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Chapter One

Fundamental Concepts

In this chapter, we introduce the following concepts:

1.1. Linear Spaces, Examples of Linear Spaces, General Properties of Linear
Space and of Linear Subspaces.

1.2. Linear Combination, The Linearly Independent , Dimensional Linear
Spaces.

1.3. The Convexity, Examples of Convex Sets, Some Properties About Convex
Sets.

1.4. Linear Operator (Linear Transformation) and Linear Functional.



Linear (Vector) Space

A linear space (also called vector space), denoted by L or V, is a collection of
objects called vectors, which may be added together and multiplied by numbers,
called scalars which are taken from a field F. Before defining linear space, we
first define an arbitrary field.
Definition (1.1):- Let F be a non-empty set and (+) and (.) be two binary operations
on F. The ordered triple (F, +,.) is called field if

1. (F,+) is a commutative group

2. (F —{e},.) is a commutative group, where e is the identity with respect to

(+).

3. () is distributed over (+) (from left and right)
Example (1.2):- Let (+) and (.) are ordinary addition and multiplications. Then

1. Eachof (R,+,.), (C,+,.), and (Q,+,.) are examples of fields

2. (Z,—,.) isnot field ( Definition 1.1(1) does not hold)

and (Z, +,.) is not field ( Definition 1.1(2) does not hold)

Definition (1.3):- A vector space (or linear space) over a field F is a nonempty

set L of elements x,y, ... (called vectors) with two algebraic operations, these
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operations are called vector addition (+) and multiplication of vectors by scalars (.)

, then we say that (L, +,.) is a vector (Linear) space over F.

1) Vectors addition satisfy :-

(L, +) be a commutative group

2) Multiplication by scalars satisfy :-

Q) a.x €L ,Va€EF ,x€L

b) (af).x= a(f.x) ,Vx€Landa,B EF

C) a.(x+y)= a.x+a.y

d (a+B)x=ax+p.x Distributive laws

e) .x=x ,Vx €L, 1istheunityF

Remarks(1.4):-

(1) Thefiled F = C orR

(2) IfF = C then we say that the (L, +,.) is complex vector (complex linear)
space

(3) IfF =R = (L,+,.) is called real vector (linear)space

(4) The vectors addition is a mapping suchthat +:L XL —> L

(5) The multiplication by scalars (scalar multiplication) is a mapping such that

(6)

. FXL->L

We can denote the zero vector by 0, and the scalar by 0.



Examples of Linear (Vector) Space

Example (1.5):- The Euclidean space : R™ = {x = (x1, x5, ..., X ); X; € R,i =

1, ....,n}, with ordinary addition and multiplication. i.e ,

X+y =01 +y1, %+ Y5, e, Xy +yn)} Vx,y € R, va € R,
a.x=(a.x,a.xy ..., A.Xy)

Then (R™, +,.) is real Linear space over the field F = R.

Solution: It is clear that the following conditions are satisfied

(1) To prove (R"®, +) is commutative group
a) Theclosure: vV x,y € R™ to prove x +y € R"
X ER" - x = (x1,X2, e, Xp)
YyER" =y =y, yz s ¥n)
x+y=0q+y,..,x,+ y,) ER®
b) Associative :toprove (x+y)+z=x+(y+2),Vx,y,z€ R"
(x+y)+z=((x1, x5 ... X)) + Ve e V) + (24, e, Z0)
=+ Ve Xy )+ (24, 00, Z)
=((x1 +y) +2z1, o, (G +yp) +2,) (+asso.onR)
=@+ 1tz o S (nt Ont+2zy)

= (X1, X))+ V1 + 21, e, 0 + 2)



= (%1, e Xp) + (1, e, V) + (24, oon o ,Zn))

=x+y+2)

c) ldentity: It is clear that, there exist a unique identity e = (0,0, ...,0) =0,

VxeER" s.t. x+0, =0, +x=x
d) Inverse:V x € R",3(—x)theinversof xs.t.x + (—x) = (—x) + x =0,

e) Commutative: Vx,y € R" ,wehave x+y=y+x

= (R", +) is commutative group

(2) Scalar Multiplication :

a) Toprove a.x € R",Vx € R"and a € R

a.(xq, x5, o, xp) = (X.Xq, ..., 2. X,) € R*(since a. x; € R,
Vi=123, ..., n)

b) (eB).x = (af).(x1,X2, cucrs Xn)
= ((aB).x, ..., (aB).x,)

= (@.(B.x1), . at.(B. %))
= a.(B.x1, ., B Xn)

= . (B. (%1, oo oee Xn)

= a.(B.%)

C) a.(Xx+Y) = a. (X1, X)) + (Vpyeeres¥y))

= (g + V1,0 Xy + V)

=(a.(x1 + Y1), e, . (X + Vn)

= ((a.x; +a.y;), ... ... (. x, + a.yy))

0. %) + (A Y1, e e , 0. Vn)



= A (X1, s X)) + A (V1) eee e, V)

—a.x+a.y
d) (a+B).x = (@+B). (X1, e e, %)

=((a+p)xy e (@+B).xy))

= (@ 4 Xy s @ Xy + B Xn)

...... yXn) + B (X4, e, X))

I
S
~
=

-

= (X1, Xp) =

Thus, (R™, +,.)is linear space over R.

Example (1.6):- Consider the space C™ with two operctions defined as in the

previous example, then (C*, +,.) is complex linear space over C. (H.W.)

Example (1.7):- Show that the space (1%, +,.) is linear space over F where [ =
{x = (%1, %3, X3, eur ou ), x; €F, Y2, |x;|> <o} , with ordinary addition and

multiplication. i.e ,

x+y=(x1,%2,%3, .. ) + (Y1, V2, V3) o) = (X1 + Y1, X2 + Y2, X3 + Y3 oo. e )

a.x = a.(x;,%3,%x3,...) = (@.X, X%, 0. X3 ..., VX, yEI?, a EF?
Solution:
1. To prove that (I?,+) is commutative group?

% Theclosure : Let x,y € I? toprovex + y € [?



x €12 = x=(x1,xp..); x; € Fand X2,|x;|* < o
yeEl?=y=(y )y €F and TZ|y;|* <o
x+y=0+y,x+Y,,... );x;+y, €F, foralli=1,2,3,..
Toprove %72 |x; +y;|> < .
1% +y:1% = [(x; + y)?|
= |x? + 2x;y; + ¥7|
< |l + 20xy| + ly;il?
<1212 + xl? + [yl * + [y,|, because  (2lxiyil < Ixil? + [yil?)
= 2|x;|? + 2|y;|?
Taking the sum to the both sides of the above inequality
Yizilx FyilF <22 %P+ 282 yi]? < o400 =00

% The associative: (H.W.)
< Theidentity: 3e = (0,0,..) € 12 Vx = (x1,%x5,... ) €2

suchthat e+ x=x+e =x

It is clear that }:i2,]|0]% < oo (H.W.)

% Theinverse: V x = (xg,xy,... ) €13, 3 —x=(—x;,—%5,... )EI?

suchthat —x +x = x + —x = 0. Itis clear that ¥72,|—x;|?> < c0 (H.W.)



2. Multiplication by scalars :

% Toprovethat a.x € 1?>, Vx € >, a €EF

a.x = (a.xg,a.xy,..) toprove Y2, lax;|? < o

T2l x|? = T2qlal? 1xl? = lal? Z2,1x)? < o,

The rest of the conditions are homework.

Remark (1.8):- In general the inequality holds , forany 1 <p <

lx; + y:|P < 2P [|x]P + |yilP].
Example (1.9):- Show that the space (I ,+,.) is linear space over F where 1 <
p<oo and [P = {x = (x1,%x5, X3, cer ... ), x; €EF,Y%2,|x;|P < oo} with ordinary

addition and multiplication?  (H.W.)

Example (1.10):- Considerthespace [ = { x = (x1, x5, X3 ... ... ), x; EF,|x;| <

e, 1=1,2,...}

where c, is a real number which may depend on x but does not depend on i . Then

(1, +,.) islinear space over F when + and . are defined as in Example (1.7).
Solution:

To prove that (I*,+) is commutative group?

% Theclosure: Letx,y € [* toprovex +y € [

X€EIL® =x=(x,%y,..); x; €EFand |x;|] <c, ViEN



yEI*=y=QnYy )y, €EF and |y <c¢, VIEN
x+y=0,+y,x+Y,,... );x;+y, €F, foralli=1,2,3,..
To prove lx; + yil <cgicq>0.

Now, |x; + y;| < lx;| + [yil < ¢k + ¢, = ¢4

Thus, x +y € 1.

+»* The rest of the conditions are homework.

Example (1.11):- The space (C?[a,b],+,.) is linear space over R where + and

defined as (f + g)(x) = f(x) + g(x), Vf,g € C’[a,b], x €R
(af)(x) = af(x), a €R

Solution:

The space CP[a,b] = { f:[a, b] = R continuous and bounded function }

(1) To prove that prove (C?[a, b], +) is commutative group

(b) Vf,g € C°la,b] T.p. f+g € CPla,b] — f,g are continuous

f,g are bounded

~ f and g are continuous functions = f + g also continuous function .....(i)

=~ fand g are bounded functions
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ik, >0 s.t |[f(x)| <k,
and 3k, =0 s.t|g(x)| <k,

1Vx € R
Now , |(f + )| = |f () + g)|

SIfOI+ gl <sky+ky =k, k=0

= f + g isbounded function ... (i)
From (i) & (ii) we have f + g € C?[a, b]
(b) Vf,g,h € CP[a,b] to provethat (f + g) + h = f + (g + h)

(f+9)+ M) = +9)(x) +hx)
= (f() +g()) + h(x)
= f(0) +(g() + h(x))
= f(x) + (g +m)(x)
=(f+@+m)x

(c) To prove that, there exist a unique function, for all f € C?[a, b]
Define 0:[a,b] > R s.t 0(x) =0,Vx € [a, b]
stf+0=0+f=0,Yf € C"[a,b]

(0°is continuous and bounded since its constant) = 0 e C?[a, b]

(d) To prove that , Vf € C?[a,b], 3 — f € CP[a, b]
Suchthat f+(—f)=(f)+f=0,

since f € CP[a, b] = f is continuous and bounded



= —f is also continuous (by previous proposition ) and —f is also bounded
since (|=f(l=1f()l <k, k=0)

= —f €C’[a,b] and (f + (=))(®) = f() + (—=f(x)) =0 = 0(x)

(e) Vf,g € CP[a,b],toprovethat f+g=g+f

F+PE)=fx)+g(x)= gl)+f(x)= (g+Hx)

=~ CP[a, b] is comm group

(2) Scalar Multiplication
(@) Vf € C’[a,b],a € R ,to prove that af € C’[a, b]

. f € CP[a,b] = f is also continuous = af also continuous ... (i)
f € CP[a,b] = fisbounded = |f(x)|<k,k=>0
But [(af) ()| = laf (x)| < |al| f(x) < |alk

= af isbounded ... (ii)

From (i) and (ii) we get, «f € C°[a,b]

(b) Vf € C?[a,b] and a, B € R, to prove (aB)f = a(Bf)

(@B f)(x) = (@B)f (x) = a(Bf(x)) = a(Bf)(x)
= (aB)f = a(Bf)
(c) Vf,g € CP[a,b],a € R,toprove a(f + g) = af + ag

11
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(a(f +9))(x) = a(f + 9)(x) = a(f(x) + g(x))
=af(x)+ agx) = (af +ag)(x)

(d) Vf € CP[a,b],a, B € R, toprove (a+B)f = af + Bf

((@+Pf)) = (a+Bf(x) =af()+B f(x)

= (af)(x) + (BHHx) = (af +BH(x)
(e) Let f € CP[a, b] and 1isthe unity of R, then (1f)(x) = 1 f(x) = f(x) .

General Properties of Linear Space (without prove)

Theorem(1.12):- Let (L, +,.) be a linear space over F .Then

(1) 0.x=0,, VxeL
(2) A OL = OL ) A EF
(3) (—a.x)=(—a).x=a.(—x) ,VXx€E€L a€F

(4) Ifx,yeL=3'z€L suchthatx+z =y

(5 a.(x—-y)= ax— ay,Vx,y€EL, a€F

(6) If a.x=0,= a=0 orx=0,

(7) Ifx+#0,and a;x= a,x = a1 = a,

(8) Ifx#0,, a#0,y#0, and a.x= ay =>x=y

Linear subspace

Definition(1.13):- Let L be a linear space over F and @ # S € L, then we say

that S is linear subspace of L if S itself is a linear spase over F .
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Theorem (1.14):- If L be a linear space over Fand @ + S € L, then S is linear

subspace if satisfy the following conditions

QDx+yesS,vx,y€eS

(Da.xeS,VxeSanda€EF

Or satisfy the equivalent condition of two conditions above ,
ax+pL.yeESVx,yeESand a,fEF

Remark(1.15):-

(1) A special subspace of L is improper subspace S = L
(2) Every other subspace of L(# {0})is called proper
(3) Another special subspace of any linear space L is S={0}

Example (1.16):- show that S = {(x,x,) € R?; x, = 3x;} is subspace of R??
Solution :- It is clear that S € R?,and S # @ because (0,0) =0€ S
Toprovethat a.x+B.y€S,Va, EF =R,x,y € R?
x = (x1,%2),y = V1, ¥2)
a.x+ B.y = (axy,axz) + (By, BY,)

= (axy + By, ax; + By,)
Now, ax, + By, = a(3x,) + B(3y1) = 3(ax; + By1)

= a.x+p.YyES.
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(; Z) ;a,b € R} is subspace of My, (R)?

Example (1.17):- show that S = {(

Solution:- Itis clear that S € M,,,(R),and S +# @ because 0 = (s ?)) €S
Vx,y€Sand a,f €F.

0 aq
by 0

Toprovethat a.x+ .y = a.(
=)+ ()

_ (0 a'a1+,3a2) €s
(Zb1+,3b2 0

)+ B-(5—%)

Example (1.18):- show that S = {(x;,x,) € R%;ax; + bx, = 0} is subspace of

R? ? (H.W.)

Example (1.19):-The set S = {(x;,x,,%3) € R®; x; = 1 + x,} is not subspace
of R3?

Solution:

Consider a = 2and x = (2,1,0) € S,because 2 =1+ 1)

a.x =2.(2,1,0) = (4,2,0) € S,because(4 # 1 + 2)

Hence, S is not subspace of R3.

Theorem(1.20):-Let S; and S, be two subspaces of linear space L . then

(1) S, n S, is subspace of linear space L .
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(2) S; + S, is subspace of linear space L
3)S; €85 +5,,5, €5, +5,. (HW.)

Exercise :

(1) Which of the following subsets of R be a subspace of R3
a) S; ={x = (xq,x,,%3); X1 = x, and x5 = 0}
b) S, = {(x1,x5,x3); x3 = x, + 1}
) Sz = {(x1,%2,%3); X1,%3,%3 =0}

d) Sy = {(x1,%2,x3); x; — x5 + x3 = k}

(2)If S; and S, are subspaces of linear space L , then S; U S, not necessary
subspace of L (Give example)

(3)If S # @ is any subset of L show that span S is subspace of L .

(4) Show that the Cartesian product L = L; X L, of two linear spaces over the

same field becomes a vector space , we define the two algebraic operations

by

V x= (xlr xZ)
(x1,%2) + (1, ¥2) = (1 + y1, x5 + yz)} y =0 y2)
a(xq,x5) = (axq, axy) a€F

} EL

(5) Let M be a subspace of a linear space L . The coset of an element x € L with

respect to M is denoted by x + M where

x+M={z,z=x+m,me M}. Show that (ﬁ, +,.) is linear space over

under algebraic operations defined as
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(x+m)+(y+m)=(x+y)+m,Vx+m,y+me%

a.(x+m)=a.x+m,‘v’x+m€%, a €F

Note : The space (ﬁ, +,.) is called quotient space (or factor space) .

