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f(x) =

 x if x ≤ 1

x+ 1 if x > 1 .

It is clear that f is continuous at 0 and discontinuous at 1.

Also f is not linear transformation because if x = 5, y = 6 and α = β = 1

f(αx+ βy) = f(5 + 6) = f(11) = 11 + 1 = 12

and αf(x) + βf(y) = f(5) + f(6) = (5 + 1) + (6 + 1) = 13

Hence f(αx+ βy) ̸= αf(x) + βf(y).

Theorem 2.55.

Let (L, ∥ ∥L), (L′, ∥ ∥L ′) be normed spaces and let f : L → L′ be a linear

transformation. If f is continuous at a point x1 ∈ L then f is continuous

at each point.

Proof. Let x1 ∈ L and assume that f is continuous at x1. Let x2 ∈ L be

any point. To prove that f is continuous at x2. Let xn → x2 in L. Then,

xn−x2 → 0 and hence xn−x2+x1 → x1. Since f is continuous at x1 then

f(xn − x2 + x1) → f(x1).

Since f is a linear transformation, then f(xn)− f(x2) + f(x1) → f(x1).

Hence, f(xn)− f(x2) → 0, and thus, f(xn) → f(x2).

Therefore, f is continuous at x2. Thus, f can not be continuous at some

points and discontinuos at some points.

Example 2.56.

Let f : R× R → R defined by
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f(x, y) =


xy

x2 + y2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0) .

Show that f is not continuous at (0, 0).

Solution: Let xn =
1

n
and yn =

−1

n
∀n ∈ N.

Then, xn → 0 and yn → 0. Thus, (xn, yn) → (0, 0). But

f(xn, yn) =
1
n(

−1
n )

1
n2 +

1
n2

=
−1
n2

2
n2

=
−1

2

Hence, f(xn, yn) → −1
2 but f(0, 0) = (0, 0). Thus, f(xn, yn) ↛ f(0, 0).

Thus, f is not continuous at (0, 0).

2.8 Boundedness in Normed Linear Space

Definition 2.57. Bounded Set

Let (L, ∥ ∥L) be a normed space and let A ⊂ L. A is called a bounded

set if there exists k > 0 such that ∥x∥ ≤ k ∀x ∈ A.

Example 2.58.

Consider (R, | |) and let A = [−1, 1). Since |x| ≤ 1, then A is bounded.

Example 2.59.

Consider (R2, ∥ ∥) be a normed space such that

∥x∥ =
[∑2

i=1 |xi|
2 ] 1

2 be the Eucledian norm, for each x = (x1, x2) ∈ R2.

Let A = {(x1, x2) ∈ R2 : −1 ≤ x1 ≤ 1, x2 ≥ 0}. Then, A is unbounded.
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Theorem 2.60.

Let (L, ∥ ∥L) be a normed space and let A ⊆ L. Then the following state-

ments are equivalent.

(1) A is bounded.

(2) If ⟨xn⟩ is a sequence in A and ⟨αn⟩ is a sequence in F such that αn → 0

then αnxn → 0.

Proof. (1)⇒(2) Since A is bounded, ∃k > 0 such that ∥xn∥ ≤ k ∀xn ∈ A.

Since αn → 0 as n → ∞, then |αn| → 0. Hence,

∥αnxn − 0∥ = ∥αnxn∥ = |αn| ∥xn∥ ≤ |αn| k (since ∥xn∥ ≤ k)

But |αn| → 0, thus |αn| k → 0. Therefore, ∥αnxn − 0∥ → 0 and hence

αnxn → 0X .

(2)⇒(1) Suppose A is not bounded. Then, ∀k ∈ Z+,∃xk ∈ A such that

∥xk∥ > k.

Put αk =
1

k
. Hence, αk → 0. But

∥αkxk∥ =
∥∥1
kxk

∥∥ =
1

k
∥xk∥ >

1

k
.k = 1

Then, ∥αkxk∥ > 1, thus αkxk ↛ 0 which contradicts (2).

Definition 2.61. Bounded Mapping

Let (L, ∥ ∥L), (L′, ∥ ∥L ′) be two normed space and f : L → L′ be a linear

transformation. f is called bounded mapping if for each A ⊆ L bounded

then f(A) = {f(a) : a ∈ A} is bounded set in L′.

Example 2.62.

Let Consider (R, | |) and (R2, ∥ ∥) be a normed space such that

∥x∥ =
[∑2

i=1 |xi|
2 ] 1

2 = [|x1|2 + |x2|2]
1
2 = [x21 + x22]

1
2 ∀(x1, x2) ∈ R2.
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Define f : R2 → R such that f(x1, x2) = x1 + x2 ∀(x1, x2) ∈ R2. Show

that f is a linear transformation (H.W.). Let A ⊆ R2 and A is bounded.

