Chapter One

Fundamental Concepts

In this chapter, we introduce the following concepts:

- 1.1. Linear Spaces, Examples of Linear Spaces, General Properties of Linear Space and of Linear Subspaces.
- Linear Combination, The Linearly Independent , Dimensional Linear Spaces.
- The Convexity, Examples of Convex Sets, Some Properties About Convex Sets.
- 1.4. Linear Operator (Linear Transformation) and Linear Functional.

Linear (Vector) Space

A linear space (also called vector space), denoted by L or V, is a collection of objects called **vectors**, which may be added together and multiplied by numbers, called **scalars** which are taken from a field F. Before defining linear space, we first define an arbitrary field.

Definition (1.1):- Let F be a non-empty set and (+) and (.) be two binary operations on F. The ordered triple (F, +, .) is called **field** if

- 1. (F, +) is a commutative group
- 2. $(F \{e\}, .)$ is a commutative group, where e is the identity with respect to (+).
- 3. (.) is distributed over (+) (from left and right)

Example (1.2):- Let (+) and (.) are ordinary addition and multiplications. Then

- 1. Each of $(\mathbb{R},+,.)$, $(\mathbb{C},+,.)$, and $(\mathbb{Q},+,.)$ are examples of fields
- 2. (Z, -, .) is not field (Definition 1.1(1) does not hold) and (Z, +, .) is not field (Definition 1.1(2) does not hold)

Definition (1.3):- A *vector space* (or *linear space*) over a field F is a nonempty set L of elements x, y, ... (called vectors) with two algebraic operations, these

operations are called vector addition (+) and multiplication of vectors by scalars (.) , then we say that (L, +, .) is a vector (Linear) space over F.

1) Vectors addition satisfy:-

(L, +) be a commutative group

- 2) Multiplication by scalars satisfy:-
- a) $\alpha. x \in L$, $\forall \alpha \in F$, $x \in L$
- b) $(\alpha\beta).x = \alpha(\beta.x)$, $\forall x \in L \text{ and } \alpha, \beta \in F$
- c) $\alpha \cdot (x + y) = \alpha \cdot x + \alpha \cdot y$
- soboh Hosson d) $(\alpha + \beta).x = \alpha.x + \beta.x$ Distributive laws
- e) 1.x = x, $\forall x \in L$, 1 is the unity F

Remarks(1.4):-

- The filed $F = \mathbb{C}$ or \mathbb{R} (1)
- If $F = \mathbb{C}$ then we say that the (L, +, .) is complex vector (complex linear) (2)space
- If $F = \mathbb{R} \implies (L, +, .)$ is called real vector (linear)space (3)
- The vectors addition is a mapping such that $+: L \times L \rightarrow L$ (4)
- The multiplication by scalars (scalar multiplication) is a mapping such that (5) $.: F \times L \rightarrow L$
- We can denote the zero vector by 0_L and the scalar by 0.

Examples of Linear (Vector) Space

Example (1.5):- The Euclidean space : $\mathbb{R}^n = \{x = (x_1, x_2, ..., x_n); x_i \in \mathbb{R}, i = 1, ..., n\}$, with ordinary addition and multiplication. i.e,

$$x + y = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \quad \forall x, y \in \mathbb{R}^n, \ \forall \alpha \in \mathbb{R},$$

$$\alpha. x = (\alpha. x_1, \alpha. x_2, \dots, \alpha. x_n)$$

Then $(\mathbb{R}^n, +, .)$ is real Linear space over the field $F = \mathbb{R}$.

Solution: It is clear that the following conditions are satisfied

- (1) To prove $(\mathbb{R}^n, +)$ is commutative group
 - a) **The closure**: $\forall x, y \in \mathbb{R}^n$ to prove $x + y \in \mathbb{R}^n$

$$x \in \mathbb{R}^n \to x = (x_1, x_2, \dots, x_n)$$
$$y \in \mathbb{R}^n \to y = (y_1, y_2, \dots, y_n)$$
$$x + y = (x_1 + y_1, \dots, x_n + y_n) \in \mathbb{R}^n$$

b) **Associative**: to prove $(x + y) + z = x + (y + z), \forall x, y, z \in \mathbb{R}^n$

$$(x + y) + z = ((x_1, x_2, \dots, x_n) + (y_1, \dots, y_n)) + (z_1, \dots, z_n)$$

$$= (x_1 + y_1, \dots, x_n + y_n) + (z_1, \dots, z_n)$$

$$= ((x_1 + y_1) + z_1, \dots, (x_n + y_n) + z_n) (+ \text{asso. on } \mathbb{R})$$

$$= (x_1 + (y_1 + z_1), \dots, (x_n + (y_n + z_n))$$

$$= (x_1, \dots, x_n) + (y_1 + z_1, \dots, y_n + z_n)$$

$$= (x_1, ..., x_n) + ((y_1, ..., y_n) + (z_1, ..., z_n))$$
$$= x + (y + z)$$

c) **Identity**: It is clear that, there exist a unique identity $e = (0,0,...,0) = 0_L$

$$\forall x \in \mathbb{R}^n \ s.t. \ x + 0_L = 0_L + x = x$$

- d) **Inverse**: $\forall x \in \mathbb{R}^n$, $\exists (-x)$ the invers of x s. t. x + (-x) = (-x) + x = 0W. Solbolh Hoss
- e) **Commutative**: $\forall x, y \in \mathbb{R}^n$, we have
- \Rightarrow (\mathbb{R}^n , +) is commutative group