Definition (1.21):- A linear combination of vectors x,, x5, ...., x,, of a linear
space L is an expression of the from «;x; + ayx, + -+ a,x,, where a4, a,,

..., 0ty are any scalars

i.e., x is linear combination of x4, x5, ..., x,, If Iy, ay, .....,ay s t.

X = Ollxl + azxz + ... + anxn.

Example (1.22):- Let S = {(1,2,3),(1,0,2)}, Express x = (—1,2,—1),asalinear

combination of x; and x,, .

Solution: We must find scalars a4, @, € F such that x = a;.x; + a3. x5

(-1,2,-1) = a;.(1,2,3) + a,.(1,0,2)

= (a1, 2ay,3a;) + (a3,0,2a;,)

SO,a1+a2=—1 :>a’2=—a’1—1
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2a1+0=2$2a1:2$a1:1
and, 3“1"‘2“2 =—-1

day=—1-1=-2.

Example (1. 23):-1f S = {(1,2,3),(1,0,2)}. Show that x = (—1,2,0), is not linear

combination of x;, x, .

Solution:
Let ay, @, € F and x;,x, € Ssuchthat x = a;.x; + a5.x,, we have

aq +a2=_12a1+ 0= 2
3a; +2a, =0

( 1 1 :-1 ) (1 1 :-10 -2 :4)
=3
2 0 :23 2 :0 0 -—-1:3

The system has no solution

}

~ x not linear combination of x, x,.

Example (1.24):- LetS = {x;, x5, x3}where x; = (1,2), x, = (0,1) and x5 =
(1,1) . Express (1,0) as a linear combination of x,, x, and xs.

Solution:

We must find scalars ay, a,, @3 € F suchthat x = a;.x; + @,.x, + a3. x5

(1,0) =a;.(1,2) + a,.(0,1) + a3.(1,1)
(110) = (C(l, 2“1) + (O, aZ) + ((13, a3)

a1+a3=1$a1=1—a3
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20+ a,+a;=0=>2(1—-a3) +a,+ta3=0= —az;+a, = -2
a, = —2—a;
This system has multiple solutions in this case there are multiple possibilities for

the aj.

Definition (1.25):- Let @ = M < L the smallest subspace of L contains M is called

subspace generated by M and denoted by [M] or span M.

Remark(1.26):-

1.Let® = M C L, the set of all linear combinations of vectors of M is called span

of M.
2. M cspan (M).

3. Span (M) = the intersection of all subspace of L containing M.

Example (1.27):- Find span {x;, x,} where x; = (1,2,3) and x, = (1,0,2) ?
Solution :- The span {x,, x,} is the set of all vectors (x, y, z) € R3 such that
(x,y,2) = a;.(1,2,3) + «,.(1,0,2)

We wish to know for what values of (x, y, z) does this system of equations have

solutions for a4, a,



19

a,.(1,2,3) + a,.(1,0,2) = (x,y,2)

(@1, 2ay,3ay) + (@;,0,2a;) = (x,y,2)
A ta,=x=a, =x—,

2o =y =>a; = %y

30 + 20, =z= 6a; +4a, —2z=0
6(%y)+4(x—%y)—22=0
3y+4x—2y—2z=0
4x+y—2z=0

So, solutions when 4x +y — 2z =0

Thus span {x;,x,}istheplane 4x +y — 2z =0

Example (1.28):-Show that {x;, x,} span R? , when x; = (1,1),x, = (2,1).
Solution : we being asked to show that any vectors in R? can written as a linear

combination of x;, x,. Let (a,b) € R%and (a,b) = a;.(1,1) + a,.(2,1)
(ay, 1) + 2ay, a;) = (a,b)
a,+2a, =a=a, =a—2a,

a,+a,=b=a,=b—(a—2a,)
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—a,=b—a=>a,=a—0>

a; = a—2(a —b) = 2b — a .Note that these two vectors span R? , that is every

vector R? can be expressed as a linear combination of them .

Example (1.29):-Show that S = {x;,x,, x5} span R? , where x; = (1,1),x, =

2,1),%; = (32). (HW.)

Definition (1.30):- LetS={x4,...,x,}beasubsetof L, then S iscalled linearly

independent if there exist a4, a5, ..., a, such that
ifa.x; +a,.x,+ 4+ a,.x, =0thena; = a, = ... = a, =0.

Definition (1.31):- LetS={xy,xy,....,x,} beasubset of L, then S is said to be

linearly dependent if it is not linearly independent that is if
Q. X1 + ay. x5 + -+ a,.x, =0 butthe oy, @, ..., a, notall zero .

Example (1.32):- Determine S = {x;,x,} is linearly dependent or independent
where x; = (1,2,3), x, = (1,0,2).

Solution : Leta;,a, € F

a,(1,2,3) + a,(1,0,2) = (0,0,0), only solution is trivial solution a; = a, = 0.
Thus, S is linearly independent.

Example (1.33):-Determine S = {x;,x,} is linearly dependent or independent
where x; = (1,1,1),x, = (2,2,2)?

Solution: Let @y, a, € F

a,(1,1,1) + a,(2,2,2) = (0,0,0)
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a1+2a2=0$0{1=2a2

So, S is linearly dependent
Theorem (1.34):-  (without prove)

(1) Every m vectors set in R™ , if m > n then , the set is linearly dependent
(2) A linearly independent set in R™ has at most n vectors .

Remark (1.35):- Let L linear space over F ,S € L and x, € L , then

(D) If 0, € S = Sis linear dependent . i.e., every subspace is linear dependent
set
(2)If xo # 0, = {x,} is linearly independent
Definition (1.36):- Let L be a linear space over F .A subset B of L is a basis if it

is linearly independent and spans L i.e,

(1) B is linearly independent
(2)Span (B) =L L Jis B
The number of elements in a basis for L is called the dimension of L and is denoted

by dim (L)
Example(1.37):- Consider the linear space (R3, +,..)
The dimension of L is 3. i.e.,dim (R3) =3

Since B = {(1,0,0), (0,1,0), (0,0,1)} is basis for R3



22

Remark (1.38):-

(1) Every linear space L # {0} has a basis
QIfL={0} =dim(L)=0
(3)If L finite dimension linear space and S be a subspace of L, then dim S <

dimL.
@IfdimS=dimL=S=1L

B)If S ={xq,....,x,} be a linearly independent in L then there exists ¢ > 0
such that Xl = 1 2 aixq | = ¢ Ximqla;] .

(6) The dimension of quotient space (or factor space) is called codimension of

M and denoted by codm(M) = dim (%).

The Convexity

Definition (1.39):- Let A be a subset of linear space L then , we say that A is

convex set if satisfy the following condition :

vx,y € A,A1€[0,1] then Ax+ (1 —-A)y€EA.

Examples About Convex Sets

Example(1.40):- If A = (a,b) € = A is convex set
Solution :

Letx,y €A, A€ [0,1]
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x€E(a,b)=a<x<b=>Aa <Ax<ib ..(1)
yE(@b)=a<y<b=>0-Da<Q-ADy<@A-1)b (2
By summing up (1) and (2)
Aa+(1-DNa<Ax+A-ADy<ib+(1-1b
a<Ax+(1—-2A1y<b.

Example(1.41):- Every linear subspace is convex, but the converse is not true in
general

Solution :

Let M be a subspace of linear spaceL = ax + fy € M ,Vx,y € M ,a, 8 € F.Put

a=4=1-21,0<1<1
= Ax+(1—-AD)yeEM, Vx,yeM,0< 1 <1 = M isconvex set
For the converse , consider the following example

Let L=R*M ={(x,y) € R, x>0,y >0}, then M is convex set but not

subspace.
s To prove M is convex set.

Let  (xq,y1),(x3,y,) EMand 0< A <1. To prove A(xq,y)+(1-

AN (xz,y,) EM.
(X, V1) EM= x;,=20,y;, 20 and (x,,y,) EM = x, =20,y, = 0.

Thus, Ax; + (1 —A)y; = 0and Ax, + (1 — A1)y, = 0.
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Then, A(xy,y1) + (1 = D) (x2,y2) = (Ax; + (1 = Dy, Ax, + (1 = 1)y,) € M.

+ Show that M is not a subspace (H.W.)

Theorem(1.42): (Some Properties About Convex Sets)

5.

The singleton set is convex set

The intersection of convex set is convex.

The empty set and the whole space are convex. (H.W.)
If Ais convex set = aA also convex a € F. (H.W.)

If A and B are convex set = A + B also convex set.

Proof (1) Let A = {x} to prove A is convex set.

Takex e Aand A € [0,1]then Ax + (1 —A)x = x € M.

Proof (2) Let A and B are convex sets To prove A N B is convex set.

Letx,y€eAnBand0< A <1toprovedx+ (1 -1y € ANB.

x,y € Aand Aisconvex=> x+(1—-A)ye€eAd.... (1)

x,y € BandBisconvex= x+ (1—-A)y€B .... (2

From (1)&(2) we get x + (1 — A1)y € An B. Then, A N B is convex set.

Proof (5) Leta, + b;,a, + b, € A+ B, thena,,a, € Aand by, b, € B.

Toprove A (a; + b))+ (1 —A)(a, +by,) EA+ B, VA€ [0,1]
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Since A isconvex setand a;,a, € A= 21a; + (1 —2Aa, € A VA€ [0,1]...(1)

Since B is convex setand by, b, € B=>Ab; + (1 —A1)b, € B VA€ [0,1]...(2)

By summing up (1) and (2) we get

/’la1+(1_/’l)a2+/’{b1+(1_l)b2€ A+B

ie,A(a; +b)+ (@ —-2A)(a, +b,) € A+ B. Thus, A + B is a convex set.

Linear operator and linear functional

Definition(1.43):-  Let L and L’ are linear spaces over the same field F . A

mapping T: L — L' is called Linear operator or (Linear transformation) if

T(a.x+B.y) =aT(x)+ BT(y),Vx,y € Landa,f € F

Note : The linear operator T: L — F is said to be linear functional.

Examples of Linear Functional

Example (1.44):- LetT:R — R suchthat T(x) =mx,m € Rthe T is linear

functional

Solution: Letxy E R,a,f € R
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T(ax + By) = m(ax + By) = m(ax) + m(By)

= a(mx) + p(my)

= aT(x) + BT(y)

Example(1.45):- LetT:R->Rst.T(x)=mx+b, m,b*+0€R thenT s
not linear functional ?

Solution: Letx y € R

T(ax + By) =m(ax+ By)+b=ma)x + (mB)y+b
=a(mx)+pB(my)+b ... (D)

Now, aT(x) + fT(y) = a(mx + b) + f(my + b)

=amx + my+ (a+ )b ... .. (2)

Leta=1,=2, wegetl+2

Example(1.46):-  Let T:C[a,b] > R such that T (f) = [, f(x)dx
Show that T is linear functional.

Solution : Let f,g € Cla,b],a, B € R. To prove that
T(af +Bg) = aT(f) + BT(9)

b
Taf +69) = | (af +po)w)dx

= [Paf(0) dx+ [} Bg(x)dx

= afl f)dx+ B [, g(x)dx = aT(f) + BT(g).

Example(1.47):- Show that T: R> -» R? such that
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T (x1,%x5) = (x1 + x5, %, — x, + 1) is not linear operator

Solution : T(0) = T((0,0)) = (0,1) # (0,0) = T not linear functional.

Exercise
(1) IfT:R? > R s.t T(xy,x,) = x%; +x%, . Show that T is not linear
functional.
(2) IfT:R? > R s.t T(xy,x,) = (x; + X5,0). Is T linear transformation
?

(3) If T:R? > R? st T(xy,x,) = (ax;,x,),a €R. Is T linear
transformation ?
(4) If T:R3 > R3 st T (x,x,,%3) = (x3,%x; —x,0) . Is T linear

transformation ?

Some Theorems About Linear operators

Theorem(1.48):- Let L,L',L" are linear spaces over the same field F such that

T:L — L and g: L' — L" linear operators then

(1) T(0,) = 0y and g(0,) = Oy

(2) T(x—y)=Tx)-T(y)

(3) goT is linear operator .
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Theorem(1.49):- Let L, L are linear spaces over the same field Fand T, , T,: L —

L' are two linear operators. Define + and . as follows:
(AT)(x) = A.T,(x), Vx€L, A€EF

Then, T; + T, and «aT; are linear operators

Proof ;- Letx,y € L and a,f € F then

QT +T)(ax+p.y)=Ti(a.x+B.y) + To(a.x + B.y)

=a.T;(x) + . T1(y) + a.T,(x) + B.T>(y)
=a. (Ty(x) + T,(x)) + B.(T1(y) + T (y))
=a.(Ty + T,)(x) + 5. (T + TL)(¥)

(2 ATy (a.x+L.y) =A[a.Ty(x) + B.T,(v)]
=(Aa). Ty (x) + (48).T1 (¥)
= a. ()L. Tl(x)) + ,8(/1. Tl(y))

=a. (AT (x) + B. (AT (y).
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Normed Linear Space

Definition 2.1.
Let L(F') be a linear space over a field F'. A mapping-||.|| : L — R is called

norm if the following conditions hold
(1) |z]] >0 Vz € L. (Positivity)
(2) ||z|| = 0 if and only if x = O,.
3) llz+y| <zl + lyl| Vx,y e L. (Triangle Inequality)

(4) ||az|| = |a|||z|| Vz e L, Va e F.

(L, || |I) is called normed linear space.

Remark 2.2.

From now on, the field F' is either R or C.

Theorem 2.3.

Let (L, || ||) be a normed linear space. Then, for each x,y € L
(1) Jloc] = 0.
(2) Nzl = ll==l-

(3) llz =yl = lly — =l
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4) | ll=]| = llyll | <llz—=yll.-  (Reverse Triangle Inequality)
G) |zl =yl | < e+ vl - (Reverse Triangle Inequality)

(6) Every subspace of a normed space is itself normed space with respect

to the same norm.

Proof. (1) ||0y|| = ||00y,|| (see Theorem (1.3)(1))

= 0]/0p]| = 0.
) =zl = [=1 =] = |l=]| vz e L.
B) llz =yl == =)l =lly — =] (by part (2)).

(4) We must prove — ||z — y| < ||z| — |lyl| <z —y]|

2]l = lz =y +yll < llz =yl + |yl (by Definition 2.1(3)).

Hence, ||z| = |lyll < [lz — ]| (D)

Similarly, ||y|| = ||y —« + | < |ly — || + ||z|| (by Definition 2.1(3)).
Hence, [ly]| = [[z|| < [l =yl (1I)

Hence, by (I) and (II), we get ||z — y|| > |||z]| — [|y||| Vz,y € L.

(5) We must prove — ||z + y|| < ||lzf| — [jy[| < [l + y]|

|zl = llz + y =yl < [lz+yll + Iyl (by Definition 2.1(3)).

Hence, ||z]| — [ly|| < [l 4yl (L1I)

Similarly, ||y|| = |ly + 2 — z|| < ||y + z| + ||—z| (by Definition 2.1(3)).
Hence, [lyl| = ||| < [l 4yl

]l =yl = = [l +yll (IV)

Hence, by (II) and (IV), we get —[lz+y| < [lzf| = [lyl < llz+yl

Vr,y € L.
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2.1 Examples of Normed Linear Space

Example 2.4.

