$$f(x) = \begin{cases} x & \text{if } x \le 1\\ x+1 & \text{if } x > 1. \end{cases}$$

It is clear that f is continuous at 0 and discontinuous at 1.

Also f is not linear transformation because if x = 5, y = 6 and $\alpha = \beta = 1$ $f(\alpha x + \beta y) = f(5+6) = f(11) = 11 + 1 = 12$ and $\alpha f(x) + \beta f(y) = f(5) + f(6) = (5+1) + (6+1) = 13$ Hence $f(\alpha x + \beta y) \neq \alpha f(x) + \beta f(y)$.

Theorem 2.55.

Let $(L, \| \|_L), (L', \| \|_L')$ be normed spaces and let $f: L \to L'$ be a linear transformation. If f is continuous at a point $x_1 \in L$ then f is continuous at each point.

Proof. Let $x_1 \in L$ and assume that f is continuous at x_1 . Let $x_2 \in L$ be any point. To prove that f is continuous at x_2 . Let $x_n \to x_2$ in L. Then, $x_n - x_2 \to 0$ and hence $x_n - x_2 + x_1 \to x_1$. Since f is continuous at x_1 then $f(x_n - x_2 + x_1) \to f(x_1)$.

Since f is a linear transformation, then $f(x_n) - f(x_2) + f(x_1) \to f(x_1)$. Hence, $f(x_n) - f(x_2) \to 0$, and thus, $f(x_n) \to f(x_2)$.

Therefore, f is continuous at x_2 . Thus, f can not be continuous at some points and discontinuous at some points.

Example 2.56.

Let $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}.$$

Show that f is not continuous at (0,0).

Solution: Let $x_n = \frac{1}{n}$ and $y_n = \frac{-1}{n} \quad \forall n \in \mathbb{N}$.

Then, $x_n \to 0$ and $y_n \to 0$. Thus, $(x_n, y_n) \to (0, 0)$. But

$$f(x_n, y_n) = \frac{\frac{1}{n}(\frac{-1}{n})}{\frac{1}{n^2} + \frac{1}{n^2}} = \frac{\frac{-1}{n^2}}{\frac{2}{n^2}} = \frac{-1}{2}$$

Hence, $f(x_n, y_n) \to \frac{-1}{2}$ but f(0,0) = (0,0). Thus, $f(x_n, y_n) \nrightarrow f(0,0)$. Thus, f is not continuous at (0,0).

2.8 Boundedness in Normed Linear Space

Definition 2.57. Bounded Set

Let $(L, \| \cdot \|_L)$ be a normed space and let $A \subset L$. A is called a **bounded** set if there exists k > 0 such that $\|x\| \le k \quad \forall x \in A$.

Example 2.58.

Consider $(\mathbb{R}, | |)$ and let A = [-1, 1). Since $|x| \leq 1$, then A is bounded.

Example 2.59.

Consider $(\mathbb{R}^2, \| \|)$ be a normed space such that

 $||x|| = \left[\sum_{i=1}^2 |x_i|^2\right]^{\frac{1}{2}}$ be the Eucledian norm, for each $x = (x_1, x_2) \in \mathbb{R}^2$.

Let $A = \{(x_1, x_2) \in \mathbb{R}^2 : -1 \le x_1 \le 1, x_2 \ge 0\}$. Then, A is unbounded.

Theorem 2.60.

Let $(L, || \cdot ||_L)$ be a normed space and let $A \subseteq L$. Then the following statements are equivalent.

- (1) A is bounded.
- (2) If $\langle x_n \rangle$ is a sequence in A and $\langle \alpha_n \rangle$ is a sequence in F such that $\alpha_n \to 0$ then $\alpha_n x_n \to 0$.

Proof. (1) \Rightarrow (2) Since A is bounded, $\exists k > 0$ such that $||x_n|| \le k \quad \forall x_n \in A$. Since $\alpha_n \to 0$ as $n \to \infty$, then $|\alpha_n| \to 0$. Hence,

$$\|\alpha_n x_n - 0\| = \|\alpha_n x_n\| = |\alpha_n| \|x_n\| \le |\alpha_n| k$$
 (since $\|x_n\| \le k$)

But $|\alpha_n| \to 0$, thus $|\alpha_n| k \to 0$. Therefore, $||\alpha_n x_n - 0|| \to 0$ and hence $\alpha_n x_n \to \mathbf{0}_X$.