(2) Scalar Multiplication:

a) To prove $\alpha . x \in \mathbb{R}^n$, $\forall x \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$

$$\alpha.(x_1,x_2,...,x_n) = (\alpha.x_1,....,\alpha.x_n) \in \mathbb{R}^n (\text{since } \alpha.x_i \in \mathbb{R},$$

$$\forall i = 1,2,3,......,n)$$

b)
$$(\alpha\beta).x = (\alpha\beta).(x_1, x_2,, x_n)$$

$$= ((\alpha\beta).x,, (\alpha\beta).x_n)$$

$$= (\alpha.(\beta.x_1), ... \alpha.(\beta.x_n))$$

$$= \alpha.(\beta.x_1,, \beta.x_n)$$

$$= \alpha.(\beta.(x_1,, x_n))$$

$$= \alpha.(\beta.x_1)$$

c)
$$\alpha.(x + y) = \alpha.((x_1,, x_n) + (y_1,, y_n))$$

 $= \alpha.((x_1 + y_1,, x_n + y_n))$
 $= (\alpha.(x_1 + y_1),, \alpha.(x_n + y_n))$
 $= ((\alpha.x_1 + \alpha.y_1),, (\alpha.x_n + \alpha.y_n))$
 $= (\alpha.x_1,, \alpha.x_n) + (\alpha.y_1,, \alpha.y_n)$

$$= \alpha. (x_1, ..., x_n) + \alpha. (y_1, ..., y_n)$$
$$= \alpha. x + \alpha. y$$

d)
$$(\alpha + \beta).x = (\alpha + \beta).(x_1, ..., x_n)$$

$$= ((\alpha + \beta).x_1, ..., (\alpha + \beta).x_n))$$

$$= (\alpha.x_1 + \beta.x_1, ..., \alpha.x_n + \beta.x_n)$$

$$= \alpha.(x_1, ..., x_n) + \beta.(x_1, ..., x_n)$$

$$= \alpha.x + \beta.x$$
e) $1.x = 1.(x_1, ..., x_n) = (1.x, ..., 1.x)$

$$= (x_1, ..., x_n) = x.$$
Is, $(\mathbb{R}^n, +, ..)i$ s linear space over \mathbb{R} .

e)
$$1.x = 1.(x_1, ..., x_n) = (1.x, ..., 1.x)$$

= $(x_1, ..., x_n) = x$

Thus, $(\mathbb{R}^n, +,.)i$ s linear space over \mathbb{R} .

Example (1.6):- Consider the space \mathbb{C}^n with two operations defined as in the previous example, then $(\mathbb{C}^n, +, .)$ is complex linear space over \mathbb{C} . (H.W.)

Example (1.7):- Show that the space $(l^2, +, .)$ is linear space over F where $l^2 =$ $\{x=(x_1,x_2,x_3,\dots),x_i\in F, \sum_{i=1}^\infty |x_i|^2<\infty\}$, with ordinary addition and multiplication. i.e,

$$x + y = (x_1, x_2, x_3, \dots) + (y_1, y_2, y_3, \dots) = (x_1 + y_1, x_2 + y_2, x_3 + y_3 \dots)$$

$$\alpha \cdot x = \alpha \cdot (x_1, x_2, x_3, \dots) = (\alpha \cdot x_1, \alpha \cdot x_2, \alpha \cdot x_3 \dots), \forall x, y \in l^2, \alpha \in F?$$

Solution:

- 1. To prove that $(l^2, +)$ is commutative group?
- **The closure**: Let $x, y \in l^2$ to prove $x + y \in l^2$

$$x \in l^2 \Longrightarrow x = (x_1, x_2, ...); \ x_i \in F \text{ and } \sum_{i=1}^{\infty} |x_i|^2 < \infty$$

$$y \in l^2 \Longrightarrow y = (y_1, y, ...); y_i \in F \text{ and } \sum_{i=1}^{\infty} |y_i|^2 < \infty$$

$$x+y=(x_1+y_1,x_2+y_2\,,\dots\,\,\,);\;x_i+y_i\in F,\;{
m for\;all}\;i=1,2,3,\dots$$

 $\sum_{i=1}^{\infty} |x_i + y_i|^2 < \infty.$ To prove

To prove
$$\sum_{i=1}^{\infty} |x_i + y_i|^2 < \infty.$$

$$|x_i + y_i|^2 = |(x_i + y_i)^2|$$

$$= |x_i^2 + 2x_iy_i + y_i^2|$$

$$\leq |x_i|^2 + 2|x_iy_i| + |y_i|^2$$

$$\leq |x_i|^2 + |x_i|^2 + |y_i|^2 + |y_i|^2, \text{ because } (2|x_iy_i| \leq |x_i|^2 + |y_i|^2)$$

$$= 2|x_i|^2 + 2|y_i|^2$$

Taking the sum to the both sides of the above inequality

$$\sum_{i=1}^{\infty} |x_i + y_i|^2 \le 2 \sum_{i=1}^{\infty} |x_i|^2 + 2 \sum_{i=1}^{\infty} |y_i|^2 < \infty + \infty = \infty$$

- ❖ The associative: (H.W.)
- ***** The identity : $\exists e = (0,0,...) \in l^2 \ \forall x = (x_1, x_2,...) \in l^2$

such that e + x = x + e = x

It is clear that $\sum_{i=1}^{\infty} |0|^2 < \infty$ (**H.W.**)

*** The inverse**: $\forall x = (x_1, x_2, ...) \in l^2$, $\exists -x = (-x_1, -x_2, ...) \in l^2$ such that -x + x = x + -x = 0. It is clear that $\sum_{i=1}^{\infty} |-x_i|^2 < \infty$ (**H.W.**)

2. Multiplication by scalars:

 \clubsuit To prove that $\alpha.x\in l^2$, $\forall x\in l^2, \alpha\in F$ $\alpha.x=(\alpha.x_1,\alpha.x_2,...) \text{ to prove } \sum_{i=1}^{\infty}|\alpha x_i|^2<\infty$

$$\sum_{i=1}^{\infty} |\alpha. x_i|^2 = \sum_{i=1}^{\infty} |\alpha|^2 |x_i|^2 = |\alpha|^2 \sum_{i=1}^{\infty} |x_i|^2 < \infty.$$

The rest of the conditions are homework.