Show that f(A) is bounded.

Solution: Let A ⊆ R2 and A is bounded to prove f(A) = {f(x1, x2) :

(x1, x2) ∈ A} is bounded.

Note that ∀(x1, x2) ∈ A =⇒ f(x1, x2) = x1 + x2 ∈ f(A)

|fx1, x2| = |x1 + x2| ≤ |x1|+ |x2| (I)

Since A is bounded then ∃k > 0 such that ∥(x1, x2)∥ ≤ k ∀(x1, x2) ∈ A

=⇒ (x21 + x22)
1
2 ≤ k =⇒ x21 + x22 ≤ k2

Since x21 ≤ x21 + x22 ≤ k2, then x21 ≤ k2 =⇒ |x1| ≤ k (II)

Similarly, x22 ≤ x21 + x22 ≤ k2, then x22 ≤ k2 =⇒ |x2| ≤ k (III)

Substitute (II) and (III) in (I)

|f(x1, x2)| = |x1 + x2| ≤ |x1|+ |x2| ≤ k + k︸ ︷︷ ︸
by (II) and (III)

= 2k

i.e., |f(x1, x2)| ≤ 2k. Thus, f(A) is bounded, and hence, f is bounded.

Theorem 2.63.

Let (L, ∥ ∥L), (L′, ∥ ∥L ′) be normed spaces and f : L → L′ be a linear

transformation. Then f is bounded if and only if ∃k > 0 such that

∥f(x)∥L ′ ≤ k ∥x∥L ∀x ∈ L.

Proof. (⇒) If f is bounded and let A = {x ∈ L : ∥x∥L ≤ 1}.

It is clear A is bounded, and hence, f(A) is bounded in L′ (by definition

of bnd function).

Thus, ∃k > 0 such that ∥f(x)∥L ′ ≤ k ∀x ∈ A (I)

(1) If x = 0L then f(0L) = 0′
L, and thus, ∥f(0L)∥ = 0 ≤ k ∥0L∥ = 0.
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(2) If x ̸= 0L, put y =
x

∥x∥
such that ∥y∥ =

∥∥∥∥ x

∥x∥

∥∥∥∥ =
1

∥x∥
. ∥x∥ = 1.

Hence, y ∈ A. Thus, ∥f(y)∥ ≤ k (II)

∥f(y)∥ =
∥∥∥f( x

∥x∥)
∥∥∥ =

∥∥∥ 1
∥x∥f(x)

∥∥∥ = 1
∥x∥ ∥f(x)∥

By (II), ∥f(y)∥ ≤ k , thus 1
∥x∥ ∥f(x)∥ ≤ k. i.e., ∥f(x)∥ ≤ k. ∥x∥ as

required.

(⇐) Let A be a bounded set. Then, ∃k1 > 0 such that ∥x∥ ≤ k1 ∀x ∈ A

Since ∥f(x)∥ ≤ k ∥x∥ ∀x ∈ X, hence ∥f(x)∥ ≤ k ∥x∥ ∀x ∈ A. Then we

get ∥f(x)∥ ≤ kk1 ∀x ∈ A. Thus, ∥f(x)∥ ≤ k2 ∀x ∈ A where k2 = kk1;

that is, f(A) is a bounded set.

Theorem 2.64.

Let (L, ∥ ∥L), (L′, ∥ ∥L ′) be normed spaces and f : L → L′ be a linear

transformation. Then f is bounded if and only if f is continuous.

Proof. (⇐) Suppose that f is continuous and not bounded,

hence ∀n ∈ Z+,∃xn ∈ L such that ∥f(xn)∥L ′ > n ∥xn∥L.

Let yn = xn

n∥xn∥ . Then, ∥f(yn)∥ =
∥∥∥f( xn

n∥xn∥)
∥∥∥ = ∥f(xn)∥

n∥xn∥ > n∥xn∥
n∥xn∥ = 1

Thus, ∥f(yn)− f(0)∥ = ∥f(yn)∥ > 1, i.e., f(yn) ↛ f(0) (I)

but ∥yn∥ =
∥∥∥ xn

n∥xn∥

∥∥∥ = ∥xn∥
n∥xn∥ =

1
n

as n → ∞, we get ∥yn∥ → 0, and hence, yn → 0L.

It follows that f(yn) → f(0L) = 0′
L︸ ︷︷ ︸

By Theorem 1.19(i)

(Since f is a linear transformation)

This contradicts (I), thus, f is bounded.