(2) \Rightarrow (1) Suppose A is not bounded. Then, $\forall k \in Z_+, \exists x_k \in A$ such that $||x_k|| > k$.

Put
$$\alpha_k = \frac{1}{k}$$
. Hence, $\alpha_k \to 0$. But $\|\alpha_k x_k\| = \left\|\frac{1}{k} x_k\right\| = \frac{1}{k} \|x_k\| > \frac{1}{k} \cdot k = 1$

Then, $\|\alpha_k x_k\| > 1$, thus $\alpha_k x_k \to 0$ which contradicts (2).

Definition 2.61. Bounded Mapping

Let $(L, || ||_L), (L', || ||_L')$ be two normed space and $f: L \to L'$ be a linear transformation. f is called **bounded mapping** if for each $A \subseteq L$ bounded then $f(A) = \{f(a) : a \in A\}$ is bounded set in L'.

Example 2.62.

Let Consider $(\mathbb{R}, | |)$ and $(\mathbb{R}^2, || ||)$ be a normed space such that $||x|| = \left[\sum_{i=1}^2 |x_i|^2\right]^{\frac{1}{2}} = \left[|x_1|^2 + |x_2|^2\right]^{\frac{1}{2}} = \left[x_1^2 + x_2^2\right]^{\frac{1}{2}} \quad \forall (x_1, x_2) \in \mathbb{R}^2.$

Define $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(x_1, x_2) = x_1 + x_2 \quad \forall (x_1, x_2) \in \mathbb{R}^2$. Show that f is a linear transformation (**H.W.**). Let $A \subseteq \mathbb{R}^2$ and A is bounded. Show that f(A) is bounded.

Solution: Let $A \subseteq \mathbb{R}^2$ and A is bounded to prove $f(A) = \{f(x_1, x_2) : (x_1, x_2) \in A\}$ is bounded.

Note that
$$\forall (x_1, x_2) \in A \implies f(x_1, x_2) = x_1 + x_2 \in f(A)$$

$$|fx_1, x_2| = |x_1 + x_2| \le |x_1| + |x_2|$$
 (I)

Since A is bounded then $\exists k > 0$ such that $||(x_1, x_2)|| \le k$ $\forall (x_1, x_2) \in A$ $\implies (x_1^2 + x_2^2)^{\frac{1}{2}} \le k \implies x_1^2 + x_2^2 \le k^2$

Since
$$x_1^2 \le x_1^2 + x_2^2 \le k^2$$
, then $x_1^2 \le k^2 \implies |x_1| \le k$ (II)

Similarly,
$$x_2^2 \le x_1^2 + x_2^2 \le k^2$$
, then $x_2^2 \le k^2 \implies |x_2| \le k$ (III)

Substitute (II) and (III) in (I)

$$|f(x_1, x_2)| = |x_1 + x_2| \le \underbrace{|x_1| + |x_2|}_{\text{by (II) and (III)}} \le k + k = 2k$$

i.e., $|f(x_1, x_2)| \leq 2k$. Thus, f(A) is bounded, and hence, f is bounded.

Theorem 2.63.

Let $(L, \| \|_L), (L', \| \|_L')$ be normed spaces and $f: L \to L'$ be a linear transformation. Then f is bounded if and only if $\exists k > 0$ such that $\| f(x) \|_{L'} \le k \| x \|_{L} \quad \forall x \in L.$

Proof. (\Rightarrow) If f is bounded and let $A = \{x \in L : ||x||_L \le 1\}$.

It is clear A is bounded, and hence, f(A) is bounded in L' (by definition of bnd function).

Thus, $\exists k > 0$ such that $||f(x)||_L' \le k$ $\forall x \in A$ (I)

(1) If $x = \mathbf{0_L}$ then $f(\mathbf{0_L}) = \mathbf{0'_L}$, and thus, $||f(\mathbf{0_L})|| = 0 \le k ||\mathbf{0_L}|| = 0$.

(2) If
$$x \neq \mathbf{0_L}$$
, put $y = \frac{x}{\|x\|}$ such that $\|y\| = \left\|\frac{x}{\|x\|}\right\| = \frac{1}{\|x\|} \cdot \|x\| = 1$.
Hence, $y \in A$. Thus, $\|f(y)\| \leq k$ (II)

$$||f(y)|| = ||f(\frac{x}{||x||})|| = ||\frac{1}{||x||}f(x)|| = \frac{1}{||x||}||f(x)||$$

By (II), $||f(y)|| \le k$, thus $\frac{1}{||x||} ||f(x)|| \le k$. i.e., $||f(x)|| \le k \cdot ||x||$ as required.