Remark (1.8):- In general the inequality holds, for any $1 \le p < \infty$

$$|x_i + y_i|^p \le 2^{p-1} [|x_i|^p + |y_i|^p].$$

Example (1.9):- Show that the space $(l^p, +, .)$ is linear space over F where $1 \le p < \infty$ and $l^p = \{x = (x_1, x_2, x_3,), x_i \in F, \sum_{i=1}^{\infty} |x_i|^p < \infty\}$ with ordinary addition and multiplication ? **(H.W.)**

Example (1.10):- Consider the space $l^{\infty} = \{ x = (x_1, x_2, x_3 \dots), x_i \in F, |x_i| < c_x, i = 1, 2, \dots \}$

where c_x is a real number which may depend on x but does not depend on i. Then $(l^{\infty}, +,.)$ is linear space over F when + and . are defined as in Example (1.7).

Solution:

To prove that $(l^{\infty}, +)$ is commutative group?

♦ The closure: Let $x, y \in l^{\infty}$ to prove $x + y \in l^{\infty}$ $x \in l^{\infty} \Rightarrow x = (x_1, x_2, ...); x_i \in F \text{ and } |x_i| < c_x \quad \forall i \in N$

$$y \in l^{\infty} \Longrightarrow y = (y_1, y, ...); y_i \in F \text{ and } |y_i| < c_y \quad \forall i \in N$$

$$x + y = (x_1 + y_1, x_2 + y_2, ...); x_i + y_i \in F$$
, for all $i = 1, 2, 3, ...$

To prove $|x_i + y_i| < c_q; c_q > 0$.

Now,
$$|x_i + y_i| \le |x_i| + |y_i| \le c_x + c_y = c_q$$
.

Thus, $x + y \in l^{\infty}$.

❖ The rest of the conditions are homework.

Example (1.11):- The space $(C^b[a,b],+,.)$ is linear space over $\mathbb R$ where + and defined as $(f+g)(x)=f(x)+g(x), \ \forall f,g\in C^b[a,b], \ x\in \mathbb R$

$$(\alpha f)(x) = \alpha f(x), \ \alpha \in \mathbb{R}$$

Solution:

The space $C^b[a,b] = \{ f: [a,b] \to \mathbb{R} \text{ continuous and bounded function } \}$

- (1) To prove that prove $(C^b[a, b], +)$ is commutative group
- (b) $\forall f,g \in C^b[a,b]$ T.p. $f+g \in C^b[a,b]$ f,g are continuous f,g are bounded
- f and g are continuous functions f + g also continuous function(i)
- \therefore f and g are bounded functions

$$\frac{\exists k_1 \ge 0 \quad s.t \quad |f(x)| \le k_1}{\text{and } \exists k_2 \ge 0 \quad s.t \quad |g(x)| \le k_2} \} \, \forall x \in \mathbb{R}$$

Now, |(f+g)(x)| = |f(x) + g(x)|

$$\leq |f(x)| + |g(x)| \leq k_1 + k_2 = k$$
, $k \geq 0$

 $\Rightarrow f + g$ is bounded function (ii)

From (i) & (ii) we have $f + g \in C^b[a, b]$

(b) $\forall f, g, h \in C^b[a, b]$ to prove that (f + g) + h = f + (g + h)

$$((f+g)+h)(x) = (f+g)(x) + h(x)$$

$$= (f(x)+g(x)) + h(x)$$

$$= f(x) + (g(x)+h(x))$$

$$= f(x) + (g+h)(x)$$

$$= (f+(g+h))(x)$$

(c) To prove that, there exist a unique function, for all $f \in C^b[a, b]$

Define $0: [a, b] \to R$ s.t 0(x) = 0, $\forall x \in [a, b]$

s.t
$$f + 0 = 0 + f = 0$$
, $\forall f \in C^b[a, b]$

(0'is continuous and bounded since its constant) \implies 0 \in $C^b[a, b]$

(d) To prove that $\forall f \in C^b[a,b], \exists -f \in C^b[a,b]$

Such that
$$f + (-f) = (-f) + f = 0$$
,

since $f \in C^b[a, b] \Rightarrow f$ is continuous and bounded

 \Rightarrow -f is also continuous (by previous proposition) and -f is also bounded

since
$$(|-f(x)| = |f(x)| \le k, k \ge 0)$$

$$= -f \in C^b[a, b]$$
 and $(f + (-f))(x) = f(x) + (-f(x)) = 0 = 0(x)$

(e) $\forall f, g \in C^b[a, b]$, to prove that f + g = g + f

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x)$$

 \therefore $C^b[a, b]$ is comm group

(2) Scalar Multiplication

(a) $\forall f \in C^b[a,b], \alpha \in \mathbb{R}$, to prove that $\alpha f \in C^b[a,b]$

$$\therefore f \in C^b[a, b] \Rightarrow f$$
 is also continuous $\Rightarrow \alpha f$ also continuous (i)

$$f \in C^b[a, b] \implies f$$
 is bounded $\implies |f(x)| \le k$, $k \ge 0$

But
$$|(\alpha f)(x)| = |\alpha f(x)| \le |\alpha| \ f(x) \le |\alpha| k$$

 $\Rightarrow \alpha f$ is bounded (ii)