Let L = R be a linear space over R with || || : L — R such that ||z| = |z|.
Show that (R, || ||) is a normed space.

Solution: We show that

(1) ||z|| = |#| = 0 Vz € R; hence ||z|| > 0.

(2) Let z e R, ||z|| =0 <= |z| =0 <= 2 =0.

(3) Vx € R,Va € R,

loz]] = [ax| = |af [z] = [a] ||z]].

) llz+yll = |z +yl <zl + |yl = |zl + gl Vo, € R

Example 2.5.

Let L = C be a complex linear gpace over C with || || : €' — R such that
|z|| = |2| = Va2 + b2 Vz = a + ib. Show that (C, || ||) is a normed space.
Solution: We show that

(1) ||zl = 2| = Va2 + 12 >0 Vz=a+ibe C; hence ||z|| > 0.

(2) Let z=a+ibe C

2] =2 = Va2 + 12 =0 <= ®>+0P* =0 <= *>=0P =0 < a=
b=0 < 2=04+0:=0.

(3) Let z,w € C

lz+wl’ =lz+wf=(z+w)EFw) (2" =22)
= (2 +w)(Z+ )

=zZZtww+ wz +wz

— 4 WT 4+ wE+wE  (We =Wz = ws
\ > )



Functional Analysis-Normed Linear Space Dr. Saba Naser, Dr.Zena Hussein, and Dr. Sabah Hassan 32

=2Z+ww+ 2Re wz (2+Z = 2Rez)
<zZZ+ww+2w||lz] (Rewz < |w||z])
2 2 2 2
= 2"+ |w]” + 2|w[ 2] = [l2[] + [[w]” + 2 |w]| [=]

= (=l + llwl)*.
2
Thus, ||z +w|” < ([|z[l + [[w]])?, hence, ||z + w]| < [|z]| + [Jw].

(4) Let z € C,a € O, ||az|| = |az] = |a(a + ib)|

= /(aa)? + (ab)? = \/a2(a? + 1?)
= Va2Va2 + 0% = |al|z] = |a] ||2].

As an application to Example 2.5: Let z =2+ 3i,w = 1 — 7, then
Iz +wll =12+ 1) + (3 = )| = |3+ 2i]| = V32 + 22 = V13,

152]| = [|10 + 154|| = v/10% + 152 = /325 = 5/13.

5|2l = 5v/2% + 3% = 5V/13.

Example 2.6.

Show that the linear space C*(R) is a normed space under the norm
I£ll = sup{[f(2)| : # € R}, Vf e CR).
(1) Sinee |f(x)| > 0 Va € R. Then, ||f|| = sup |f(x)| > 0. Hence, || f|| > 0.
@2) [/l =0 < sup{|f(z)[: z € R} =0
<~ |f(z)|]=0 Vz eR
— f(z)=0 Vz €R <= f =0 (zero mapping)
(3) Let f,g € C°(R). Then

If + gl = sup{[f(z) + g(z) : = € R}
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< sup{|f(z)| +[g(z)| : © € R}

< sup{|f(z)] - v € R} +sup{lg(x)| : z € R} = |[f]| + [|gll-
Hence, |[f + gl < [If]] + 4]l

(4) Let f € C*(R),ae € R . Then
lof || = sup{|(af)(z)] : 2 € R}

= supf[al |f(x)] - z € R}

— |a|sup{|f(z)| : © € R} (By Theorem 2.7 below where A = |f(z)]
and 3 = |a)

= lal|lf]-

Theorem 2.7.
If A is a bounded above set and S >0, then SA is bounded above and

sup(BA) = fsup(A).

As an application to Example 2.6: Let f,g € C°(R) such that f(z) =

sin(x) and g(x) = 2cos(x) + 1. Hence,
| fIl = sup{|sin(z)]: x € R} =1 (since |sin(z)| <1, Vx € R).
lgll = sup{|2cos(z) + 1| : x € R}.

But [2cos(x) + 1| < 2]cos(x)| + 1
<2(1)+1=3. (since |cos(z)| <1, Vx € R).

So, [lgll = 3.

Example 2.8.

The linear space C%[a, b] of all real valued continuous functions on [a, b] is

a normed space under the norm defined in Example 2.6. (H.W.)

Example 2.9.
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The linear space C|0, 1] of all real valued continuous functions on [0, 1] is
a normed space with the norm defined as

171 =Jy 1f(@)] dz ¥ € Cl0.1].

solution: (1) Since |f(z)| >0, Vz €[0,1], then fol |f(x)| dz > 0. Thus,
If]l = 0.

) Ifl =0 < Jy|f(@)| dz=0
— |f(z) =0 Vz e0,1]
<~ f(z) =0 Vz €[0,1]
— f =0 (zero mapping).

(3) Let f,g € C[0,1]. Then

If+all = Jy 1f@) + ()| da

sﬂwm+mmwx

= [y |f(@)] dz+ [, ]g(x)] dz = | f]| +|lgl]
(4) Let f € C[0,1],a € R . Then
lafll = [y laf@) dv = [, a||f(z)] dz=|a] [y |f(x)] dz = |a][|f].

As an application to Example 2.9: Let f € C]0,1] such that f(z) =

z* and g(x) = —2*. Find || f]], [lg]l and || f + g]|
1 1 1

Il = [y [f(@)| do = [ |2?] do = [ 2® do = §
1 1 1

gl = fo lg(z)| dx = fo ‘—xQ‘ dr = fo 2% dr = %

1 1
‘”*g“zl’“+”“”'“‘ié S| d

<0



Functional Analysis-Normed Linear Space Dr. Saba Naser, Dr.Zena Hussein, and Dr. Sabah Hassan 35

Example 2.10.
Consider the linear space F" over F' (F = R or C). Define || || : F" - R
by ||z|| = max{|z1]|, ..., |za|} Vo = (21,...,2,) € F". Then (F", ] ||) is a
normed space.
solution: (1) For any z = (x1,...,x,) € F", |z;] >0, Vi=1,...,n.
Then max{|z1|, ..., |z,|} > 0, then ||z|| > 0.
(2) [|z]| = 0, where x = (21, ..., x,) € F"
<~ max{|zri|,...,|z.|} =0
= |r|=...=|1,) =0 <= 51=...=2,=0
— x=(r1,...,2,) = (0,...,0) = Opn
(3) Let © = (21, ..o 0), Yy = (Y1, -y Yn ) EF"
z+y = (Tey1, T2+ Yo, s Tn + Yn)
Iz + yl| = max{|zs + gu] , ..s [0 + ynl}
< max{|z] + [l s |2al + [ynl}
< max{|zi], .., |za|} + max{[yi|, ... lyal} = [lz]l + [y
(4) Let x = (x4, ...,x,) € F" and a € F
||| = max{|azy], ..., |z, |}
= max{|al |71, ... [af [za]} = [o| max{|zi], ... [zn]} = | [l]]

As an application to Example 2.10: Consider the linear space R? over

R. Let = (21,22, 23) = (1,2, -5),y = (¥1,%2,y3) = (0,—7,3). Then ,

(1) [[z]] = max{[1],[2],[=5[} = 5 and

[yl = max{[0[, |=7],[3[} = 7.



Functional Analysis-Normed Linear Space Dr. Saba Naser, Dr.Zena Hussein, and Dr. Sabah Hassan 36

o + 29| = max{[1], |—12] ] 11[} = 12
(2) Find ||2 — y]|, |22+ 3y, ||32]

(3) Show that

max{|z1|+[yil , [w2l+[yal ; lws|+ys[} < max{[za], [2of, ||} +max{lon], [yl [ys[}-
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Exercise 2.11.

(1) Let L = C? be a linear space over F' = C. Define || || : C* — R such
that ||z|| = a || + b|zs|, Vo = (21,29) € C? and a,b > 0. Show that || ||
is a norm on C?. (H.W.)

(2) Consider the linear space R?. Let |z|| = min{|x|,|zs|}, Vo =
(z1,72) € R%. Show that || || is not a norm on R2.

solution: Let z = (0, —3) € R?

i) = ming[0], |-3]} = min{0,3} = 0

Since X # Oge, but ||z|| = 0. Condition (2) of the definition of the norm
is not valid. Hence, || || is not a norm on R2.

(3) Consider the linear space R2. Let ||z||.= |z1|” + |za|”, Vz = (21, 22) €
R?. Show that || || does not satisfies condition (4).

solution: Let x = (1,3),a = 2

el = 2(|a]* + |22l”) = 2(1* + 3%) = 20

law]| = [12(1, 3)[| = [|(2,6)|| = 2* + 6° = 40

Thus, |o| ||z] = 20 # ||azx| = 40.

Some Important Inequalities

To give more examples about normed space, it is important to present
some inequalities.

If 7 = {z = (r1,22,...) : ; € Rlor C) and > 7 ||’ < oo} be a
set of sequence space (see Example 1.6). Let x = (x1,29,...) € [P, y =

(ylay27 ) € 7. Then
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(1) Holder’s Inequality

o0 o0
1

S el < [ |l iZm 7

i=1 =1

Wherep>1,q>1and%—|—$:1.

(2) Cauchy Schwarz’s Inequality

00 00 )1 00 )1
i=1 i=1 i=1
Note that Cauchy Schwarz’s inequality is a special case of Holder’s inequal-
ity where p = q = 2.

(3) Minkowski’s Inequality

Ifp>1

e} o0
1 1

(S e gl < [ Jwl’]? + ZW*

1=1 1=1

Remark 2.12.

‘d

The three inequalities above hold for the linear spaces L = R" and L = C".

Example 2.13.
Let L = R? be a linear space over R. If x = (—1,2),y = (0,5) € R

(1) Verify Cauchy Shwarz inequality (p = ¢ = 2).

(2) Verify Minkowski’s inequality (p = 3).

Now we can give the following examples
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Example 2.14.

(1) Show that the linear space R" over R (or C" over C) is a normed space

1
with [|z]ly, = [ Yy |x2\2] > Ve e R" or C",x = (a1, ..., xp).

(2) Show that the linear space R™ over R (or C" over C) is a normed

1

space with ||z, = [ @l |7 Vo e R" or C", & = (24, ...;x,) and

1 <p<+oc0. (HW.)

(3) Show that (i, ]| ||,)) is a normed space where ||z||, = [ Y.} ]xz\p}%’ Vo =

(21, 29,...) €’ and 1 < p < +00.

Solution (1): Let x = (21, ..., %0),y = (Y1;+,Yn) € R" (or C") and o € R
(or ).

(1) Since |z;] > 0, Vi = 1,..,n. Then, [> 7, \xiﬂ? > 0; that is

[z, > 0.

@) ll2ll, =0 = (Y leP] =0 = Yo |af =0
— |z*=0, Vi=1,...n
<— r;=0, Vi=1,...,.n
<~ == (21,...,2,) = Opn

(3) [z +ylly = (@1 + y1, ooy T+ y) |l

= [ |z + vil” }% <[¥h |$i|2]%+[2?:1 |yi\2]% (Minkowski’s

Inequality)

= [lzlly + 11yl

(4) llazlly = (e, oy aza)lly = [ 30 o]’

N[ =
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1
n 2 273
= [ X ol |=il]

971
= o] [ 2 il ]* = lal [l]l,.

Functional Analysis-Normed Linear Space

Solution (3): Let z = (21,22, ...),y = (y1,¥2,...) € I’ and o € R (or C).

S AL

(1) Since |z;] >0, Vi€ N. Then, [ Y272 |5 | > 0; that is [|z[|, > 0

=

2) lzll, =0 <= [ X ]zl"]" =0 <= X2 |z’ =0
— |z°=0, Vie N
— z1;=0, Vie N

— z = (0,0,:..)

B3) =z +yll, = (@1 + Y1, o 20+ yn) ],

=

= [ i+ ul” ] < [ 22wl 7+ [ 222 il ] (Minkowski’s
Inequality)
=z, + llyll,
(4) lloz]l, = [[(qy; ), = [ 202y low]” ] 7

= [, [af? o]
= Jo] [, "]

D =

= laf [,

As an application to Example 2.14(1):

(1) Let (R3]l ||,) be a normed space and z = (x1,x2,73) = (1,—2,4).
Then, find ||z|],.

2) Let (C?, be a normed space and z = (x1,22) = (1 + ¢, —21).
2

Then, find ||z|],.
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2.2 Product of Normed Spaces

Definition 2.15.
Let (L, [|;), (L, ]| ||,") be normed linear spaces over a field F. Let

Lx L'={(x,y): x € L,y € L'} be the Cartesian product of L and L’

Define + on L x L' by

) ) = ) 3 \ ) , cLxUTL.
(1, 91) + (22, 92) = (@1 + 22, y1 +42), V(z1,91) + (22, 2)

sumon L sum on I/

Define a scalar multiplication

a.(z,y) = (ax,ay), Y(z,y) € L x L' Va € F.

Proposition 2.16.
Show that (L x L', +,.) is a linear space over F. (H. W.)

Remark 2.17.
The product linear space defined above can be made a normed space by

different ways as we show in the following example.

Example 2.18.

Define || || : Lx L' — R such that

(W) o)l = Nzl + [yl
(2) 1z, 9)lly = max{{l]l,, lyllz ¥

(3) (2, y)lls = min{|[z[|,, [yl } (H. W)

Show that (L x L', ||;), (L x L', || ||,) are normed spaces.

Is (L x L', || ||3) is normed space?

Solution (1): To show (L x L’,|| ||;) is a normed space,
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(i) Since ||z||;, > 0 and ||ly||;,, > 0 Vo € L,Vy € L', then
/L +llyll = NIz, )]l = 0.
(i) [[(z,9)ll, =0 <= lzllp + Iyl =0
— |zl = llylly, =0
< x=y=0 ((L,] ||;), (L] ||;) are normed spaces)
= (z,y) =(0,0)
(iii) For each (w1, 1), (22, y2) € L x L'
(@1, 91) + (22, 92) |y = [[(@1 + 22,01 + 92) [
= llzs + 2ol + llvn + 92l
< leallp + 22l + Nyl + llv2ll
= (lzally + llyallg) + Clezllp + llyell)

= [[(z1, y)fly + [[(z2, )],

(iv) For each (z,y) € L x L' and for each a € F

lee(z, y)lly = e, ay)ll, = ezl + llayll
= lal [zl +Hal |yl = lel (el +Hylz) = lal 1tz 9l

Solution (2): Now, we show that ||(z,v)||, = max{||z||;, |yl } is a norm

on L x L'

(i) Since ||z||;, > 0 and ||y

>0 Ve L Vye L then

maxt||z]|,, [yl } = [[(z,9)ll, = 0.

(ii) [z, 9)lly =0 <= max{[lz],, |yl } =0
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= |zll, = llyllp, =0
<~ x=y=0 ((L,]] ||;), (L] ||;) are normed spaces)
= (z,y) =(0,0)
(iii) For each (x1,11), (22, y2) € L x L'
(@1, 1) + (@2, 92) [l = [ (21 4+ 22,91 + 12) ]
= max{|[z1 + 22|, ly1 + 12l }

< max{|lzy|l + 22l Nyl + llv2llz

< max{[lzi]lg, [yill g} +max{{|az| [y

v}
= [[(@1, y)lly + [1(z2, y2) [l
(iv) For each (z,y) € L x L' and for each a € F’
le(z, 9)ll; = l[(aw, ay)ll, = max{{jaz|| , [yl }
= max{|al [lz]|,, [l yll }

= || max{]|z]| ., |yl } = lal |(z,y)l,

As an application to Example 2.18: Let L = (R, | |) and L' = (R?|| ||,)

where ||z, = [Z?:l |xi|2]%. Ifr=3cL=Randy=(1,-2)€ L' =R
Find J|(z,y)l[, and ||(z,y)l,
Solution: [|(z,y)[l, = [|(3, (1, =2))ll; = [13[lx + (1, =2)|g:

=3+ [ 22 ]!