(\Leftarrow) Let A be a bounded set. Then, $\exists k_1 > 0$ such that $||x|| \le k_1$ $\forall x \in A$ Since $||f(x)|| \le k ||x||$ $\forall x \in X$, hence $||f(x)|| \le k ||x||$ $\forall x \in A$. Then we get $||f(x)|| \le kk_1$ $\forall x \in A$. Thus, $||f(x)|| \le k_2$ $\forall x \in A$ where $k_2 = kk_1$; that is, f(A) is a bounded set.

Theorem 2.64.

Let $(L, \| \|_L), (L', \| \|_L')$ be normed spaces and $f: L \to L'$ be a linear transformation. Then f is bounded if and only if f is continuous.

Proof. (\Leftarrow) Suppose that f is continuous and not bounded,

hence $\forall n \in \mathbb{Z}_+, \exists x_n \in L \text{ such that } ||f(x_n)||_L' > n ||x_n||_L$.

Let
$$y_n = \frac{x_n}{n||x_n||}$$
. Then, $||f(y_n)|| = ||f(\frac{x_n}{n||x_n||})|| = \frac{||f(x_n)||}{n||x_n||} > \frac{n||x_n||}{n||x_n||} = 1$

Thus,
$$||f(y_n) - f(0)|| = ||f(y_n)|| > 1$$
, i.e., $f(y_n) \nrightarrow f(0)$ (I)

but
$$||y_n|| = \left\| \frac{x_n}{n||x_n||} \right\| = \frac{||x_n||}{n||x_n||} = \frac{1}{n}$$

as $n \to \infty$, we get $||y_n|| \to 0$, and hence, $y_n \to \mathbf{0}_L$.

It follows that $f(y_n) \to \underbrace{f(\mathbf{0}_L) = \mathbf{0}'_L}_{\text{By Theorem 1.19(i)}}$ (Since f is a linear transformation)

This contradicts (I), thus, f is bounded.

 (\Rightarrow) Assume that f is bounded to prove f is continuous for all $x \in L$. Let $x_0 \in L$ and $\epsilon > 0$, to find $\delta > 0$ such that

$$\forall x \in L, \|x - x_0\| < \delta \implies \|f(x) - f(x_0)\| < \epsilon.$$

$$||f(x) - f(x_0)|| = ||f(x - x_0)||$$
 (f is linear transformation)

Since f is bounded, then
$$\exists k > 0 \text{ s.t. } ||f(x)|| \le k ||x|| \quad \forall x \in L$$
 (I)

Hence,
$$||f(x) - f(x_0)|| = \underbrace{||f(x - x_0)|| \le k ||x - x_0||}_{\text{By (I)}}$$

$$< k\delta \qquad \text{(Since } ||x - x_0|| < \delta\text{)}$$

$$= k \cdot \frac{\epsilon}{k} \qquad \text{(By choosing } \delta = \frac{\epsilon}{k} = \epsilon\text{)}$$

Thus,
$$||x - x_0|| < \delta \implies ||f(x) - f(x_0)|| < \epsilon$$
.

Hence, f is continuous at $x_0 \in L$. Since x_0 is an arbitrary, then f is cont. $\forall x \in L$.

Theorem 2.65.

Let $(L, \| \|_L), (L', \| \|_L')$ be normed spaces and $f: L \to L'$ be a linear transformation. If L is a finite dimensional space then f is bounded (hence, continuous).

Example 2.66.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ defined as $f(x, y) = x + y \quad \forall (x, y) \in \mathbb{R}^2$.

f is a linear transformation function (check!)

and $dim(\mathbb{R}^2) = 2$. Hence, f is bounded (hence, continuous).

2.9 Bounded Linear Transformation

Definition 2.67.

Let $(L, \| \|_L), (L', \| \|_{L'})$ be normed spaces over a field F. The set of all bounded linear transformation mappings from L to L' is defined as $B(L, L') = \{T : T : L \to L' \text{ is a linear bounded (hence, cont.) trans.}\}$

Theorem 2.68.

Prove that B(L, L') is a linear subspace (over a field F) of the space of linear transformation mappings with respect to usual addition and usual scalar multiplication.

Proof. Let $\alpha, \beta \in F$ and $T_1, T_2 \in B(L, L')$. To prove $\alpha T_1 + \beta T_2 \in B(L, L')$ Since T_1, T_2 are linear transformations, then by Theorem 1.30, $\alpha T_1, \beta T_2$ are linear trans.