From (i) and (ii) we get, $\alpha f \in C^b[a, b]$

(b) $\forall f \in C^b[a, b] \text{ and } \alpha, \beta \in \mathbb{R} \text{ , to prove } (\alpha\beta)f = \alpha(\beta f)$

$$((\alpha\beta)f)(x) = (\alpha\beta)f(x) = \alpha(\beta f(x)) = \alpha(\beta f)(x)$$
$$\Rightarrow (\alpha\beta)f = \alpha(\beta f)$$

(c) $\forall f, g \in C^b[a, b], \alpha \in \mathbb{R}$, to prove $\alpha(f + g) = \alpha f + \alpha g$

$$(\alpha(f+g))(x) = \alpha(f+g)(x) = \alpha(f(x)+g(x))$$
$$= \alpha f(x) + \alpha g(x) = (\alpha f + \alpha g)(x)$$

(d) $\forall f \in C^b[a, b], \alpha, \beta \in \mathbb{R}$, to prove $(\alpha + \beta)f = \alpha f + \beta f$

$$((\alpha + \beta)f)(x) = (\alpha + \beta)f(x) = \alpha f(x) + \beta f(x)$$
$$= (\alpha f)(x) + (\beta f)(x) = (\alpha f + \beta f)(x)$$

(e) Let $f \in C^b[a, b]$ and 1 is the unity of \mathbb{R} , then (1f)(x) = 1 f(x) = f(x).

General Properties of Linear Space (without prove)

Theorem(1.12):- Let (L, +, .) be a linear space over F. Then

- $(1) 0. x = 0_L, \quad \forall x \in L$
- $(2) \lambda. 0_L = 0_L , \lambda \in F$
- (3) $(-\alpha.x) = (-\alpha).x = \alpha.(-x)$, $\forall x \in L, \alpha \in F$
- (4) If $x, y \in L \Rightarrow \exists! z \in L \text{ such that } x + z = y$
- (5) $\alpha.(x-y) = \alpha.x \alpha.y, \forall x,y \in L, \alpha \in F$
- (6) If $\alpha . x = 0_L \implies \alpha = 0$ or $x = 0_L$
- (7) If $x \neq 0_L$ and $\alpha_1 x = \alpha_2 x \implies \alpha_1 = \alpha_2$
- (8) If $x \neq 0_L$, $\alpha \neq 0$, $y \neq 0_L$ and $\alpha \cdot x = \alpha \cdot y \implies x = y$

Linear subspace

Definition(1.13):- Let L be a linear space over F and $\emptyset \neq S \subseteq L$, then we say that S is **linear subspace** of L if S itself is a linear spase over F.

If L be a linear space over F and $\emptyset \neq S \subseteq L$, then S is linear Theorem (1.14):subspace if satisfy the following conditions

$$(1)x + y \in S$$
, $\forall x, y \in S$

$$(2) \alpha. x \in S$$
, $\forall x \in S$ and $\alpha \in F$

Solodh Hosson Or satisfy the equivalent condition of two conditions above,

$$\alpha.x + \beta.y \in S, \forall x, y \in S \text{ and } \alpha, \beta \in F$$

Remark(1.15):-

- (1) A special subspace of L is improper subspace S = L
- (2) Every other subspace of $L(\neq \{0\})$ is called proper
- (3) Another special subspace of any linear space L is $S=\{0\}$

Example (1.16):- show that $S = \{(x, x_2) \in \mathbb{R}^2 : x_2 = 3x_1\}$ is subspace of \mathbb{R}^2 ?

Solution :- It is clear that $S \subseteq \mathbb{R}^2$, and $S \neq \emptyset$ because $(0,0) = 0 \in S$

To prove that $\alpha.x + \beta.y \in S$, $\forall \alpha, \beta \in F = \mathbb{R}$, $x, y \in \mathbb{R}^2$

$$x = (x_1, x_2), y = (y_1, y_2)$$

$$\alpha.x + \beta.y = (\alpha x_1, \alpha x_2) + (\beta y_1, \beta y_2)$$
$$= (\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2)$$

Now,
$$\alpha x_2 + \beta y_2 = \alpha(3x_1) + \beta(3y_1) = 3(\alpha x_1 + \beta y_1)$$

$$\Rightarrow \alpha.x + \beta.y \in S$$
.

Example (1.17):- show that $S = \{ \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} ; a, b \in \mathbb{R} \}$ is subspace of $M_{2 \times 2}(\mathbb{R})$?

Solution:- It is clear that $S \subseteq M_{2 \times 2}(\mathbb{R})$, and $S \neq \emptyset$ because $0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \in S$

 $\forall x, y \in S \text{ and } \alpha, \beta \in F.$

To prove that $\alpha.x + \beta.y = \alpha.\left(\frac{0}{b_1} - \frac{a_1}{0}\right) + \beta.\left(\frac{0}{b_2} - \frac{a_2}{0}\right)$

$$= \left(\frac{0 \quad \alpha a_1}{\alpha b_1 \quad 0}\right) + \left(\frac{0 \quad \beta a_2}{\beta b_2 \quad 0}\right)$$

$$= \left(\frac{0}{\alpha b_1 + \beta b_2} \frac{\alpha a_1 + \beta a_2}{0} \right) \in S$$

Example (1.18):- show that $S = \{(x_1, x_2) \in \mathbb{R}^2; ax_1 + bx_2 = 0\}$ is subspace of \mathbb{R}^2 ? (H.W.)

Example (1.19):-The set $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 = 1 + x_2\}$ is not subspace of \mathbb{R}^3 ?

Solution:

Consider $\alpha = 2$ and $x = (2,1,0) \in S$, because (2 = 1 + 1)

$$\alpha. x = 2.(2,1,0) = (4,2,0) \notin S$$
, because $(4 \neq 1 + 2)$

Hence, *S* is not subspace of \mathbb{R}^3 .