=3+ [P +|-27]? =3+ V5.

Find [|(z, y)[l, (H-W.)
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2.3 Normed space and Metric space

Definition 2.19.
Let X be a non empty set and d : X x X — R be a mapping. Then d is

called metric if
(1) d(z,y) >0 Vz,ye X
(2) d(z,y) =0 <= z=y Ve,ye X
(3) d(z,y) =d(y,z) Vo,ye X

(4) d(z,y) < d(z,z)+d(z,y) Vx,y,z € X.

(X, d) is called metric space

Theorem 2.20.
Let (L,|| ||) be a normed linear space. Let d : L x L — R defined by

d(z,y) = ||z —y|| Vx,y € L. Prove that (L,d) is a metric space. (i.e.,
every normed space is a metric space). The metric d is called metric

induced by the norm.

Proof. To prove (L, d) is a metric space.

(i) By definition of norm, |z —y|| 2 0 Vz,y € L. Hence, d(z,y) =
lz—yll =0

(i) d(z,y) = |z =yl = lly — 2| = d(y, »)

(ili) d(z,y) =0 <= [z —y| =0 <= z-y=0 < z=y

(iv) d(z,y) = [z —yll = lz — 2+ 2 =yl <z = 2[[+]lz =yl = d(z, 2)+

d(y, z) O]

Lemma 2.21.



Functional Analysis-Normed Linear Space Dr. Saba Naser, Dr.Zena Hussein, and Dr. Sabah Hassan 45

Let d be a metric induced by a normed space (L,| ||) (i.e., d(z,y) =

|z — y||). Then d satisfies the following;:
(i) d(z +a,y+a) =d(x,y) Vz,y,a € L.
(i) d(azx,ay) = |a|d(z,y) Vx,y € L, Ya € F.
Proof. (1) d(x+ a,y+a)=|lz+a—(y+a)|| =d(z,y) Vr,y,a€ L
(2) d(az, ay) = [lox — ayl| = [la(z —y)|| = ol [z —y| = lad(z,y). O

Remark 2.22.

Not every metric space is a normed space as we show in the next example

Example 2.23.

Let d be the discrete metric on a space X. Then d can’t be obtained from

anorm on L (i.e., (L,| ||), where

0if z=y

1 z#y.

d(z,y) =

Solution: Suppose d induced by a norm on L. Then, by previous

Lemma,
d(az,ay) = |a| d(z,y) Vo,y € X and Vo € F.

Let x,y € L such that x # y. Then azr # ay such that d(z,y) =

L, d(az,ay) =1 (1)
But |afd(z,y) = laf  (2)

Hence, d(ax,ay) = 1 # |a| = |a|d(x,y) for any a # £1. Thus, d can

not be induced by a normed space.
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Example 2.24.
Let d(z,y) = |z| + |y| Vz,y € R. Then, d is a metric on R (check!).
However, d is not induced by a normed space. To show this, let z =1,y =

3,a=2¢€R.
d(z,y) = d(1,3) = |1] + [3] = 4
On the other hand, d(x + a,y + a) = d(3,5) = |3| + |5| = 8

Thus, d(z,y) # d(x + a,y + a). By Lemma 2.21, d is not induced by a

norml.

2.4  Generalizations of Some Concepts from Metric

Space

In what follow, we give generalizations of some known concepts from metric
space such as open (closed) ball, open (closed) set, interior set, closure of

a set, convergent sequence, Cauchy sequence, and bounded sequence.

Definition 2.25.
Let (L, || ||) be a normed linear space. Let o € L,r € R,r > 0. Then the

set

By (xg) ={x € L: ||z — x| <7}

is called an open ball with center xy and radius r. Similarly,

Bi(xg) ={z € L:||x—x <r}

is called an closed ball with center xy and radius r.
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Definition 2.26.
Let (L, || ||) be a normed space and A C L. Then A is said to be

e open set if Vo € A,3r > 0 such that B,(z) C A.

e closed set if A= L\ A is open set

Remark 2.27.

Let (L, || ||) be a normed space. Then

(1) L, ¢ are closed and open.

(2) The union of any family of open sets is open

(3) The union of finite family of closed sets is closed

(4) The intersection of finite family of open sets is open
(5) The intersection of any family of closed sets is closed.

Theorem 2.28.

Any finite subset of a normed space is closed.

Proof. Let L be a normed space and A C L.

If A= ¢, then A is closed (by Remark 2.27(1))

If A= {x} to prove A is closed (i.e., to prove L\ A is open)

Let y € L\ A = L\ {z} so that y # z. Put ||z —y|| = r > 0. Thus,
xr ¢ B.(y) and hence B,(y) C A°= L\ {z}. Thus, A°is open and thus A
is closed.

If A={zy,.,z,},n€ Z;,n>1then A=U" {x;}. By Remark 2.27(3),

A is closed ]
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Exercise 2.29.

Let (L, || ||) be a normed space. Prove that

(i) The set Ay = {x € L : ||z]| <1} is closed
(ii) The set Ay = {x € L : ||z|| < 1} is open

(ili) The set C = {x € L : ||z|| = 1} is closed

Solution:

() Ay = {w € L+ |ja] < 1} = Fu(0).

So, A; is a closed set (by Definition 2.25)

(i) Ap ={x € L :||z|]| < 1} = B1(0).

So, A;p is an open set (by Definition 2.25)

(ili) C ={x € L: |jz|| =1}
L\C={zeL:|z||<1}U{zelL:|z|>1}
Let Cy ={x € L: ||z]| <1} is open set

Let Cy ={z € L :|x| > 1}

So, L\ Co ={x € L : ||z|| < 1} which is closed set. Hence, C5 is an open
set.

Thus, L\ C'= C; U} is an open set (by Remark 2.27(2)).

Definition 2.30.
Let L be a normed space and A C L. A point x € L is called limit point

of A if for each open set G containing z, we have (G N A) \ {z} # ¢.
The set of all limit points of A is denoted by A’ and is called derived set.

The closure of A is denoted by A and is defined as A = AU A’.

Proposition 2.31.
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Let L be a normed linear space and A C L. Then 2 € A if and only if

Vr>0,3y €Az —vy| <r.

Proof. (=) Letz € A= AU A’

If x € A’ then for each open set G, x € G,(GN A) \ {z} # ¢.

Since B,(x) is an open set then Vr > 0, we have B,.(x)N A\ {z} # ¢. Thus,
JyeB(x)NAy#az = ly—z<r (I

If v € A then Jdy = x such that ||y —z||=0<r  (II)

From (I) and (II), we get the required result.

(<) If for each r > 0,3y € A such that ||y — x|| < r; that is Vr > 0,3y €
A,y € B.(z)

— Vr>0,(B.(x)NA)\ {2} #¢ = x € A Thus, v € A O

2.5 Convergence in Normed Space

Definition 2.32.

Let (x,) be a sequence in a normed space (L, | ||). Then (x,) is said to
be convergent in L if dvr € L such that Ve > 0,dk € Z, such that
|z, — x| <€, Vn>k

We write x,, — x as n — oo or lim,_,.(x,) = ; that is

|z, —z|| = 0 <= x, — =.

(x,) is divergent if it is not convergent.

Theorem 2.33.
If (x,) is a convergent sequence in (L, || ||), then its limit is unique. i.e.,

If (x,,) - z and (z,) — y then x = y.
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Proof. Let € > 0. Since (z,,) — = and (x,) — y, then 3ky, ky € Z, such

that
€

% Vn > ko

|z, — z|| < g, Vn > ki and ||z, —y| <
Let k = max{ky, k2}, so Vn > k
[z =yl = llen —y — 20+ 2f| = [[(z0 —y) = (20 — )]

< I+ |<=+==
S || Tp Yy Tp X 5 2—6

— ||z —y|| <e€ Ve>0. Thus, |t —y| =0,s0z=uy. O

Theorem 2.34.

Let A C L where L is a normed space, let x € L. Then

v € A <= I(w,) asequence in A such that (z,) — z.

Proof. (=) Let 1 € A= AU A’

If x € A then the sequence (z,z,z,....) =z  (I)

If v ¢ A i.e.,x € A’ then for each open set G, v € G, (GNA) \ {z} # ¢.
Since B, (x) is an open-set then Vr > 0, we have B,(z) N A\ {x} # ¢. Set
O<r:%€ Zy “Then Vn € Z,, (B, (x) N A)\ {z} # ¢

Let z, € Bi(x) N A, s.t 2y # 2, hence, [z, — || < %, VneZ, (%)
Thus; 3(z,) € A such that ||z, —z|| < <, Vne€ Z,.

To show (x,) — x; that is ||z, — z|| <€, Ve>0

1
Let € > 0 so by Archmedian theorem dk € Z, such that — < ¢

k
1 1
Hence, Vn >k, — < — <€
n
1 1
From (*), Vn > k, ||z, —z|| < — < L <e Thus, =, — « (I1)
n

From (I) and (II), we get the required result.

(<) If 3(z,) a sequence in A such that (x,) — x. To provex € A = AUA’
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Ifrc Athenz € A

If x ¢ A. Let G be an open set in L such that x € G. Then 3r > 0
such that B,(r) € G. Since r > 0 and z, — z,3k € Z, such that
|z, — || <7, VYn>k.

This implies, x,, € B,(x) Vn > k and since z, € A Vn € Z,. Then

(B (z) N A)\ {z} # ¢. Since B,(x) C G, then (GN A)\ {z} # ¢. So,
z € A', and therefore z € A. ]
Theorem 2.35.

Let (x,), (y,) be two sequences in normed space (L, || ||) such that z, — =

and y, — y. Then

(1) (zn) £ (yn) =z £y

(2) Mz,) — Az for any scalar A
(3) (@)l = [l

Proof. (1) Since x,, — x, then
for each € > 0,3k, € Z; such that ||z, — x| < g, Vn > ky

Also sinee 9, — y, then
€

for each € > 0, 3ky € Z, such that ||y, — y|| < 5

Vn > ko
Let k = max{ky, ko}. Then, for each n > k

e = 2l < 5 and ly, =yl < 5 (1)

Now, for each n > k,

ICzn +yn) = (2 + )| = (0 = 2) + (Yo = I < [lzn — 2l + lyn =y

< —|—§:€ (from (1))

N

Thus, z, + ¥, — x* + y as required.
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€

(2) Let € > 0. Since z, — x,3k € Z; st ||z, —z|| < o

€

A

Vn >k  (II)

But |[Az, — Az|| = |A|||zn — 2| <

\ .

A =€

usin;(II)
Thus, A{x,) = A\x

(3) Let € > 0. Since x, —» x,Ik € Z, s.t ||z, —z|| <e, Vn>k (III)

But | [[,]| = [[2]| | < [|zn — 2| <e Vn > k. Hence, ||z,| — [|z|| O

—~
using (III)

Definition 2.36.

Let (x,) be a sequence in a normed space (L, || ||). Then (x,) is said to be

Cauchy sequence if Ve > 0,3k € Z, s.t ||z, — x| <€, Vn,m > k.

Theorem 2.37.

Every convergent sequence in a normed:space (L, || ||) is a Cauchy sequence.

Proof. Let (x,) be a convergent sequence in L. Then dx € L such that
x, — x and so Ve > 0,3k € Z, such that ||z, — x| < % Vn>k  (I)
Now, for n,m > k,

€ €
|0 = 2mll = (2n52) + (2 = 2w)|| < llwn — 2l + llom —2ll <5 +5 =

A\ 7

using (T)
Thus, (x,) is a Cauchy sequence. O

Definition 2.38.

Let (x,) be a sequence in a normed space (L, || ||). Then (z,) is said to be

bounded sequence if 3k € R, k& > 0 such that ||z,|| <k, Vne Z,.

Theorem 2.39.

Every Cauchy sequence (z,) in a normed space (L, || ||) is bounded.

Proof. Let ¢ = 1. Since (x,) is a Cauchy sequence, 3k € Z, such that

|lxn —znl|| < 1, Vn,m > k. Hence, ||z, — x| < 1, Vn > k (by
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considering m =k +1)  (I)

By Theorem 2.3(4), we have | ||z,|| — [[zg | < [|zn — gl <1 VR >k

usiI:g,(I)
Thus, ||z,|| — ||zk] <1 Vo >k

Then, ||z,|| <1+ |[|[zi41l] VYn >k
Lot M = max{[eal, 2all, - Jaell, 1+ lonea |}

Hence, ||z,|| < M  Vn € Z,. So, (x,) is bounded. ]

Corollary 2.40.

Every convergent sequence in a normed space (L, ||-]]) is bounded.

Proof. From Theorem 2.37, Every convergent sequence in a normed space
(L, ]|) is Cauchy, and from Theorem 2.39, every Cauchy sequence in a

normed space (L, || ||) is bounded. O

2.6 Convexity in Normed Linear Space

Definition 2.41. (revisit)
A subset A of a linear space L is said to be convex if Vz,y € A, A € [0, 1]

then Az + (1 — Ay € A.

Example 2.42.

Let A= (1,3) CR. Is A convex set?

Solution: Let z,y € A, A € [0,1]

Since l <z <3 = IA< Az <3x (I)

Since l <y<3 = 1(1-XA)<(1-Ny<3(1-X) (II)

By summing up (I) and (II)

A+ (1 =XN) <X+ (1-Ny<3Xx+3(1-2X)
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I<dr+(1-Ny<<3
Thus, Az + (1 — A\)y € A. Hence, A is convex set.

Proposition 2.43.
Let L linear space. Then

(1) Every subspace of L is convex

(2) If A, B C L are convex sets then AN B is convex (H.W.)

(3) If A, B C L are convex sets then A 4+ B is convex

Proof. (1) Let L be a linear space over a field £/ = R or C, let A be a

subspace of L. Hence, by Theorem 1.13, Vz,y € A and Va, § € F we have

ar + Py € A.

Take o = A € [0,1] and 5 =1 — X: Hence, ax + 8y = Az + (1 — )y € A.

Thus, A is a convex set.

(3) Let ay + by, a2 + by'€ A+ B, then aj,as € A and by, by € B.

To prove A(ay + b1) 4+ (1 — XN)(ag + b)) € A+ B, VA€ [0,1].

Since A convex'and aj,as € A = A1+ (1—-Naz € A VA€ [0,1] ()

Since B.convex and b1, by € B = A1 +(1-N)bs € B VA e [0,1]  (II)

By summing up (I) and (II) we get

Aap 4+ (1 —Nag+ b1+ (1 —N)bs € A+ B

i.e., May+0b1)+(1—=A)(ag+b2) € A+ B. Thus, A+ B is a convex set. [J

Remark 2.44.

The union of two convex sets is not necessary convex. For example, let

A= (3,7)U(7,12). Then A is not convex. To show this, take z = 6,y =
1 1

1
8,/\:§then/\x+(1—)\)y:5(6)+§(8):7¢AUB.
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Proposition 2.45.

Let (L, ]| ||) be a normed linear space, let 2y € L. Then B,(z,) and B,(x)

are convex sets.

