
<~ T(x)=0Veel,l|z| <1
— T=0

(3) Let T1,T» € B(L, L)

177+ Ta| = sup{|[(Th + T2) (@) || - @ € L, |||, < 1}
< sup{[[(Ty()lp + [ Ta(@)l| - @ € L, |2, < 1}

< supger{|(Tu(@) - M=l < 1} + supger {I(Ta(@)]] - lzll, < 1}

= I3+ 1172

(4) [[oT| = sup{[|[(a. T (@)l : w € L, |||, < 1}
= |alsup{|[T(x)||, -z € L, [|lz||, <1}

= |l |17 O
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