Theorem(1.20):-Let S_1 and S_2 be two subspaces of linear space L . then

 $(1)S_1\cap S_2$ is subspace of linear space L .

(2) $S_1 + S_2$ is subspace of linear space L

$$(3)S_1 \subseteq S_1 + S_2$$
, $S_2 \subseteq S_1 + S_2$. (H.W.)

Exercise:

(1) Which of the following subsets of \mathbb{R}^3 be a subspace of \mathbb{R}^3

a)
$$S_1 = \{x = (x_1, x_2, x_3); x_1 = x_2 \text{ and } x_3 = 0\}$$

b)
$$S_2 = \{(x_1, x_2, x_3); x_3 = x_2 + 1\}$$

c)
$$S_3 = \{(x_1, x_2, x_3); x_1, x_2, x_3 \ge 0\}$$

d)
$$S_4 = \{(x_1, x_2, x_3); x_1 - x_2 + x_3 = k\}$$

- (2) If S_1 and S_2 are subspaces of linear space L, then $S_1 \cup S_2$ not necessary subspace of L (Give example)
- (3) If $S \neq \emptyset$ is any subset of L show that span S is subspace of L.
- (4) Show that the Cartesian product $L=L_1\times L_2$ of two linear spaces over the same field becomes a vector space, we define the two algebraic operations by

$$\frac{(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)}{\alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)} \frac{\forall \ x = (x_1, x_2)}{y = (y_1, y_2)} \in L$$

(5) Let M be a subspace of a linear space L. The coset of an element $x \in L$ with respect to M is denoted by x + M where

 $x + M = \{z, z = x + m, m \in M\}$. Show that $(\frac{L}{M}, +, .)$ is linear space over under algebraic operations defined as

$$(x+m) + (y+m) = (x+y) + m, \forall x+m, y+m \in \frac{L}{M}$$
$$\alpha.(x+m) = \alpha.x + m, \forall x+m \in \frac{L}{M}, \ \alpha \in F$$

Note: The space $(\frac{L}{M}, +, .)$ is called quotient space (or factor space).

Dimensional Linear Spaces

Definition (1.21):- A **linear combination** of vectors $x_1, x_2,, x_n$ of a linear space L is an expression of the from $\alpha_1 x_1 + \alpha_2 x_2 + \cdots + \alpha_n x_n$, where $\alpha_1, \alpha_2, ..., \alpha_n$ are any scalars

i.e., x is linear combination of $x_1, x_2, ..., x_n$ if $\exists \alpha_1, \alpha_2,, \alpha_n$ s.t.

$$x = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n.$$

Example (1. 22):- Let $S = \{(1,2,3), (1,0,2)\}$, Express x = (-1,2,-1), as a linear combination of x_1 and x_2 .

Solution: We must find scalars $\alpha_1, \alpha_2 \in F$ such that $x = \alpha_1, x_1 + \alpha_2, x_2$

$$(-1,2,-1) = \alpha_1. (1,2,3) + \alpha_2. (1,0,2)$$

$$= (\alpha_1, 2\alpha_1, 3\alpha_1) + (\alpha_2, 0, 2\alpha_2)$$
So, $\alpha_1 + \alpha_2 = -1 \implies \alpha_2 = -\alpha_1 - 1$

$$2\alpha_1 + 0 = 2 \Longrightarrow 2\alpha_1 = 2 \Longrightarrow \alpha_1 = 1$$
 and,
$$3\alpha_1 + 2\alpha_2 = -1$$

$$\therefore \alpha_2 = -1 - 1 = -2$$
.

Example (1. 23):-If $S = \{(1,2,3), (1,0,2)\}$. Show that x = (-1,2,0), is not linear Solodh Hosse combination of x_1, x_2 .

Solution:

Let $\alpha_1, \alpha_2 \in F$ and $x_1, x_2 \in S$ such that $x = \alpha_1, x_1 + \alpha_2, x_2$, we have

$$\frac{\alpha_1 + \alpha_2 = -12\alpha_1 + 0 = 2}{3\alpha_1 + 2\alpha_2 = 0}$$

$$\left(\frac{1}{2} \frac{1}{0:23} \frac{1:-1}{2:0}\right) \Longrightarrow \left(\frac{1}{0} \frac{1:-10}{0-1:3}\right)$$

The system has no solution

x not linear combination of x_1, x_2 .

Example (1.24):- Let $S = \{x_1, x_2, x_3\}$ where $x_1 = (1,2), x_2 = (0,1)$ and $x_3 = (0,1)$ (1,1). Express (1,0) as a linear combination of x_1, x_2 and x_3 .

Solution:

We must find scalars $\alpha_1, \alpha_2, \alpha_3 \in F$ such that $x = \alpha_1, x_1 + \alpha_2, x_2 + \alpha_3, x_3$

$$(1,0) = \alpha_1. (1,2) + \alpha_2. (0,1) + \alpha_3. (1,1)$$

$$(1,0) = (\alpha_1, 2\alpha_1) + (0, \alpha_2) + (\alpha_3, \alpha_3)$$

$$\alpha_1 + \alpha_3 = 1 \Rightarrow \alpha_1 = 1 - \alpha_3$$

$$2\alpha_1 + \alpha_2 + \alpha_3 = 0 \Longrightarrow 2(1 - \alpha_3) + \alpha_2 + \alpha_3 = 0 \Longrightarrow -\alpha_3 + \alpha_2 = -2$$

$$\alpha_2 = -2 - \alpha_3$$

This system has multiple solutions in this case there are multiple possibilities for the α_i .

Definition (1.25):- Let $\emptyset \neq M \subseteq L$ the smallest subspace of L contains M is called **subspace generated** by M and denoted by [M] or span M.