(⇒) Assume that f is bounded to prove f is continuous for all x ∈ L. Let

x0 ∈ L and ϵ > 0, to find δ > 0 such that

∀x ∈ L, ∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)∥ < ϵ.
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∥f(x)− f(x0)∥ = ∥f(x− x0)∥ (f is linear transformation)

Since f is bounded, then ∃k > 0 s.t. ∥f(x)∥ ≤ k ∥x∥ ∀x ∈ L (I)

Hence, ∥f(x)− f(x0)∥ = ∥f(x− x0)∥ ≤ k ∥x− x0∥︸ ︷︷ ︸
By (I)

< kδ (Since ∥x− x0∥ < δ)

= k. ϵk (By choosing δ = ϵ
k = ϵ)

Thus, ∥x− x0∥ < δ =⇒ ∥f(x)− f(x0)∥ < ϵ.

Hence, f is continuous at x0 ∈ L. Since x0 is an arbitrary, then f is

cont. ∀x ∈ L.

Theorem 2.65.

Let (L, ∥ ∥L), (L′, ∥ ∥L ′) be normed spaces and f : L → L′ be a linear

transformation. If L is a finite dimensional space then f is bounded (hence,

continuous).

Example 2.66.

Let f : R2 → R defined as f(x, y) = x+ y ∀(x, y) ∈ R2.

f is a linear transformation function (check!)

and dim(R2) = 2. Hence, f is bounded (hence, continuous).

2.9 Bounded Linear Transformation

Definition 2.67.

Let (L, ∥ ∥L), (L′, ∥ ∥L ′) be normed spaces over a field F . The set of all

bounded linear transformation mappings from L to L′ is defined as

B(L,L′) = {T : T : L → L′ is a linear bounded (hence, cont.) trans.}
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Theorem 2.68.

Prove that B(L,L′) is a linear subspace (over a field F ) of the space of

linear transformation mappings with respect to usual addition and usual

scalar multiplication.

Proof. Let α, β ∈ F and T1, T2 ∈ B(L,L′). To prove αT1 + βT2 ∈ B(L,L′)

Since T1, T2 are linear transformations, then by Theorem 1.30, αT1, βT2 are

linear trans.

Now, αT1, βT2 are linear trans., by Theorem 1.30,αT1+βT2 is linear trans-

formation.

Next, we show αT1 + βT2 is bounded.

Since T1, T2 are bounded, then ∃k1, k2 > 0 such that ∀x ∈ L we have

∥T1(x)∥′L ≤ k1 ∥x∥L and ∥T2(x)∥′L ≤ k2 ∥x∥L (I)

Then, ∥(αT1 + βT2)(x)∥′L = ∥(αT1)(x) + (βT2)(x)∥′L

= ∥α.T1(x) + β.T2(x)∥′L (Definition of scalar multiplication)

≤ ∥α.T1(x)∥′L + ∥β.T2(x)∥′L

= |α| ∥T1(x)∥′L + |β| ∥T2(x)∥′L

≤ |α| k1 ∥x∥L + |β| k2 ∥x∥L

= (|α| k1 + |β| k2) ∥x∥L = k ∥x∥L (k = |α| k1 +

|β| k2)

Hence, αT1 + βT2 is bounded.

Since αT1 + βT2 is bounded and linear transformation, then αT1 + βT2 ∈

B(L,L′).
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Theorem 2.69.

Let (L, ∥ ∥L), (L′, ∥ ∥L ′) be normed space. Prove that B(L,L′) is a normed

space such that ∀T ∈ B(L,L′) we have

∥T∥ = sup{∥T (x)∥L′ : x ∈ L, ∥x∥L ≤ 1}

Proof. To prove ∥ ∥ is a norm on B(L,L′)

(1) since ∥T (x)∥L′ ≥ 0 ∀x ∈ L, ∥x∥L ≤ 1, then ∥T∥ ≥ 0.

(2) ∥T∥ = 0 ⇐⇒ sup{∥T (x)∥L′ : x ∈ L, ∥x∥L ≤ 1} = 0

⇐⇒ ∥T (x)∥L′ = 0 ∀x ∈ L, ∥x∥L ≤ 1

⇐⇒ T (x) = 0 ∀x ∈ L, ∥x∥L ≤ 1

⇐⇒ T = 0̂

(3) Let T1, T2 ∈ B(L,L′)

∥T1 + T2∥ = sup{∥(T1 + T2)(x)∥L′ : x ∈ L, ∥x∥L ≤ 1}

≤ sup{∥(T1(x)∥L′ + ∥T2(x)∥L′ : x ∈ L, ∥x∥L ≤ 1}

≤ supx∈L{∥(T1(x)∥L′ : ∥x∥L ≤ 1}+ supx∈L{∥(T2(x)∥L′ : ∥x∥L ≤ 1}

= ∥T1∥+ ∥T2∥

(4) ∥αT∥ = sup{∥(α.T (x)∥L′ : x ∈ L, ∥x∥L ≤ 1}

= |α| sup{∥T (x)∥L′ : x ∈ L, ∥x∥L ≤ 1}

= |α| ∥T∥