Now, αT_1 , βT_2 are linear trans., by Theorem 1.30, $\alpha T_1 + \beta T_2$ is linear transformation.

Next, we show $\alpha T_1 + \beta T_2$ is bounded.

Since T_1, T_2 are bounded, then $\exists k_1, k_2 > 0$ such that $\forall x \in L$ we have

$$||T_1(x)||_L' \le k_1 ||x||_L \text{ and } ||T_2(x)||_L' \le k_2 ||x||_L$$
 (I)

Then,
$$\|(\alpha T_1 + \beta T_2)(x)\|'_L = \|(\alpha T_1)(x) + (\beta T_2)(x)\|'_L$$

$$= \|\alpha.T_1(x) + \beta.T_2(x)\|_L' \qquad \text{(Definition of scalar multiplication)}$$

$$\leq \|\alpha.T_{1}(x)\|_{L}' + \|\beta.T_{2}(x)\|_{L}'$$

$$\leq \|\alpha.T_{1}(x)\|_{L}' + \|\beta.T_{2}(x)\|_{L}'$$

$$= |\alpha| \|T_{1}(x)\|_{L}' + |\beta| \|T_{2}(x)\|_{L}'$$

$$\leq |\alpha| k_{1} \|x\|_{L} + |\beta| k_{2} \|x\|_{L}$$

$$= (|\alpha| k_{1} + |\beta| k_{2}) \|x\|_{L} = k \|x\|_{L}$$

$$(k = |\alpha| k_{1} + |\beta| k_{2}) \|x\|_{L}$$

$$= (|\alpha| k_1 + |\beta| k_2) ||x||_L = k ||x||_L \qquad (k = |\alpha| k_1 + |\beta| k_2) ||x||_L = k ||x||_L$$

 $|\beta| k_2$

Hence, $\alpha T_1 + \beta T_2$ is bounded.

Since $\alpha T_1 + \beta T_2$ is bounded and linear transformation, then $\alpha T_1 + \beta T_2 \in$ B(L,L').

Theorem 2.69.

Let $(L, \| \|_L), (L', \| \|_L)$ be normed space. Prove that B(L, L') is a normed space such that $\forall T \in B(L, L')$ we have

$$||T|| = \sup\{||T(x)||_{L'} : x \in L, ||x||_L \le 1\}$$

(1) since
$$||T(x)||_{L'} \ge 0 \ \forall x \in L, ||x||_L \le 1$$
, then $||T|| \ge 0$.

$$||T|| = \sup\{||T(x)||_{L'} : x \in L, ||x||_{L} \le 1\}$$

$$Proof. \text{ To prove } || || \text{ is a norm on } B(L, L')$$

$$(1) \text{ since } ||T(x)||_{L'} \ge 0 \quad \forall x \in L, ||x||_{L} \le 1, \text{ then } ||T|| \ge 0.$$

$$(2) ||T|| = 0 \iff \sup\{||T(x)||_{L'} : x \in L, ||x||_{L} \le 1\} = 0$$

$$\iff ||T(x)||_{L'} = 0 \quad \forall x \in L, ||x||_{L} \le 1$$

$$\iff T(x) = 0 \quad \forall x \in L, ||x||_{L} \le 1$$

$$\iff T = \hat{0}$$

$$(3) \text{ Let } T_1, T_2 \in B(L, L')$$

(3) Let $T_1, T_2 \in B(L, L')$

$$||T_1 + T_2|| = \sup\{||(T_1 + T_2)(x)||_{L'} : x \in L, ||x||_L \le 1\}$$

$$\leq \sup\{||(T_1(x)||_{L'} + ||T_2(x)||_{L'} : x \in L, ||x||_L \le 1\}$$

$$\leq \sup_{x \in L}\{||(T_1(x)||_{L'} : ||x||_L \le 1\} + \sup_{x \in L}\{||(T_2(x)||_{L'} : ||x||_L \le 1\}$$

$$= ||T_1|| + ||T_2||$$

$$- \|T_1\| + \|T_2\|$$

$$(4) \|\alpha T\| = \sup\{\|(\alpha.T(x)\|_{L'} : x \in L, \|x\|_L \le 1\}$$

$$= |\alpha| \sup\{\|T(x)\|_{L'} : x \in L, \|x\|_L \le 1\}$$

$$= |\alpha| \|T\|$$