Remark(1.26):-

- 1. Let $\emptyset \neq M \subseteq L$, the set of all linear combinations of vectors of M is called span of M.
- 2. $M \subset \text{span}(M)$.
- 3. Span (M) = the intersection of all subspace of L containing M.

Example (1.27):- Find span $\{x_1, x_2\}$ where $x_1 = (1,2,3)$ and $x_2 = (1,0,2)$?

Solution: The span $\{x_1, x_2\}$ is the set of all vectors $(x, y, z) \in \mathbb{R}^3$ such that

$$(x, y, z) = \alpha_1.(1,2,3) + \alpha_2.(1,0,2)$$

We wish to know for what values of (x, y, z) does this system of equations have solutions for α_1, α_2

$$\alpha_1$$
. (1,2,3) + α_2 . (1,0,2) = (x , y , z)

$$(\alpha_1, 2\alpha_1, 3\alpha_1) + (\alpha_2, 0, 2\alpha_2) = (x, y, z)$$

$$\alpha_1 + \alpha_2 = x \Longrightarrow \alpha_2 = x - \alpha_1$$

$$2\alpha_1 = y \Longrightarrow \alpha_1 = \frac{1}{2}y$$

$$\alpha_1 + \alpha_2 = x \Longrightarrow \alpha_2 = x - \alpha_1$$

$$2\alpha_1 = y \Longrightarrow \alpha_1 = \frac{1}{2}y$$

$$3\alpha_1 + 2\alpha_2 = z \Longrightarrow 6\alpha_1 + 4\alpha_2 - 2z = 0$$

$$6\left(\frac{1}{2}y\right) + 4\left(x - \frac{1}{2}y\right) - 2z = 0$$

$$3y + 4x - 2y - 2z = 0$$

$$4x + y - 2z = 0$$
So, solutions when $4x + y - 2z = 0$

$$6\left(\frac{1}{2}y\right) + 4\left(x - \frac{1}{2}y\right) - 2z = 0$$

$$3y + 4x - 2y - 2z = 0$$

$$4x + y - 2z = 0$$

So, solutions when 4x + y - 2z = 0

Thus span $\{x_1, x_2\}$ is the plane 4x + y - 2z = 0

Example (1.28):-Show that $\{x_1, x_2\}$ span \mathbb{R}^2 , when $x_1 = (1,1), x_2 = (2,1)$.

Solution: we being asked to show that any vectors in \mathbb{R}^2 can written as a linear combination of x_1, x_2 . Let $(a, b) \in \mathbb{R}^2$ and $(a, b) = \alpha_1 \cdot (1, 1) + \alpha_2 \cdot (2, 1)$

$$(\alpha_1, \alpha_1) + (2\alpha_2, \alpha_2) = (a, b)$$

$$\alpha_1 + 2\alpha_2 = a \Longrightarrow \alpha_1 = a - 2\alpha_2$$

$$\alpha_1 + \alpha_2 = b \Longrightarrow \alpha_2 = b - (a - 2\alpha_2)$$

$$-\alpha_2 = b - a \Longrightarrow \alpha_2 = a - b$$

 $\alpha_1=a-2(a-b)=2b-a$.Note that these two vectors span \mathbb{R}^2 , that is every vector \mathbb{R}^2 can be expressed as a linear combination of them .

Example (1.29):-Show that $S = \{x_1, x_2, x_3\}$ span \mathbb{R}^2 , where $x_1 = (1,1), x_2 = (2,1), x_3 = (3,2)$. (H.W.)

Definition (1.30):- Let $S = \{x_1,, x_n\}$ be a subset of L, then S is called **linearly independent** if there exist $\alpha_1, \alpha_2, ..., \alpha_n$ such that

if
$$\alpha_1. x_1 + \alpha_2. x_2 + \dots + \alpha_n. x_n = 0$$
 then $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$.

Definition (1.31):- Let $S = \{x_1, x_2,, x_n\}$ be a subset of L, then S is said to be **linearly dependent** if it is not linearly independent that is if

$$\alpha_1. x_1 + \alpha_2. x_2 + \dots + \alpha_n. x_n = 0$$
 but the $\alpha_1, \alpha_2, \dots, \alpha_n$ not all zero.

Example (1.32):- Determine $S = \{x_1, x_2\}$ is linearly dependent or independent where $x_1 = (1,2,3), x_2 = (1,0,2).$

Solution: Let $\alpha_1, \alpha_2 \in F$

 $\alpha_1(1,2,3) + \alpha_2(1,0,2) = (0,0,0)$, only solution is trivial solution $\alpha_1 = \alpha_2 = 0$. Thus, S is linearly independent.

Example (1.33):-Determine $S = \{x_1, x_2\}$ is linearly dependent or independent where $x_1 = (1,1,1), x_2 = (2,2,2)$?

Solution: Let $\alpha_1, \alpha_2 \in F$

$$\alpha_1(1,1,1) + \alpha_2(2,2,2) = (0,0,0)$$

$$\alpha_1 + 2\alpha_2 = 0 \Longrightarrow \alpha_1 = 2\alpha_2$$

So, S is linearly dependent

Theorem (1.34):- (without prove)

- (1) Every m vectors set in \mathbb{R}^n , if m > n then, the set is linearly dependent
- (2) A linearly independent set in \mathbb{R}^n has at most n vectors.