Proof. To prove B,(xy) is a convex set. Let x,y € B,.(xg), and let A € [0, 1].
Then,

|z — xo|| <7 and ||y — x| <7 (I)

We must prove A\x + (1 — A\)y € B,(xg); that is we must prove

I Ax + (1 =Ny — x| <7

IAx + (1 = Ny —xo|| = ||[Az+ Axo — Axo + (1 — N)y — x¢|| (adding and

subtracting A\xg)
= [[A(z = @0) + (1 =X)(y — 20)|

< Az = o)+ [1 = Alfly — zol| < Ar+ (1= A)r =7
(by (I) and since A > 0 then |A\| =X, |1 = Al =1—-))

Thus, Az+(1—M)y € B,(x) and hence B, (z) is convex. Similarly, B, (z)

1S a convex set. []

Proposition 2.46.
Let (L;]l']]) be a normed linear space and A C L and convex then A is a

convex set.

Proof. Let z,y € A and X € [0,1]. To prove Az + (1 —=\)y € A

Let r > 0. Since z,y € A then by Proposition 2.31, Ja,b € A such that
o —al <rand Jy—bl <r (D

Since A is convex then Aa+ (1 —A\)b € A

Now, [[Az + (1 =Ny — (Aa+ (1 = N)b)|| = [Mz —a) + (1 = X)(y — b)]|
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<Az —all+ (1 =A) [ly = b

<Ar+(1—=XNr  (from (I))

I
ﬁ

Thus,||(Az + (1= X)y) — (Aa+ (1= Ab) | <

7

~"

S

Thus, from Proposition 2.31, Az + (1 — \)y € A. O

Remark 2.47.

The converse of the above proposition is not. true. For example, let A =
[1,2)U(2,5] C (R, | |) then A = [1,5] is a convex set. But A is not convex,

1
sinceif:vzl,y:&/\:5then/\x+(1—)\)y=%+%(3):2¢A.

2.7 Continuity in Normed Linear Space

Definition 2.48.
Let (L, || ||.), (L4} 1|") be normed linear spaces. A mapping f : L — L'

is called continuous at xy € L if for each ¢ > 0,35 > 0 (depend on z)

such that

Ve e L, if |lz—axl, <0 then |f(z)— f(zo)l|.’ <e.

ie,VreL, if xe Bs(x) then f(x) € B(f(x))

Theorem 2.49.
Let (L, ||;), (L',]| ||,") be normed linear spaces. A mapping f : L — L'

is continuous at xy € L if and only if V(z,) € L with x, — z( implies that

f(@n) = f(20)-
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Proof. (=) Let f be a contiunuous mapping at xy and let (x,) be a sequence
in L such that x,, — . To prove f(x,) — f(xo).

Let € > 0, then 46 > 0 such that Vo € L

if ||z — xol|;, < 6 then || f(x) — f(zo)||,’ <€ (From continuity of f at zy).
Since x,, — x¢ and § > 0,3k € Z such that ||z, — zo||, <9I, Vn > k.
Hence, ||f(z,) — f(x0)|l, <€, Vn > k;that is f(x,) — f(x0).

(<) Suppose that x, — xy implies that f(x,) — f(zg).. To prove f is
continuous at xy.

Assume that f is not continuous at x(, so de > 0 such that Vo > 0,dx € L
and

= zoll, < 6 but (=) — Flao)ll, > e

Now, Vn € Z+,% > (0, then dx,, € L.such that

|zn — ol < % but || f(z,) = f(x0)||;" > €. This means x, — xy but
f(x,) - f(xp) in L' which.is a contradiction. Thus, f is continuous at
0. []
Theorem 2.50.

Let (L, || ||) be a normed space and let f : (L, ||) — (R,]||) such that

f(z)=||lz|| Yz € L. Then f is continuous at x.

Proof. Let x,, — xy in L. Then Ve > 0,3k € Z, such that

|lzn — 20| <€ Yn>k (1)

But | flzall — 2ol | < ln — 20 ¥n > k

— | laall = aoll | <€ ¥n>k (Using (I))

— [f(@a) — f(w)l <€ Vn>k (Using (since f(z) = [lo]))

f(x,) — f(xo); that is f is continuous at . O



Functional Analysis-Normed Linear Space Dr. Saba Naser, Dr.Zena Hussein, and Dr. Sabah Hassan 8

Remark 2.51.
Let (L1, || |ly), (L2, ] ||s) and (Ls, || ||3) be normed spaces and let f : Ly X
Lo — L3 be a mapping. Then f is continuous at (xg,y9) € L1 X Lo if and

only if V{(zn,yn)) € L1 X Ly and {(n, yn)) — (20, %0) then f(zn, yn) —
f(l'o,yo)-

Theorem 2.52.

Let (L, || || be a normed space over a field F'. Then

(1) The mapping f : L x L — L such that f(z,y) =x+y Vx,y € L is
continuous at any point in L X L.

(2) The mapping g : F' x L — L such that g(A\,z) = Az Vr e L,VA€F

is continuous at any point in F' X L.

Proof. (1) Let (z¢, yo) be an arbitrary point in Lx L and (x,,, y,) — (zo, Yo)-
Then, x,, — ¢ and y, — yp such that

|zn — 20|l = 0 and ||y, —yo|| = 0 as n — +oo.

We must prove f(z, yn) = f(z0, y0). ie., [|f(zn,yn) — f(2o,90)[ = 0
Now, || f(n, yn) — f(z0, o)l = [ (zn +yn) = (20 + yo) |

= (@ = 20) + (Yn — w0) |

< [Jn — zoll + [lyn — woll
Thus, ||f(zn, yn) — f(x0,y0)|| = 0 as n — +oo; that is f is continuous at
(x0,90). Since (xg,yo) is arbitrary, f is continuous at L x L.
(2) Let (Ao, zg) be an arbitrary point in F' x L and (A,,xz,) — (Ao, Zo).
Then, A\, — A\ and x,, = xy.

Hence, |\, — Xo| = 0, ||z, — 2¢]| — 0 as n — +o0.
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We must prove g(An, x,) — g( Ao, o). 1€, ||g(An, xn) — g(Xo, z0)|| = 0

19(An; 2n) — g( Ao, 20) || = [|Anzn — Aozol|
= || AnZn—AnXo + AnXo — Aoo||
= [An(@n = 20) + (An — Xo)zoll
< [Anf lzn = zoll + A0 = Aol [l
But ||z, — x| = 0 and |\, — A\g| — 0 so that

lg( A, ) — g( Ao, zo)|| — 0 as n — oo; that is g( A, ) — g(Xo, z0). Thus,

g is continuous at (Ao, o). O

Theorem 2.53.
Let (L, ||;), (L', ]| ||,") be normed spaces and let f : L — L' be a linear

transformation. If f is continuous at 0 then f is continuous at any point.

Proof. Let xy € L be an arbitrary point and let z,, — xy.

To prove f(x,) — f(x¢) (using Theorem 2.49).

Since x, — xy, then z,, — g — 0

But f is eontinuous at 0, thus f(x, — z9) — f(0)

Since f is a linear transformation, then f(x,) — f(z¢) — f(0) =0

It follows that f(z,) — f(xo). O

Remark 2.54.
The condition f is a linear transformation in the above theorem is necessary
condition. For example: consider the normed space (R, | |). Let f is defined

as
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T if <1
f(x) =
r+1 if x>1.

It is clear that f is continuous at 0 and discontinuous at 1.

Also f is not linear transformation because if t =5,y =6 and a = =1
flax+By) = f(5+6)=f(11)=114+1=12

and af(z) + Bf(y) = f(5) + F(6) = (5+ 1)+ (6.+ 1) = 13

Hence f(az + By) # af(z) + Bf(y).

Theorem 2.55.
Let (L, ||;), (L', ]| ||,") be normed spaces and let f : L — L' be a linear
transformation. If f is continuous at a point x; € L then f is continuous

at each point.

Proof. Let x1 € L and assume that f is continuous at z;. Let 9 € L be
any point. To prove that f is continuous at zs. Let z,, — 29 in L. Then,
Tn — o — 0 and hence x,, — x9 + 1 — x1. Since f is continuous at x; then
f(xn — 29+ 31)— f(21).

Since f isa'linear transformation, then f(x,) — f(z2) + f(z1) — f(x1).
Hence, f(z,) — f(x2) — 0, and thus, f(x,) — f(z2).

Therefore, f is continuous at zs. Thus, f can not be continuous at some

points and discontinuos at some points. ]

Example 2.56.
Let f: R x R — R defined by
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fey) ﬁyyg if (z,y) # (0,0)
x,y) =

0 if (z,y)=(0,0).

Show that f is not continuous at (0, 0).

1
Solution: Let z, = — and y, = — Vn € N.
n n

Then, z, — 0 and y,, — 0. Thus, (z,,y,) — (0,0). But
l(—_l) = -1

f@nyn) =5 =% = =
ST

Hence, f(zq.y,) — 3 but f(0,0) = (0,0). Thus, f(z,.5,) + £(0,0).

Thus, f is not continuous at (0, 0).

2.8 Boundedness in Normed Linear Space

Definition 2.57. Bounded Set
Let (L, || ||;) be a normed space and let A C L. A is called a bounded

set if there exists k£ > 0 such that ||z|]| <k Vz € A.

Example 2.58.
Consider (R, | |) and let A =[—1,1). Since |z| < 1, then A is bounded.

Example 2.59.

Consider (R?,]| ||) be a normed space such that,
x| = [Z?:l |xi|2]% be the Eucledian norm, for each x = (zy,25) € R2

Let A= {(x1,20) € R*: =1 <121 <1, x5 >0}. Then, A is unbounded.
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Theorem 2.60.
Let (L, || ||;) be a normed space and let A C L. Then the following state-

ments are equivalent.

(1) A is bounded.

(2) If (x,,) is a sequence in A and (a,,) is a sequence in F' such that a,, — 0

then oy, — 0.

Proof. (1)=(2) Since A is bounded, 3k > 0 such that ||z,|| < k Vz, € A.
Since ay, — 0 as n — oo, then |a,| — 0. Hence,

loman = Ol = [lomzall = lan| [[2n]] < lan| k- (since [lz,| < k)

But |a,| — 0, thus |a,|k — 0. Therefore, ||a,z, — 0| — 0 and hence
oy, — Ox.

(2)=(1) Suppose A is not bounded. Then, Vk € Z,,3x; € A such that

1
Put o = T Hence, a; — 0. But

1 1
_ |1 a2 _
Then, ||agxy| > 1, thus gz - 0 which contradicts (2). O

Definition 2.61. Bounded Mapping
Let (L, || ||.), (L', ]| |,") be two normed space and f : L — L’ be a linear

transformation. f is called bounded mapping if for each A C L bounded

then f(A) ={f(a):a € A} is bounded set in L'

Example 2.62.

Let Consider (R, | |) and (R?, || ||) be a normed space such that
1

2 2 2 271 1
ol = [ 25 il 2 = [laa " + 2ol ]2 =[] + 23]z V(21,22) € R2.
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Define f : R? — R such that f(x1,22) = 1 + 22 V(21,22) € R% Show
that f is a linear transformation (H.W.). Let A C R? and A is bounded.
Show that f(A) is bounded.

Solution: Let A C R? and A is bounded to prove f(A) = {f(z1,x2) :
(1, 29) € A} is bounded.

Note that V(z1,22) € A = f(21,22) = 21 + 29 € f(A)

|[fo1, 2o = |y + 2| <[] + |2 (I)

Since A is bounded then 3k > 0 such that ||(z1,29)|| < k' V(x1,20) € A
— (@242 <k = 2242l <k?

Since z < 2?2 + 23 < k?, then 23 < k? = || <k (IT)

Similarly, 23 < 2% + 23 < k?, then 23 < k? = |2o| <k (I11)
Substitute (IT) and (III) in (I)

|f(z1, )| = |21 4+ 22| < 21| + |22 <k +k =2k

by (IT) and (ITT)
i.e., |f(z1,22)] < 2k. Thus, f(A) is bounded, and hence, f is bounded.

Theorem 2.63.
Let (L, || ||;)s(Z,] ||,") be normed spaces and f : L — L’ be a linear
transformation. Then f is bounded if and only if d& > 0 such that

If(@)l, <klzl|, Vzel

Proof. (=) If f is bounded and let A = {x € L: ||z||, < 1}.

It is clear A is bounded, and hence, f(A) is bounded in L' (by definition
of bnd function).

Thus, 3k > 0 such that || f(z)||,' <k Ve A (I)

(1) If = = Oy, then £(0y) = 0}, and thus, | £(01)| = 0 < & [|0g]| = 0.
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(2) If x # Oy, put y = H i such that ||y|| = H H |lz|| = 1.
Hence, y € A. Thus, || f(y)|| < k (IT)

£l = || 72| = | e >H @l

By (I0), |f(s)| < & , thus IIf( W< ke, 1@ < k] as
required.

(<) Let A be a bounded set. Then, 3k > 0 such that ||z|| < k; Ve e A
Since || f(z)|| < k||z|| Vx € X, hence ||f(z)|| < k||z|]| Vz € A. Then we
get || f(x)|| < kky Vo € A. Thus, ||f(z)]| < k2 Vz € A where ky = kky;

that is, f(A) is a bounded set. O]

Theorem 2.64.

Let (L, || ||;), (L',]| ||;") be normed spaces and f : L — L’ be a linear

transformation. Then f is bounded if and only if f is continuous.

Proof. (<) Suppose that. f is continuous and not bounded,

hence Vn € Z,,3x, € L such that ||f(x,)]|;," > n ||z,

B _ ISl nHwnH
Thus, IIf(yn) O = Il > L ien f) - FO) (D)
but gl = || || = el = 1

as'n — oo, we get ||y,|| — 0, and hence, y,, — 0.

It follows that f(y,) — f(07) =0}  (Since f is a linear transformation)
—_—

By Theorem 1.19(i)
This contradicts (I), thus, f is bounded.

(=) Assume that f is bounded to prove f is continuous for all x € L. Let
29 € L and € > 0, to find 6 > 0 such that

Ve e L, ||z —zol| <d = ||f(z) — f(zo)]| <e.
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| f(x) = f(xo)|| = ||f(x —z0)|| (f is linear transformation)

Since f is bounded, then 3k > 0 s.t. ||f(x)|| < k||z|]| Vxe L (I)

Hence, || f(z) — f(xo)|| = ﬂf(x — xo)|| < klz — xOH,
By (1)

< ké (Since ||z — xo|| < 0)

(By choosing 6§ = £ =€)

— k € =

T
Thus, ||z — x|l <0 = || f(x) — f(x0)| < e.
Hence, f is continuous at xy € L. Since x( is an arbitrary, then f is

cont. Vx € L. ]

Theorem 2.65.
Let (L, ||;), (L',]| |,") be normed spaces and f : L — L’ be a linear
transformation. If L is a finite dimensional space then f is bounded (hence,

continuous).

Example 2.66.
Let f:R? — R defined as f(z,y) =2 +y V(z,y) € R%
f is a linear transformation function (check!)

and dim(R?) = 2. Hence, f is bounded (hence, continuous).

2.9 Bounded Linear Transformation

Definition 2.67.
Let (L, ||.), (L, | ||.’) be normed spaces over a field F'. The set of all

bounded linear transformation mappings from L to L’ is defined as

B(L,L")y={T :T:L— L is a linear bounded (hence, cont.) trans.}
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Theorem 2.68.

Prove that B(L,L') is a linear subspace (over a field F') of the space of
linear transformation mappings with respect to usual addition and usual

scalar multiplication.

Proof. Let o, p € F and Ty, T, € B(L,L"). To prove o171 + 15 € B(L, L)
Since T7, T, are linear transformations, then by Theorem 1.30, a7y, 515 are
linear trans.

