Chapter One

Fundamental Concepts

In this chapter, we introduce the following concepts:

1.1. Linear Spaces, Examples of Linear Spaces, General Properties of Linear
Space and of Linear Subspaces.

1.2. Linear Combination, The Linearly Independent , Dimensional Linear
Spaces.

1.3. The Convexity, Examples of Convex Sets, Some Properties About Convex
Sets.

1.4. Linear Operator (Linear Transformation) and Linear Functional.



Linear (Vector) Space

A linear space (also called vector space), denoted by L or V, is a collection of
objects called vectors, which may be added together and multiplied by numbers,
called scalars which are taken from a field F. Before defining linear space, we
first define an arbitrary field.
Definition (1.1):- Let F be a non-empty set and (+) and (.) be two binary operations
on F. The ordered triple (F, +,.) is called field if

1. (F,+) is a commutative group

2. (F —{e},.) is a commutative group, where e is the identity with respect to

(+).

3. () is distributed over (+) (from left and right)
Example (1.2):- Let (+) and (.) are ordinary addition and multiplications. Then

1. Eachof (R,+,.), (C,+,.), and (Q,+,.) are examples of fields

2. (Z,—,.) isnot field ( Definition 1.1(1) does not hold)

and (Z, +,.) is not field ( Definition 1.1(2) does not hold)

Definition (1.3):- A vector space (or linear space) over a field F is a nonempty

set L of elements x,y, ... (called vectors) with two algebraic operations, these
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operations are called vector addition (+) and multiplication of vectors by scalars (.)

, then we say that (L, +,.) is a vector (Linear) space over F.

1) Vectors addition satisfy :-

(L, +) be a commutative group

2) Multiplication by scalars satisfy :-

Q) a.x €L ,Va€EF ,x€L

b) (af).x= a(f.x) ,Vx€Landa,B EF

C) a.(x+y)= a.x+a.y

d (a+B)x=ax+p.x Distributive laws

e) .x=x ,Vx €L, 1istheunityF

Remarks(1.4):-

(1) Thefiled F = C orR

(2) IfF = C then we say that the (L, +,.) is complex vector (complex linear)
space

(3) IfF =R = (L,+,.) is called real vector (linear)space

(4) The vectors addition is a mapping suchthat +:L XL —> L

(5) The multiplication by scalars (scalar multiplication) is a mapping such that

(6)

. FXL->L

We can denote the zero vector by 0, and the scalar by 0.



Examples of Linear (Vector) Space

Example (1.5):- The Euclidean space : R™ = {x = (x1, x5, ..., X ); X; € R,i =

1, ....,n}, with ordinary addition and multiplication. i.e ,

X+y =01 +y1, %+ Y5, e, Xy +yn)} Vx,y € R, va € R,
a.x=(a.x,a.xy ..., A.Xy)

Then (R™, +,.) is real Linear space over the field F = R.

Solution: It is clear that the following conditions are satisfied

(1) To prove (R"®, +) is commutative group
a) Theclosure: vV x,y € R™ to prove x +y € R"
X ER" - x = (x1,X2, e, Xp)
YyER" =y =y, yz s ¥n)
x+y=0q+y,..,x,+ y,) ER®
b) Associative :toprove (x+y)+z=x+(y+2),Vx,y,z€ R"
(x+y)+z=((x1, x5 ... X)) + Ve e V) + (24, e, Z0)
=+ Ve Xy )+ (24, 00, Z)
=((x1 +y) +2z1, o, (G +yp) +2,) (+asso.onR)
=@+ 1tz o S (nt Ont+2zy)

= (X1, X))+ V1 + 21, e, 0 + 2)



= (%1, e Xp) + (1, e, V) + (24, oon o ,Zn))

=x+y+2)

c) ldentity: It is clear that, there exist a unique identity e = (0,0, ...,0) =0,

VxeER" s.t. x+0, =0, +x=x
d) Inverse:V x € R",3(—x)theinversof xs.t.x + (—x) = (—x) + x =0,

e) Commutative: Vx,y € R" ,wehave x+y=y+x

= (R", +) is commutative group

(2) Scalar Multiplication :

a) Toprove a.x € R",Vx € R"and a € R

a.(xq, x5, o, xp) = (X.Xq, ..., 2. X,) € R*(since a. x; € R,
Vi=123, ..., n)

b) (eB).x = (af).(x1,X2, cucrs Xn)
= ((aB).x, ..., (aB).x,)

= (@.(B.x1), . at.(B. %))
= a.(B.x1, ., B Xn)

= . (B. (%1, oo oee Xn)

= a.(B.%)

C) a.(Xx+Y) = a. (X1, X)) + (Vpyeeres¥y))

= (g + V1,0 Xy + V)

=(a.(x1 + Y1), e, . (X + Vn)

= ((a.x; +a.y;), ... ... (. x, + a.yy))

0. %) + (A Y1, e e , 0. Vn)



= A (X1, s X)) + A (V1) eee e, V)

—a.x+a.y
d) (a+B).x = (@+B). (X1, e e, %)

=((a+p)xy e (@+B).xy))

= (@ 4 Xy s @ Xy + B Xn)

...... yXn) + B (X4, e, X))

I
S
~
=

-

= (X1, Xp) =

Thus, (R™, +,.)is linear space over R.

Example (1.6):- Consider the space C™ with two operctions defined as in the

previous example, then (C*, +,.) is complex linear space over C. (H.W.)