Remark (1.35):- Let L linear space over F, $S \subseteq L$ and $x_0 \in L$, then

- (1) If $0_L \in S \Longrightarrow S$ is linear dependent . i.e., every subspace is linear dependent set
- (2) If $x_0 \neq 0_2 \Longrightarrow \{x_0\}$ is linearly independent

Definition (1.36):- Let L be a linear space over F. A subset B of L is a **basis** if it is linearly independent and spans L i.e,

(1) B is linearly independent

$$(2)$$
 Span $(B) = L$ تولد الـ L تولد الـ B

The number of elements in a basis for L is called the **dimension** of L and is denoted by dim (L)

Example(1.37):- Consider the linear space $(\mathbb{R}^3, +, ...)$

The dimension of *L* is 3. i.e., $dim(\mathbb{R}^3) = 3$

Since
$$B = \{(1,0,0), (0,1,0), (0,0,1)\}$$
 is basis for \mathbb{R}^3

Remark (1.38):-

- (1) Every linear space $L \neq \{0\}$ has a basis
- (2) If $L = \{0\} \Longrightarrow dim(L) = 0$
- (3) If L finite dimension linear space and S be a subspace of L, then $dim S \le dim L$.
- (4) If $\dim S = \dim L \Longrightarrow S = L$
- (5) If $S = \{x_1, \dots, x_n\}$ be a linearly independent in L then there exists c > 0 such that $||x|| = ||\sum_{i=1}^n \alpha_i x_1|| \ge c \sum_{i=1}^n |\alpha_i|$.
- (6) The dimension of quotient space (or factor space) is called codimension of M and denoted by $codm(M) = dim(\frac{L}{M})$.

The Convexity

Definition (1.39):- Let A be a subset of linear space L then , we say that A is **convex set** if satisfy the following condition :

$$\forall x, y \in A, \lambda \in [0,1]$$
 then $\lambda x + (1 - \lambda)y \in A$.

Examples About Convex Sets

Example(1.40):- If $A = (a, b) \subset A$ is convex set

Solution:

Let
$$x, y \in A$$
, $\lambda \in [0,1]$

$$x \in (a, b) \Rightarrow a < x < b \Rightarrow \lambda a < \lambda x < \lambda b \dots (1)$$

$$y \in (a, b) \Rightarrow a < y < b \Rightarrow (1 - \lambda)a < (1 - \lambda)y < (1 - \lambda)b$$
 (2)

By summing up (1) and (2)

$$\lambda a + (1 - \lambda)a < \lambda x + (1 - \lambda)y < \lambda b + (1 - \lambda)b$$

$$a < \lambda x + (1 - \lambda)y < b.$$

Example(1.41):- Every linear subspace is convex, but the converse is not true in general

Solution:

Let M be a subspace of linear space $L \Longrightarrow \alpha x + \beta y \in M$, $\forall x, y \in M$, $\alpha, \beta \in F$. Put $\alpha = \lambda, \beta = 1 - \lambda$, $0 \le \lambda \le 1$

$$\Rightarrow \lambda x + (1 - \lambda)y \in M$$
, $\forall x, y \in M$, $0 \le \lambda \le 1 \Rightarrow M$ is convex set

For the converse, consider the following example

Let $L = \mathbb{R}^2$, $M = \{(x, y) \in \mathbb{R}^2, x \ge 0, y \ge 0\}$, then M is convex set but not subspace.

 \bullet To prove *M* is convex set.

Let $(x_1, y_1), (x_2, y_2) \in M$ and $0 \le \lambda \le 1$. To prove $\lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2) \in M$.

$$(x_1, y_1) \in M \Rightarrow x_1 \ge 0$$
, $y_1 \ge 0$ and $(x_2, y_2) \in M \Rightarrow x_2 \ge 0$, $y_2 \ge 0$.

Thus,
$$\lambda x_1 + (1 - \lambda)y_1 \ge 0$$
 and $\lambda x_2 + (1 - \lambda)y_2 \ge 0$.

Hosson

Then,
$$\lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2) = (\lambda x_1 + (1 - \lambda)y_1, \lambda x_2 + (1 - \lambda)y_2) \in M$$
.

 \Leftrightarrow Show that *M* is not a subspace (**H.W.**)

Theorem(1.42): (Some Properties About Convex Sets)

- 1. The singleton set is convex set
- 2. The intersection of convex set is convex.
- 3. The empty set and the whole space are convex. (H.W.)
- 4. If A is convex set $\Rightarrow \alpha A$ also convex $\alpha \in F$. (H.W.)
- 5. If A and B are convex set \Rightarrow A + B also convex set.

Proof (1) Let $A = \{x\}$ to prove A is convex set.

Take $x \in A$ and $\lambda \in [0,1]$ then $\lambda x + (1 - \lambda)x = x \in M$.

Proof (2) Let A and B are convex sets To prove $A \cap B$ is convex set.

Let $x, y \in A \cap B$ and $0 \le \lambda \le 1$ to prove $\lambda x + (1 - \lambda)y \in A \cap B$.

$$x, y \in A \text{ and } A \text{ is convex} \Rightarrow x + (1 - \lambda)y \in A \dots$$
 (1)

$$x, y \in B \text{ and } B \text{ is convex} \Rightarrow x + (1 - \lambda)y \in B \dots$$
 (2)

From (1)&(2) we get $x + (1 - \lambda)y \in A \cap B$. Then, $A \cap B$ is convex set.

Proof (5) Let $a_1 + b_1$, $a_2 + b_2 \in A + B$, then $a_1, a_2 \in A$ and $b_1, b_2 \in B$.