Now, oTh, BT are linear trans., by Theorem 1.30,a7} 4 (375 is linear trans-
formation.

Next, we show a1} + ST is bounded.

Since Ty, T5 are bounded, then dkq, ks > 0 such that Vo € L we have
IT3(@) ), < b flall, and [T, <Folall, (D)

Then, [|(aT1 + BT2)(x)|;, = [[(eT1)(x) + (BT2)(=)Il7
= |l Ty (x) +B.To()]|} (Definition of scalar multiplication)
< lleTa(2)|7 + 118.Ta(2)l7
= o T3 ()7 + B T2(2)II%
< |k [l=llp + 18] ka2 ||zl
= (lalky + |8 ko) [zl = K]l (k= lol ki +
8] k2)
Hence, oT7 + (15 is bounded.
Since oI + (715 is bounded and linear transformation, then o1} + 15 €

B(L, L. m
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Theorem 2.69.
Let (L, ||;), (L',]| ||;") be normed space. Prove that B(L, L") is a normed
space such that VI' € B(L, L") we have

17| = sup{[[T(2)[|, : @ € L, |||, <1}

Proof. To prove || || is a norm on B(L, L")
(1) since || T(x)||;, >0 Va € L,||z]|;, <1, then ||T]| > 0.

2) [Tl =0 < sup{|T(@)||p : x € L, |l=]lp <1} =0
= [[T@)), =0 vee Lz, <1
<~ T(x)=0Veel,l|z| <1
— T=0

(3) Let T1,T» € B(L, L)

177+ Ta| = sup{|[(Th + T2) (@) || - @ € L, |||, < 1}
< sup{[[(Ty()lp + [ Ta(@)l| - @ € L, |2, < 1}

< supger{|(Tu(@) - M=l < 1} + supger {I(Ta(@)]] - lzll, < 1}

= I3+ 1172

(4) [[oT| = sup{[|[(a. T (@)l : w € L, |||, < 1}
= |alsup{|[T(x)||, -z € L, [|lz||, <1}

= |l |17 O



Chapter Three

Banach Space

In this chapter, we introduce the following

1.1. Banach Space.
1.2. Examples of Banach Space.

1.3. General Properties of Banach Space.



68

Banach Space

Definition (3.1):-

Let L be a normed space, we say that L is a complete space if every Cauchy

sequence is convergent.

The complete normed space is called Banach space.

i.e,(L,|.1) is Banach space if

(1) (L, 11-11) is normed space

(2) (L, 11.11) is complete space.

Examples of Banach Spaces

Example (3.2) :-

The space F™ with the norm x| = (2’{‘=1|xi|2)%, x € F", is Banach space ?
Solution :- To prove that :

Q) (F™. .11 is normed space (H.W)

(2) (F™.).11) is complete space ?

Let < x,,, > be a Cauchy sequence in F* = x,,, € F", for eachm =1,2,3,...



(Xm) = (X1, X2, vee) Xy wun)

= (011, %12, «r X17), (X201, X292y ceis Xon )y wees (Xgm1s Xomzs wees Xomr) s +oe )
Then Ve > 0,3k € Z_ such that

1Xm — Xl <€, VM, j >k = |xp —xl12 <€e* ...(1)

Since,

Xm = (s Xmzy eoir X )y Xm; E F,i=1,...,n

xj = (%1, X%j2, 0, X)), X% EF,i=1,..,n

Xm — X] = (xm1 — le,xmz - ij y s Xmmn — x]n)

” ..

SO, X — xil1* = Xitq|xmi — %
2
From (1) & (2) = Y& |xm — xji|” < €2
2 2 .
=>|xml-—le-| <€“,Vm,j>k
= | — x| <€ = <xp>Vi=12,....,n isCauchyinF
But F is complete space = Vi = 1,2, ...... ,n, x; EF s.t

Xmi = X; = Ve > 0,3k; € N such that

€
Vn
Put, X = (xl, X7, ...,xn). Letk = {kl, k2, ...,kn}

|xmi—xi|< ,‘v’m>ki

69



70

€

2
ﬁ:) |xmi _xilz <7

= Vm>k, |x,—xl<

2

€
= Y o — X2 < n—= €2

2 _ \vn 2 2
But |x,,, — x|I° = Xisqlxm —xi|” <€

= |lx, — x||I? <€ = |x,, — x| <E

= < x,, > Isconvergent sequence = (F™,|.||) is Banach space .

Example (3.3) :-

The space F™ with the norm |jx| = (z?=1|xi|l’)r%, p=>1, x € F", is Banach space ?
(HW.))

Example( 3.4) :-

a . The space R™(or C™) with the norm

Xl = {111, «oey 1Xnl}, VX = (x4, ...,x,) € R (or C*) is a Banach space .

Solution : Let (x,;,) be a Cauchy sequence in F™

(Xm) = (X1, X2, eeey Xy s oer)

= ((X11, X192, » X11), (X921, X225 ey Xom )y weey (Xom1s Xnzs oo s Xmm)s oo )

Thenve> 0,3k € Z, such that ||x,, — x;|| <€EVm,j >k (1)

Since x,,, x; € F™ , then
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X = (X1 Xmzs voor X )y Xmi € F,i=1,...,n

xj = (%1, %j2) 0, X ), X, EF,i=1,..,n

Xm — x] == (xm1 - le,xmz - sz y s Xmn — x]n)
Then,
2¢m = X;|| = {|%m1 — Xj1] s [Xm2 — Xj2| s ooos [Xmn — Xjn|} < € VmM,j >k

It follows that |x,,; — x;| <€, Vi=1,..,nand ¥Ym,j > k

Hence (x,,;) is a Cauchy sequence in R(or C)

So, it is convergent to x; in F

Hence , for any €> 0,3k; € Z, such that |x,,,; — x;| <€,V m; > k;
putl ={ky,..,k,} .then foreach €> 0

| — x| <EVM>LVi=1,..,n

For each e > 0,

[1Xm = XN = {1Xm1 — X11, [Xm2 = X2l oo, [Ximn — Xnl} <E,V m>1

Thus (x,,) be a Cauchy sequence in R™(or C*)and x,,, = x. Thus, R"(or C") isa

Banach space

Example (3.4):-



72
b . Show that (I*,].]]) is Banach space where ||x| =sup |x;|, Vx = (x1,X2,...) €

1”2
Solution :- (1) To prove that (I*,]. 1)) is normed space ( H.W.)
(2) To prove that (I, |.])) is complete space

Let < x,,, > be a Cauchy sequence in [ = x,,, € [”

Xm = (X1 Xm2r o» Xmns =)
Xm — Xj = (Xm1 = Xj1s s Xmn — Xjns e )

1Xm — Xjll =SUp |Xpm — x| <€, Vm,j>k
= |xmi — x| <€,¥m,j >k
= |xp — x| < €,¥m,j >k =< x,, >is Cauchy in F , but F is complete =

Vi, 3x; € F such that

Xmi = X; = Ve > 0,3k; € Z, suchthat |x,,; —x;| <€
Letk = {ky, ks, ...} = |xpi — xi|l <€, vm>k..(1)

Put x = (x4, x5, ...) to prove that x € [®
And x,, = x. Now , since x,, € [® = 3k, € R* such that

1Xmil < km,Vi,but x; = (x; — X)) + X
1] < 1% — Xl + 1 Xs] < €+ Ky = x €17

By (1) weget, sup |x,; —x;| <€, Vm>k

= ||Ix,, — X|| <€ = < x,, > is Cauchy sequence
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= (I, .1 is complete. So, (I*,].1]) is Banach space.

Example (3.5) :-

The space C[a, b] with the norm ||f|| = {|f )|: x € [a,b]} Vf € C[a,b] is a Banach

space
Solution : Let (f ) be a Cauchy sequence in C[a, b]
Then ve> 0,3k € Z, suchthat |f — f Il <€ VYmn>k
Hence , ve> 0,3k € Z, such that:

{lIfm(x) — f,(X)|:x € Cla,b]} <EVM,n >k

It follows that |f,,,(x) — f,,(x)| <€ Vx € C[a,b], Vm,n >k

Hence, (f,,(x))is a Cauchy sequence in R.

Since R is a Banach space , then (f, (x)) is convergent to f(x)in R thus,
ve> 0,3k € N such that |f,,(x) — f(x)| <€ Ym >k

Thus, ||f,, — fll ={If,0 — fO|:x € [a,b]} <E Vm =k

Hence, f,, = f asm — oo thus, C[a, b] is a Banach space .
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Example(3.6) :-

The space (C[0,1], .11 is not Banach space where ||f|| = f01|f(x)| dx

Solution :- The space (C[0,1], .11 is normed space but not complete space , since

there exist Cauchy sequence but not convergent , for example consider

fal) = (1 if 0<x<s

To prove f,,(x) is Cauchy ? Letm >n > 3
1
Ify = Fall = [ 10 = F)@dA]
= [ 1fm(0) = fo(0)| dx

=[2G — fulOldx + Flfn() = fal)ldy

= [al = 1ldx + flfn0 - ful)ldx

< ilf Ol dx + i1, ()] dx



11 11

= J¢ m|—mx+%m+1| dx+ [2 " —nx+%n+1 dx
2 2

-, 1

“2m o 2n”

1 1
SO, If,—fall<5=t5, anm >0 =|f, — fo >0

=< f,, > Is Cauchy sequence

Butf, = f , wheref(x)=({1 if0<x<

N|R

0 if-<x<1
and f is not continuous function — f & Cla, b]

=< f,, > not convergent = C[0,1] is not Banach space.

Some Important Theorems in Banach Space
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Theorem (3.7): Let H be a subspace of Banach space L . then H is Banach space

iff H is closed in L

Proof :- =)

If H is Banach space = H is complete . To prove that H is closed ?

Let x € H = there exist a sequence < x,, > inH s.tx, - x.

So, < x, > is Cauchy sequence
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Since H is complete = 3y € H s.t x,, — vy, But the limit point is unique
So,x=y = x€H = H=H = His closed
<) Suppose that H is closed set in L. To prove that H is a Banach space ?

It is clear that H is normed space (because every subspace of normed space is

normed space ). Now , let < x,, > be a Cauchy sequence in H S L

= the sequence < x,, > is Cauchy sequence in L, but L is complete.
=< x,, > isconvergentsequencein L .i.e,I3x EL s.t x, > x

Since x,, € H = x € H (by theorem) , but H isclosed .i.e, H = H

So,x eEH = < x,>convergentinH = H iscomplete

Theorem (3.8):- Every finite dimensional normed space is complete space
Proof :- Letdim L=n >0 and {xq,x3, ..., x,} basis for L. T.p L is complete
Let < x,, > be a Cauchy sequence in L =|x,, — x;|| <€, Vm,j>k,
e, X —xil=>0, Vm,j>k v (D)

Since, x,,,xj € L. By previous lemma = x,, = X1\ @miX; ,&mi EF
Xj = Nisq @ix; ,@j; € Fand xp — x5 = XLy (@m; — @)X,

Since {x4, x5, ..., x, } is linearly independent = 3¢ > 0 s.t
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1Xm — X1l = 1 2721 (@i — @) 1| = € Xiq|@mi — @ji|  wov e (2)
From (1) & (2) we get 37y |t — aji| = 0 asm,j - .

= |am; — aji| > 0asm,j > o, Vi.

=< a,,; > Is Cauchy in F & F is complete

= a, —>q, Vi=12,.....,n

i.e,xm = x ,where x =Y a;x;

= L is complete space

Corollary(3.9):- Every finite dimensional subspace of a Banach space is closed

set.

Proof :- Let M is finite dimensional = M complete = M is closed (by above

theorem)
Dentition (3.10) Quotient Space

Let X be a linear space over F. Let H be a subspace of a linear space L. Let x +

H={zz=x+y,x€L,y€H}

Define addition and scalar multiplication by

b+ +0+Y) =Cu+x)+y, V x4y, x,+yel/y

a.(x+y)=a.x+y,Vx+yE§, a €F
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Then the space (%, +,.) is called quotient space (or factor space)
Proposition (3.11) :-

Prove that (%, +, .) isalinear space over F. (H.W.)

Theorem( 3.12) :- Let L be a normed space and H be a closed subset of L, then

L/H is normed space with |. ||, where
Ix + Hil, =inf inf{lx +yl:y € H}
Proof (1) T.P lx + H||; =0

Forany x+ H € L/H
Ix+y|l=0 VyeH

{lx +yl:yeH} =0

lx+ Hil, =inf {lx+yl:y € H} =0

@ TPIx+H|;, =0 x+H=H=0y4
(=)If Ix+Hl, =0=inf {Ix+yl:y € H} =0
Hence , 3(y,) € Hsuch that |x+y_ || > 0asn— 0

Hence,x +y, - 0asn = 0.Thus, y, = —x.
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Therefore , 3(y,,) € H such that y,, » —x thus —x € H ( by theorem).
Now, since H is closed ,then —x € H = H ,i.e.,—x € H

Since H is a subspace then x € H and x + H = H, thatis,, x + H = 0y
(S)Ifx+H=H=0,,,thenx€H.i.e.,x+H€EH, VyEH
Hence, ||x + H|l, =inf {lIlx + yl:y € H} = inf {|izll:z € H}

Since 0 € Y and |0 = 0,so inf {|iz|l:z € H} = 0.Thus, |lx + H||,; = 0
@) T.Pla.(x + H)|I, = |alix + HIl,, a €F

If « = 0 then (3) holds

If « # 0 then

le. (x + H)Il, =inf {lla(x +y)l:y € H}

=inf {lalix + yi:y € H}

= |al inf {Ix + yI:y € H}

By using the proposition (If A is bounded below and @ = 0, then inf (ad) =«

inf (A))
= lalix + HI,

(4)Letx; +H,x,+H€EL/H
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|Gy + H) + (2 + H)|ly = (|G + x2) + HIly

inf {llx; +x2 +yl|l:y € H}

inf {||x; +x, +2z; +2,||:21,2, € H}

<inf {|lx; + z1|| + ||x2 + 22||: 21, 2, € H}

=inf {llx1 + z1|l:z; € H} +inf {[|x; + 23|z, € H}
=y + HIl, + I, + HII,

Thus L/H is a normed space

Proposition (3.13) :- If L is a Banach space and H is a closed subspace of L .Then

L/H is a Banach space.

Proof: L/H = {x + H: x € L}. Let (x,,) be a Cauchy sequence in L / H then , x,, =

X, + Hwhere x,, E L,Yn € Z,

ve> 0,3k € Z, such that ||x,,, — x,]| <KEVn,m >k
So,ve> 0,3k € Z, such that ||x,,, — x, + H| <€Vn,m >k
Then, ve> 0,3k € Z, such that:

inf {|lxm —xp+ H|l:y € H} <€Vn,m >k .This implies Vy € H, (x, +y) is a

Cauchy in L

Since L is a Banach space , then 3z € L suchthatx,, + y—=z=(Z—-y)+y



=w+y, VyeEH

Thus, x,, + H—>w+ H. Thus L / H is a Banach space .
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Chapter 4

Inner Product Space

Definition 4.1.
Let L is a linear space over F. A mapping ( ,) : L x L — F'is called an

inner product on L if the following axioms hold
(1) (z,z) >0 Vxe L.

(2) (z,2) =0 <= x =0p.

(3) (z,y) = (y,x) Vz,y € L, where (z,y) =conjugate of (x,y).
(4) (ax + By, z) = alz,z) + f{y,2) Vz,y,z€ Land a, € F.

(L,( ,)) is called inner product space (briefly, I.LP.S) or Pre-Hilbert

space.

Remark 4.2.
(1) If FF =R then axiom (3) becomes (z,y) = (y,z) Vz,y € L.

(2) Every subspace of inner product space is an inner product space.
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4.1 Examples of Inner Product Space

Example 4.3.

Let L = R? and let { ,) : R? x R? — F is defined as (z,y) = z1y1 +
zoys  Va,y € R? where z = (21,79),y = (y1,%2). Show that ( ,) is an
inner product on R?.

Solution: (i) We check the I.P.S axioms

(m,2) =22+ 23>0 Vo= (v1,20) € R

(r,2) =0 & 2}+23=0 & 11 =122=0 <= 2= (0,0)

(x,y) = 21y1 + T2y2 = (z,y) (since ' =R)
Let o, 5 € R and let © = (21, 22),y = (Y15 42), 2 = (21, 22)

axr + By, z) = ((aw1 + Byi, axs + Bya), (21, 22))
= (ax1 + By1)z1 + (s + Bys) 20

= (ax121 + axsze) + (By121 + By222)
= a(z121+ x222) + B(y121 + Y222)

=a(z,z) + B{y, 2)
Thus, ( ,)-is an inner product on R?.

As an application to Example 4.3:

Let x = (2,1),y = (0, —-3),2 = (3,4). Find (x, 2), (z,x), (x + y, 2).
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Remark 4.4.

As a generalization of Example 4.3, let L = R" and (,) : R* x R" — F
is defined as (z,y) = x1y1 + Toy2 + ... + Tpyn Vr,y € R" where
r = (21,....,2,), ¥y = (Y1, ..., Yn). Then, (R™, (,)) is an inner product space

(check!). The space (R",(,)) is called usual inner space.

Example 4.5.

Let L = R?, which of the following is an inner product on L.

(i) (z,y) =3z1y1 + x2y> (H.W.)
(i) (z,y) = 23y} + 233

where & = (21,22),y = (41, y2)
Solution: (i) We check the I.P.S axioms
(ii) The first three axioms of the definition of inner product hold but the
forth condition does not satisfy.
fa=p=1andlet z=(1,—-1),y =(—1,0),z2 = (—2,2). Then
(ax + By, 2) = ((0,—1),(=2,2)) = 0*(=2)* 4+ (-1)22 = 4
and oz, z) + B{y, 2) = ((1, =1),(=2,2)) + 5{(=1,0),(=2,2))
= 11 (=2)2 4 (—1)2.22 4 (—1)2.22 + 02.2712

Thus, (ax + By, z) # alz, z) + 5{y, 2).
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Example 4.6.
Let L = F" be a linear space and let { ,) : F" x F" — F defined as
(x,y) =Y 01 2Y; = ©1Y+...+2,y, Vr,y € F"wherex = (z1,...,2,),y =
(Y1, .--» Yn). Show that ( ) is an inner product on F™.
Solution:
(1) (s x) = 3000 @i = 320 jz|* > 0
(2) (z,2) =0 —= S |z’ =0 <= 2, =0 Vi=1,..,n
— = (21,...., %) = (0;...,0) = Opn
(3) (Y) = 2o 2l = Do Tyi = D Ui = (Y, )
(4) Let a, f € F and let x,y,z € F"
axr + By = (axy + Pyi, ..., ax, + Byn)
(ax + By, 2) = > i (ax; + Byi)Zi = D> wiZi + B yiZi = oz, z) +
By, 2).
Thus, (,) is an inner product on C".

As an application to Example 4.6:

Let L = C? and (z,y) = Z?Zl vy, Vr,y € C? where v = (v1,79),y =

Solution: (z,z) = (24 3i)(2 + 3i) + (1 +4)(1 +4)
= (24 30)(2—3d) + (1 +4)(1 — i)
=(4+9+(1+1)=15

r+y=(3+4i,2)

(x+y,2) =3+41)2+2(1+4) = (64+8)+2(1—14) =8+6i

(x,y+ 2) =
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Example 4.7.

Let L = C[0, 1] be a linear space over R, and let (, ) : L x L — R is de-
fined by (f, g) / f(x)g(z) dx. Prove that ( , ) is an inner product on L.
Solution: / f(x)f(x) dx = / [f(z)]* dv >0

() (/1) =0 = / () de =0 <= [f() =0 vae 0,1

— f(x)=0 Vzel0,1] & f=0
(3) Let a, € R and f,g,h € L

(af + By, h) = / (af + Bg)(@)h(a)ds

1 1
:a/o f(x)h(m)derﬁ/o g(x) h(x) dx

= alf, h) + B(g,h)

1) (f.g) = / F(@)g(x) di = / g(x) () dz = (g, f)
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As an application to Example 4.7:

Let f(x) =2 +1, g(x)=2% h(z)=3x+2 Vzecl0,1]

Find <f7f>7<f+gah>7<f7h>7<2f+3.g>h>v<f_gvh_g>

Example 4.8.
Let L =R and (, ): R xR — R such that (z,y) = |[ry| Vz,y € R. Is

(L,(,)) LP.S? (H.W.)
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4.2 Some Properties of Inner Product Space

Theorem 4.9.

Let (L,(, )) be an inner product space (I.P.S). Then, Vz,y,z € L and

a,feF

(1) (x,0L) = (0p,x) =0
(2) (z,ay + Bz) = alz,y) + B(z, 2).

Proof. (1) (0p,z) = (0 + 0y, z)
= (0g, x) + (0, )
Hence, {0z, z) + 0 = (0, 2) + (0, 2)
Thus, 0 = (0, z) (I)
Now, (0r,z) = (z,0r)
0= (x,05)
0= (z,0p)

(2) (z,ay + Bz) = (ay + Bz, z)

= aly,z) + B{z, )

Corollary 4.10.
If (L,(, ))is an I.LP.S. Then

(i) <Z?:1 ozixi,y> =>", ozi<:vi, y> where z1, ..., 7,,y € L
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(11) <$7 Z?zl Bzyz> — Z;‘L:l B@<x7yl> where LyYly ooy Yn c L

(i) (D07 i, 25 Biyy) = 2oimy ai( 252 Bilwi, y5)

where x1,...,Tn, Y1, .oy Ym € L

Proof. (i) We proof using induction.

If n =1 then (a121,y) = ag(z1,y) (by definition of norm)

If n = 2 then (a1 + asxs,y) = ay(r1,y) + as(ze,y) (by-definition of
norm )

Suppose (i) hold when n =k

< Z?:l QT y> = Zle O‘i<xi7 y> (I)
To prove (i) hold when n =k + 1

Top. (X iy y) = S0 el y)
< Zfif T, ?J> = < Zle G + Oy 1Tk 1,5 y>
= (8 i, y) + (i, y)
S ZL Oéz'<fffz'7 y) + 1 (Tre, y)

= 25211 Oéi<$z'7 y>
(i) The proof is similar to the proof of (i).

(iii) Let z = Z;nzl Bjyj

< Z X, Z Bjyj> = < Z T, z>
=1 j=1 i=1

= Z ai<xi, z> (by part (i))
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= iz, > Biy;)
i=1 =1

=3l Rifen) (ot )
1=1

Theorem 4.11.
Let (L,(, )) is an L.P.S. such that (v;,w) = (ve, w)

v1 = v9. Also, if (v;,w) =0 Vw € L then v; = 0.

Proof. By assumption, (v; — v, w) = (vy, w) — (vg, w) =0,

90

Yw € L. Then

Put w = v; — vy, then (v; —v9,v1 — 1) =0 = v =V =0 = vy = vo.

Now, (vi,w) =0, Yw e L = (v1,v1) =0 .= v; = 0.

Theorem 4.12. General Cauchy Schwarz’s Inequality

]

Let (L,( , )) is an L.P.S. and let || || : L — R is defined by ||z| =

\/<x,x> Vo € L. Then,

[z 9)| < |zl |lyll  Va,y € L.

Proof. If x =0 or.y = 0 then (z,y) = 0, and hence (z,y) =0 < ||z| ||y||

IfyyéO,putz:i (I)

o]
=276z 2) = <HyH Hyu>

<y y) =

o llyl” = (IT)

Next, it is enough to show that |(z,z)| < [|z]|

because if |(z, z>| < ||xH then from (I)

o) = ()| -

|\fcy!<H$H

|y Y]

[z, )| < el Nyl
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Let a € F then (x—ozz,x—ozz> >0
<x,az> — oz<z,x> — @<x, ,z> + o@<z, z> >0

HxH2—a<x,z>—a<z,x>—l—@@ 12> >0

H
o
S
=

—~
=

o)

lz|? = (2, 2)(z, 2) + (z,2)(z, 2) — @z, 2) — alz,2) + a@ > 0
el — |G, ) + G, 2) (2, 2) — ) — (e w) @) 20

ol = [ (2, =) + (2. 2) (2, 2) = @) = a((z,2) =) 2 0

lol* = {2, 2)[" + ((2,2) = a) ({w.2) —a) 2 0

|z = [(z,2) |+ [(2,2) —a° >0 VaeF - (1)

Put o = (x, z), then (III) becomes

ol = Kz, 2)" 20 = [{z,2)]" < ]

[z, )| < ||

il < ] (using (0)

)y < e

[z y)| < llzll Iyl

As an application to Theorem 4.12:

If L =R" and <x,y> = >0 xy; for any X = (21, ..., 2,), Y = (y1, ..

Apply Cauchy Schwarz inequality.

91

o UYn)-

Sloution: We have , ||z|| = [<:L‘ x>]% = [ " J and ||y|| = [<y,y>]% =

PYTE

From Theorem 4.12, |(z,y)| < ||z|| [ly||; that is
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Theorem 4.13.

Every inner product space is a normed space and hence a metric space.

Proof. Let (L, (, )) is an L.P.S. and let the function || || : L — R is defined
by

|z|| = /{z,z) Vx € L. To prove | | is a norm on L
(1) Since (z,z) >0 Ve e L = |lz|| =+/{(z,2) >0 VzeL

2) z[| =0 <= /(z,2) =0 < (2,2) =0 < z=0x

(3) Let « € F and xz € L
Hosz2 = <oza:,ozx> = o@<:1:,x> 2 \oz\2 H$H2

Thus, [laz|| = [af ||z

(4) T.P. flz +yl| <[zl + [ly]| Vz,yeL
|z + gl = (z +y, 2 +y)
=(z,7) + (. 7) + (T,9) + (¥ y)
= ll2|® + (2, y) + (z,y) + |yl
= ||2||* + 2Re(z, y) + [ly]’
< ll* + 2 [{z, y)| + lyl®

< lz[I* + 2 {2[l lyll + lyll*  (by Cauchy Schwarz)
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= (llzll + llwl)?

Thus, [z +yll < flz]l + |-

Theorem 4.14.
Let (L,(, )) is an L.LP.S. and =,y € L. Then

(1) Jlz +ylI* = ll=|I* + 2Re(x,y) + y|? (Polarization Identity)
2) llz+ylI” + |z = yl* = 2]lz)* + 2|yl (Law of Parallelogram)

2 2 . .2 . .12
[l +ylI” = llz = ylI” + iz +iyll” = illx —iy]]”]

AN,

(3) (z,y) =

Proof. (1) ||z +y|* = (z +y,2 +y)
= (z,2) + (y,2) + (z.9)+ (v, 9)

= [l + (z,y) +Czry) + lyll”

2 2
= ||z[I” + 2Re{z,y) + [ly|

2 2 2 2
(2) TPz 4+ yl” e = ylI” = 2{|z[I” + 2 ly]]

By part (1), ||z + sz = ||xH2 + 2R€<x7y> + HyH2 (I)

lo—yl* = (z -y, 2 — y)
= (z,2) = (y,x) — (z.9) + (¥, 9)

= [lz]|* = (z,y) — (z,y) + ||y’

= ||lz[|* = 2Re(z,y) + [ly|*  (ID)

By summing up (I) and (IT) we get ||z +y||> + ||z — y||> = 2 ||=|* + 2 ||y|’
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(3) By parts (1) and (2), we have

|z +ylI* = llz — ylI* = [l«]*+2Rez, y) +lyll* = (1] —2Re(z, y) + 1y|*)
= 2Re<:c,y> +2Re<x,y>
= (TY) +(@y) +(TY) + (5,9)

= 2<y, £L‘> + 2<:E, y> (I)

|z + iy||* = {z + iy, 2 + iy)
= (z,2) +i{y,z) +i(z,y) + {y,y)
= |le|* +i(y, x) — i(z,y) + |lyll’
|z —iy|* = (v — iy, @ — iy)
= (@) —i{y.x) =iz, )+ (9. 9)

= |le|* = i(y, z) +i(z,y) + |lyll’

Hence we get,

il +iyl* = il —ayll® =iz + iy, 2) — iz, y) + Nyl ] — il ll=]® -
iy, x)y +1(z,y)
+ [yl
=illz)* = (v, 2) + (z.y) +illyl® =i lel® = (y,2) +
(z.y) —illyll”

=2(z,y) — 2(y, x) (IT)

By (I) and (IT), we have
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Iz +yl* = lle = ylI* +illz +iyll* =il —iyll* = 2(y, @) + 2(z,y) +
2(,y) = 2y, )
|z +yll* = lle = ylI* +ille + iy||* — i |z — iy]|” = 4(z,y)
eyl — lle =yl + ille + iyl — i o — gl = () 7
Remark 4.15.
Any normed linear space generated from inner product space must satisfies

the three laws of Theorem 4.14.

Example 4.16.
Let L = Cl[a,b] and let ||f|| = max{|f(x)| : * € [a,b]}. Then the converse

of Theorem 4.13. i.e.,

(1) Show that (L, || ||) is a normed linear space (H.W.)

(2) Show that L is not generated by I.P.S (i.e, L is not I.P.S)

Solution: (2) To show that L is not I.P.S, we shall show that parallelo-
gram law does not hold. ie., |[f+gl*>+|f —gl* # 2IfI° +2|g|° for

some f,g € Cla,bl.
Let f(x) =1 and g(x) = Z:Z Va € [a,b]

Note that f, g are continuous on |[a,b]. Thus, f,g € Cla,b].

[f] =1 and [lg] =1

r—a T —a

If +gll = |1+b_a‘:max{ 1+b—a :x € [a,b]} =2
L —a r—a

I f— gl = ‘1—b_a‘:max{ 1_b—a cx € [a,b]} =1
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If+glP+f—gl’=4+1=5 (I)
20171+ 2gl]> =2.12 +2.12 =4 (1)
By (I) and (IT), we get || f + || + | f — glI> # 2| £I* + 2 lg]”

ie,b#4
Example 4.17.

Let L = R? and let ||z]] = |z1] + |72] Vo = (21,79) € R®~ Then the

converse of Theorem 4.13. i.e.,

(1) Show that (R2, || ||) is a normed linear space (H.W.)

(2) Show that R? is not generated by I.P.S (i.e, R? is not I.P.S)

Solution: (2) To show that L is not [.P.S, we shall show that parallelogram
law does not hold. i.e., ||z +y||> 4[|z — y||* # 2|z||* + 2|jy||*> for some
z,y € R?

Let x = (2,3) and y = (=6, 1)

|zl = 12| + 13| = 5= 2||z||* = 50

lyll = |-6] + 111 =7 = 2|ly||* = 98
[z +yll =(=4,4)| = |4 + |4] = 8
|z +y|I* = 64

le =yl = 118,2)] = [8] + 2| = 10

lz —y||* = 100

Thus, ||z +y||* + ||z — y||* = 64 + 100 = 164
and 2||z)* 4+ 2 ||y||* = 50 4 98 = 148

2

2 2 2
Hence, |lz +y|” + [z — y[I” # 2 [=[|” + 2 [y|

i.e., || || does not satisfy paralleogram law.
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Example 4.18.