To prove
$$\lambda (a_1 + b_1) + (1 - \lambda)(a_2 + b_2) \in A + B$$
, $\forall \lambda \in [0,1]$

Since A is convex set and a_1 , $a_2 \in A \Rightarrow \lambda a_1 + (1 - \lambda)a_2 \in A \ \forall \lambda \in [0,1]...(1)$

Since B is convex set and $b_1, b_2 \in B \Rightarrow \lambda b_1 + (1 - \lambda)b_2 \in B \ \forall \lambda \in [0,1]...(2)$

By summing up (1) and (2) we get

$$\lambda a_1 + (1 - \lambda)a_2 + \lambda b_1 + (1 - \lambda)b_2 \in A + B$$

i.e., $\lambda (a_1 + b_1) + (1 - \lambda)(a_2 + b_2) \in A + B$. Thus, A + B is a convex set.

Linear operator and linear functional

Definition(1.43):- Let L and L' are linear spaces over the same field F. A mapping $T: L \to L'$ is called **Linear operator** or (**Linear transformation**) if

$$T(\alpha.x + \beta.y) = \alpha T(x) + \beta T(y)$$
, $\forall x, y \in L$ and $\alpha, \beta \in F$

Note: The linear operator $T: L \to F$ is said to be **linear functional**.

Examples of Linear Functional

Example (1.44):- Let $T: \mathbb{R} \to \mathbb{R}$ such that T(x) = mx, $m \in \mathbb{R}$ the T is linear functional

Solution: Let $x, y \in \mathbb{R}$, $\alpha, \beta \in \mathbb{R}$

$$T(\alpha x + \beta y) = m(\alpha x + \beta y) = m(\alpha x) + m(\beta y)$$
$$= \alpha (mx) + \beta (my)$$
$$= \alpha T(x) + \beta T(y)$$

Example(1.45):- Let $T: \mathbb{R} \to \mathbb{R}$ s.t. T(x) = mx + b, $m, b \neq 0 \in \mathbb{R}$ then T is not linear functional?

Solution: Let $x \mid y \in \mathbb{R}$

$$T(\alpha x + \beta y) = m(\alpha x + \beta y) + b = (m\alpha)x + (m\beta)y + b$$
$$= \alpha(mx) + \beta(my) + b \dots \tag{1}$$

Now, $\alpha T(x) + \beta T(y) = \alpha (mx + b) + \beta (my + b)$

$$= \alpha mx + \beta my + (\alpha + \beta)b \dots \dots (2)$$

Let $\alpha = 1, \beta = 2$, we get $1 \neq 2$

Example(1.46):- Let $T: C[a,b] \to \mathbb{R}$ such that $T(f) = \int_a^b f(x) dx$

Show that *T* is linear functional.

Solution: Let $f, g \in C[a, b]$, $\alpha, \beta \in \mathbb{R}$. To prove that

$$T(\alpha f + \beta g) = \alpha T(f) + \beta T(g)$$

$$T(\alpha f + \beta g) = \int_{a}^{b} (\alpha f + \beta g)(x) dx$$
$$= \int_{a}^{b} \alpha f(x) dx + \int_{a}^{b} \beta g(x) dx$$
$$= \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx = \alpha T(f) + \beta T(g).$$

Example(1.47):- Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ such that

 $T(x_1, x_2) = (x_1 + x_2, x_1 - x_2 + 1)$ is not linear operator

Solution: $T(0) = T((0,0)) = (0,1) \neq (0,0) \Rightarrow T$ not linear functional.

Exercise

- (1) If $T: \mathbb{R}^2 \to \mathbb{R}$ s.t $T(x_1, x_2) = x_1^2 + x_2^2$. Show that T is not linear functional.
- (2) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ s.t $T(x_1, x_2) = (x_1 + x_2, 0)$. Is T linear transformation?
- (3) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ s.t $T(x_1, x_2) = (\alpha x_1, x_2), \alpha \in \mathbb{R}$. Is T linear transformation?
- (4) If $T: \mathbb{R}^3 \to \mathbb{R}^3$ s.t $T(x_1, x_2, x_3) = (x_2, x_1 x_2, 0)$. Is T linear transformation?

Some Theorems About Linear operators

Theorem(1.48):- Let L, L', L'' are linear spaces over the same field F such that $T: L \to L'$ and $g: L' \to L''$ linear operators then

(1)
$$T(0_L) = 0_{L'} \text{ and } g(0_{L'}) = 0_{L''}$$

$$(2) T(x-y) = T(x) - T(y)$$

(3) goT is linear operator.

Theorem(1.49):- Let L, L' are linear spaces over the same field F and $T_1, T_2: L \to L'$ are two linear operators. Define + and . as follows:

$$(T_1 + T_2)(x) = T_1(x) + T_2(x), \forall x \in L$$
$$(\lambda T_1)(x) = \lambda . T_1(x), \forall x \in L, \lambda \in F$$

Then, $T_1 + T_2$ and αT_1 are linear operators

Proof:- Let $x, y \in L$ and $\alpha, \beta \in F$ then

$$(1)(T_{1} + T_{2})(\alpha.x + \beta.y) = T_{1}(\alpha.x + \beta.y) + T_{2}(\alpha.x + \beta.y)$$

$$= \alpha.T_{1}(x) + \beta.T_{1}(y) + \alpha.T_{2}(x) + \beta.T_{2}(y)$$

$$= \alpha.(T_{1}(x) + T_{2}(x)) + \beta.(T_{1}(y) + T_{2}(y))$$

$$= \alpha.(T_{1} + T_{2})(x) + \beta.(T_{2} + T_{2})(y)$$

$$(2) \lambda T_{1}(\alpha.x + \beta.y) = \lambda.[\alpha.T_{1}(x) + \beta.T_{1}(y)]$$

$$= (\lambda \alpha).T_{1}(x) + (\lambda \beta).T_{1}(y)$$

$$= \alpha.(\lambda.T_{1}(x)) + \beta(\lambda.T_{1}(y))$$

$$= \alpha.(\lambda.T_{1}(x)) + \beta.(\lambda.T_{1}(y)).$$