Let L = R? and let ||z|| = max{|z|,|z2|} V(z1,29) € R% Then

(1) Show that (R?, || ||) is a normed linear space (H.W.)

(2) Is R? generated by I.P.S? (H.W.)

97



Functional Analysis-Inner Product Space Dr. Saba Naser, Dr.Zena Hussein, Dr. Sabah Hassan 98

Theorem 4.19.

Let (L,(, ))is an [.LP.S. Then

(1) If (z,) — « and (y,,) — y then <xn,yn> — {(x,y)

(2) If (z,) and (y,) are Cauchy sequences in L then (z,,y,) is a Cauchy

sequence in F'.

Proof. (1) {n,yn) = (x + (0 — ),y + (o — )
= (2,y) + (T, yn — ) + (z0 — 2, ) + {T0 — T, Y0 — )
(T yn) — (2,9) = (2,90 — y) + (20 — 2, y) + (T — T, 90 — ¥)
{2 yn) = (@ 9)| = (90 = ¥) + (20 =2, 9) + (20 = 2,90 — y))|
< {2, yn = y)| + Kz — 2, 9)| + (o0 — 2,90 — 9)|

< @l lyn =yl + llzn = 2l {lyll + 20 =zl lya =yl (By

Cauchy Schwarz)

But (x,) — « and (y,) — y then ||z, — z|| = 0 and ||y, —y|| = 0

Hence, }<xn,yn> = <x,y>’ — 0, and hence, <xn,yn> — <x,y>
(2) for any n,m € Z,

<$na yn> = <(517n — Tm) + Ty (Yn — Ym) + ym>

= (Tn — Ty Yn — Ym) + (T Y ) + (T Yn — Ym ) + (20 —

Tins Ym )
<xm yn> - <xm7 ym> = <37n = Ty Yn — ym> + <$m, Yn — ym> + <£Cm, Yn — ym>
{2y Yn) = (@ Y ) | = [(Zn = T Yo = Ym) + (@ Yo = Ym) + (T Y = Y|

S ‘<:Un — Ty Yn — ym>‘+|<xmayn - ym>|+‘<xmyyn - ym>‘
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< l#n = 2wl 1y = ymllFllzmll 190 = ymll+ll2n = 2l [[ymll - (By
Cauchy Schwarz)
But (x,) and (y,) are Cauchy sequences, then ||z, — x| — 0 and ||y, — ym|| —

0 as n — oo. Also, (x,) and (y,) are bounded sequences, then as n — oo

[(@ns Yn) = (T Ym)| = 0 O

Corollary 4.20.
Let (L,(, )) is an I.P.S. Then

(1) If (x,) — « then ||x,| — |||

(2) If (z,) is a Cauchy sequences in L then {||z,|| ) is a convergent se-

quence in R.

Proof. (1) Since (z,,) — @ then (@, z,) = (x,2) (By Theorem 4.19)
Hence, [|zall? = [l2]% L., Jzall = 2]

(2) Since (z,) is a Cauchy sequences in L, then by Theorem 4.19(2),
<xn,a:n> is a Cauchy sequence in F. Since F' = R or C then F' is com-
plete. Thus, ( H:cn|]2> is a convergent sequence in F. Thus, (||lz,] ) is a

convergent sequence in F []
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4.3 Hilbert Space

Definition 4.21.
Hilbert space is an I.P.S. (L, (, )) which is a Banach space with respect

to ||| = /(z, x).

Example 4.22.

Consider the LP.S. (R™, (, )) (or (C™, (, )) such that (z,y) = D" | ;7
where © = (z1,...,2,),y = (y1, ..., yn) € R" (or C"). (see Example 4.6)

Show that (R", (, )) (or (C",(, )) is Hilbert space.
Solution: Since \/(z,z) = [ Y1 xTi]* = | Yy |.I’Z"2]% = ||lz|

From Example 3.2, R" (or C") is a Banach space w.r.t. ||z| = /(z,x),

(SIS

and thus, (R", (, )) (or (C™,(, )) is a Hilbert space.

Example 4.23.
1
The space C|—1, 1] with the inner product defined by (f, g) = / f(z) g(x) dx
~1

is not a Hilbert space.

Solution: Let

1 if

3=
IA
8
IA
—_

an - me2 = <fn - fm; fn - fm>

1 1
Suppose n > m, then — < —. We must find f,(z) — f, ()
n o m
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0 if —1<2<0

fal@)=q nz if O<z<l

1 it <z <l
\
and
(
0 if —1<2<0
fm(®) = ¢ ma if O<z<i
1 if L <z<l
\
Then
0 if —1<z<0
(n —m)x if O<z<2
fol@) = fm(2) = S
1 —mx if %Sxﬁ%
0 if LI <z<l

1

1fo = fll® = /_1(fn(56) — fin(2))* dv = /Oi(n —m)*a? dr + /;1(1 -

ma)? dx
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2

(n—m) 1 n—m

= 5+ ( )
3n 3m- n
(n —m)?
3nm
(n —m)*

2
Thus, || = full = 55—

Since n > m, thenn =m +t

t2
2
an - me = —3(m+t)2m —0 asm —

Hence, || f, — fi|| = 0. Thus, (f,,) is a Cauchy sequence.

But f, — f where

1 if 0<z <1

Thus, f ¢ C[—1,1]. Then, (f,) is not convergent in C[—1,1].

space is not Hilbert space.

Remark 4.24.

102

i.e., The

Every Hilbert space is a Banach space but the converse is not true. For

example, the space C|[a, b] with || f|| = max{|f(z)| : « € [a,b]} is a Banach

space (see Example 3.5). However, Cla,b] is not a Hilbert space since it

does not satisfy parallelogram law; that is || || can not be obtained from

inner product (see Example 4.16).
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4.4 Orthogonality and Orthonormality in Inner Prod-

uct Space

Definition 4.25. orthogonal Elements
Let (L,(,)) be an I.LP.S and x,y € L. Then z is said to be orthogonal

on y (denoted by z L y) if and only if (z,y) = 0.

Example 4.26.

Let L = R? is I.P.S such that (x,y) = x1y1 + T2y is usual inner product
Vo = (z1,72),y = (y1,92) € R% Let x = (—6,3),y = (2,—1),2 = (1,2).
Show that 1 z,y L z and y f .

Solution: (z,z2) = ((—6,3),(1,2)) = =6+ 6 =0. Hence, z L z.

(Y, 2) =

(y,x) =

Proposition 4.27.
Let (L,(,)) be an LP.S and z,y € L. Then

(i) fx L ytheny L x.
(i) 0 Lz Vx € L. (HW.)

(iii) if L o then x = 0;. (H.W.)

Proof. (1) Let x L y then (z,y) = 0. From Definition 4.1(3), we have

(y,z) = (z,y) =0. Le,y L z. []
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Proposition 4.28.
Let (L,{,)) be an I.P.S and z,x1, ..., x, € L such that z is orthogonal on

x1, ..., L,. Prove that x is orthogonal on any linear combination of 1, ..., z,,.

Proof. Let w be a linear combination of x4, ..., x,. i.e., there exists a; € F

such that w = " | az;. We must show (z,w) = 0.
(x,w) = (2, > i) = > 0 a(x,x;)  (by Corollary 4.9(ii))

=>" .0 (From the assumption)

= 0. [
Example 4.29.

(1) Find the value of a that makes the vectors X = (a,2,—1),Y =

(3, —5,2) orthogonal vectors in R? with usual inner product. (H.W.)

(2) Let (L, (,)) bean .LP.Sover R and let z, y € L such that ||z| = ||y|| =1

(i.e., = and y are normal elements). Prove that x +y L x — y.

Answer: (z+y,x=y) = (x,z) — (x,y) + (y,x) — (y,y) = HCL‘HQ — (z,y) +

(z,y) — ||y = 0. Hence, z +y L z — .

(3) Let (L, (,)) be an I.P.S and let z,y € L such that = L y. Prove that

2 2 2 2
lz4+y” = [lzl|” + lyll” = [z —y|".
Answer: ||z +y|* = (z+y, 2 +y) = (2, 2) + (x,y) + {y,2) + (y,)
2 2 2 2
= [|z[|” + 0+ 0+ |lyl|” = [l + [yl

. 2 2 2
Similarly, ||z —y|” = [l=[]" + |ly[I"



Functional Analysis-Inner Product Space Dr. Saba Naser, Dr.Zena Hussein, Dr. Sabah Hassan 105

(4) Let (L,(,)) be an L.P.S and let =,y € L such that x L y. Prove that

|z + Ayl = ||z — Ay

Answer: (H.W.)

(5) Let (L,( ,)) be an I.P.S and let xy,z9,...,2, € X such that z; L
v Vi # j. Prove that |0, @ill” = Y0,
Answer: We prove using induction. If n = 1, the statement is true.

If n = 2. Since 21 L x5 then ||y +as|” = ||z1|]” + ||22]|>  (by part (3)).

2
k 2
= 2 iz1 il

k .
i=1Li

Suppose the statement is true for n = k. i.e.,

To prove the statement is true when n =k + 1. i.e.,

k+1
=3 ||l
AN k - k 2
= H2i=1 Ti + $k+1H = HZH T
= Zf:l szH2 + ||$k;+1H2 (by induction n = k)

k+1
=300 .

sz—l—l

2
+ lzpl]

Definition 4.30. Orthogonal to Set
Let (L,( ,)) be an .P.S, x € L, and A C X. Then, x is said to be

orthogonal on A (x L A) if z L a Va € A.

Example 4.31.
Consider the space R? with usual product space and A = {(0,a) : a € R}.

Then (2,0) L A because ((2,0),(0,a)) = 2.0+ 0.a = 0.
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Definition 4.32. Orthogonal Sets

to B(ALB)ifalb, Vae AVbe B.

Let (L,{,)) be an I.LP.S, and A, B C L. Then, A is said to be orthogonal

Example 4.33.

Consider the space R? with usual inner product and A = {(0,a) : a € R}

and B = {(b,0) : b € R}. Show that A | B.
Answer: for each (0,a) € A and for each (b,0) € B, then

((a,0),(0,b)) =a.0+0.b=0. Thus, A L B.

Proposition 4.34.

Let (L,(,)) bean I.P.S, and A, B C L such that A 1. B then ANB = {0}.

Proof. Let r€e ANB=2x¢€ Aand v € B (I)
Since A L B = (a,b) =0, VaecAVbe B.
From (I), (a,b) = (x,z) = 0.

Using Definition 4.1(2), @ = 0, then AN B = {0}.

Definition 4.35.
Let (L,(,)) be an L.LP.S. and ¢ # A C L. Then, the set

At ={reL:x La, VacA}

is called the orthogonal complement on A.
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Proposition 4.36.
Let (L,(,)) be an L.P.S. and ¢ # A, B C L. Then,

(1) L* = {0}.

(2) {0} = L. (H.W.)

(3) An A+ = {0}.

(4) AC AL

(5) If A C B then B+ C A+, (H.W.)

(6) If A C B+ then B C AL

Proof. (1) Lt ={x € L:x L L} ={veL:{(x])=0,Vle L} ={0}.

(3) Let z€ ANAt = x € Aandw e AL (T)
Since r € A* then z L A (IT)

From (I) and (II), z L 2. i.e., (z,2) =0, thus z = 0.
Then, AN A+ = {0}.

(4) To prove A € A++. Let 2 € A.

For any y € A+ = y L A. In particular, y Lz (z € A)

From Proposition 4.27(1), x Ly, Vy € AL, Thus, z € A+

(6) Let A C B+, then from part (5), B++ C At

Now, from part (4), B C Bt+ C A+, Then, B C AL,

107
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Theorem 4.37.
Let (L,(,)) be an I.P.S. and ¢ # A C L. Then, A+ is a closed subspace

of L.

Proof. (1) To prove At is a subspace of L.

Let 2,y € At and o, 8 € F. T.P. ax + By € A+

T.P. (ax + Py,a) =0, Va € A.
Since z,y € At = (z,a) = (y,0) =0  (I)
(ax + By, a) = alz,a) + B(y,a) = a.0 + 5.0 =0 [from ()]
Thus, At is a subspace of L.
(2) T.P. AL is a closed set (i.e., A~ C AL and AL C A')
It is clear that A~ C AL (I)
T.P. AL C AL, Let 2 € AL then 3(x,) € AL such that (z,,) — =.

Since (z,) € A*, Yne N=ux, L A=x, La, Vac A

= (zp,a) =0, Va € A.

But (z,) = = and @ — a. Thus, from Theorem 4.19(1), (z,,a) — (x,a).
——

=0
(z,a) =0 Va € A. Then, x € A*. Thus, AL C AL (IT).

From (I).and (IT), At is a closed set.

Definition 4.38. Orthonormal Set
Let (L,(,)) be an I.P.S. and A C L. Then, A is called orthonormal set

if
(1) A is said to be orthogonal if x 1 y Vz,y € A, = #y.

(2) Each clement = € A is a normal element. i.c., (z,z)2 = ||z|| =1 Va €

A.
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Remark 4.39.

Orthonarmal set has no zero element (0 ¢ A) because ||0]] # 1 (0 is not

normal element).

Example 4.40.

Let L = R3 with usual inner product and A = {(1,2,2),(2,1,-2),(2,-2,1)} C
L. Show that A is orthogonal but not orthonormal.

Solution: T.P. A is orthogonal set (H.W.).

To show not every vector in A is normal. i.e.,

H(1,2,2)||2 =((1,2,2),(1,2,2)) = 14+44+4=9# 1= ||(1,2,2)]] # 1.

Thus, A is not orthonormal.

Theorem 4.41.

Let L be an I.P.S. and 1, ...,, be orthonormal vectors in L. Then

Z [z, z:)|* < ||=||* VzelL

1=1

Example 4.42.
1 1 1
Let L=R3 and z; = 5(1, 2,2),x9 = §(2, 1,-2), 23 = 5(2, —2,1).

Let x = (2,1,3). Then

|@Jﬁﬁ=%@+2+®P:%?
) = (544 1= 6)]2 =
o,z = [J(4 -2+ 3) = 2

3

, 100 1 25
> M= =+ -4+ = =14
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on the other hand, ||z||* = (z,2) =4+ 149 = 14.
3
As in Theorem 4.41, Z [z, )] = ||z||?
i=1
Take z = (1,1,1) and apply Theorem 4.41. (H.W.)

Theorem 4.43.
Let (L,( ,)) be an I.P.S. Let (x,) be an orthonormal sequence in L and
(An) be a sequence in F such that S |\|* < +00. Let y, =31 | iz

Then, (y,) is a Cauchy sequence.

Proof. Let y, = > " Niiy  Ym = Y ioq Nii. Assume that n < m then

m = n + k for some k € N. We must prove ||y, — yn| — 0.
= S N — Sty N = S E N — S N = SR A,
Hym - yn”2 - HZ?::H i 2 = (2?;:“ i, E?I:H )\il‘i>
= Z?;rfﬂ Ai Z?tﬁrl _<xi: ;)
= S A, i)
= X0 Al ]

=S A (el =1 vi)

1=n+1

As n = 400, Z?;Lfﬂ IA|)? =0 (327 |Ai]* convergent)

Thus, |[ym — vall> — 0 which means ||y, — yn|| — 0. Hence, (y,) is a

Cauchy sequence. []
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