Example (1.7):- Show that the space (1%, +,.) is linear space over F where [ =
{x = (%1, %3, X3, eur ou ), x; €F, Y2, |x;|> <o} , with ordinary addition and

multiplication. i.e ,

x+y=(x1,%2,%3, .. ) + (Y1, V2, V3) o) = (X1 + Y1, X2 + Y2, X3 + Y3 oo. e )

a.x = a.(x;,%3,%x3,...) = (@.X, X%, 0. X3 ..., VX, yEI?, a EF?
Solution:
1. To prove that (I?,+) is commutative group?

% Theclosure : Let x,y € I? toprovex + y € [?



x €12 = x=(x1,xp..); x; € Fand X2,|x;|* < o
yeEl?=y=(y )y €F and TZ|y;|* <o
x+y=0+y,x+Y,,... );x;+y, €F, foralli=1,2,3,..
Toprove %72 |x; +y;|> < .
1% +y:1% = [(x; + y)?|
= |x? + 2x;y; + ¥7|
< |l + 20xy| + ly;il?
<1212 + xl? + [yl * + [y,|, because  (2lxiyil < Ixil? + [yil?)
= 2|x;|? + 2|y;|?
Taking the sum to the both sides of the above inequality
Yizilx FyilF <22 %P+ 282 yi]? < o400 =00

% The associative: (H.W.)
< Theidentity: 3e = (0,0,..) € 12 Vx = (x1,%x5,... ) €2

suchthat e+ x=x+e =x

It is clear that }:i2,]|0]% < oo (H.W.)

% Theinverse: V x = (xg,xy,... ) €13, 3 —x=(—x;,—%5,... )EI?

suchthat —x +x = x + —x = 0. Itis clear that ¥72,|—x;|?> < c0 (H.W.)



2. Multiplication by scalars :

% Toprovethat a.x € 1?>, Vx € >, a €EF

a.x = (a.xg,a.xy,..) toprove Y2, lax;|? < o

T2l x|? = T2qlal? 1xl? = lal? Z2,1x)? < o,

The rest of the conditions are homework.

Remark (1.8):- In general the inequality holds , forany 1 <p <

lx; + y:|P < 2P [|x]P + |yilP].
Example (1.9):- Show that the space (I ,+,.) is linear space over F where 1 <
p<oo and [P = {x = (x1,%x5, X3, cer ... ), x; €EF,Y%2,|x;|P < oo} with ordinary

addition and multiplication?  (H.W.)

Example (1.10):- Considerthespace [ = { x = (x1, x5, X3 ... ... ), x; EF,|x;| <

e, 1=1,2,...}

where c, is a real number which may depend on x but does not depend on i . Then

(1, +,.) islinear space over F when + and . are defined as in Example (1.7).
Solution:

To prove that (I*,+) is commutative group?

% Theclosure: Letx,y € [* toprovex +y € [

X€EIL® =x=(x,%y,..); x; €EFand |x;|] <c, ViEN



yEI*=y=QnYy )y, €EF and |y <c¢, VIEN
x+y=0,+y,x+Y,,... );x;+y, €F, foralli=1,2,3,..
To prove lx; + yil <cgicq>0.

Now, |x; + y;| < lx;| + [yil < ¢k + ¢, = ¢4

Thus, x +y € 1.

+»* The rest of the conditions are homework.

Example (1.11):- The space (C?[a,b],+,.) is linear space over R where + and

defined as (f + g)(x) = f(x) + g(x), Vf,g € C’[a,b], x €R
(af)(x) = af(x), a €R

Solution:

The space CP[a,b] = { f:[a, b] = R continuous and bounded function }

(1) To prove that prove (C?[a, b], +) is commutative group

(b) Vf,g € C°la,b] T.p. f+g € CPla,b] — f,g are continuous

f,g are bounded

~ f and g are continuous functions = f + g also continuous function .....(i)

=~ fand g are bounded functions
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ik, >0 s.t |[f(x)| <k,
and 3k, =0 s.t|g(x)| <k,

1Vx € R
Now , |(f + )| = |f () + g)|

SIfOI+ gl <sky+ky =k, k=0

= f + g isbounded function ... (i)
From (i) & (ii) we have f + g € C?[a, b]
(b) Vf,g,h € CP[a,b] to provethat (f + g) + h = f + (g + h)

(f+9)+ M) = +9)(x) +hx)
= (f() +g()) + h(x)
= f(0) +(g() + h(x))
= f(x) + (g +m)(x)
=(f+@+m)x

(c) To prove that, there exist a unique function, for all f € C?[a, b]
Define 0:[a,b] > R s.t 0(x) =0,Vx € [a, b]
stf+0=0+f=0,Yf € C"[a,b]

(0°is continuous and bounded since its constant) = 0 e C?[a, b]

(d) To prove that , Vf € C?[a,b], 3 — f € CP[a, b]
Suchthat f+(—f)=(f)+f=0,

since f € CP[a, b] = f is continuous and bounded



= —f is also continuous (by previous proposition ) and —f is also bounded
since (|=f(l=1f()l <k, k=0)

= —f €C’[a,b] and (f + (=))(®) = f() + (—=f(x)) =0 = 0(x)

(e) Vf,g € CP[a,b],toprovethat f+g=g+f

F+PE)=fx)+g(x)= gl)+f(x)= (g+Hx)

=~ CP[a, b] is comm group

(2) Scalar Multiplication
(@) Vf € C’[a,b],a € R ,to prove that af € C’[a, b]

. f € CP[a,b] = f is also continuous = af also continuous ... (i)
f € CP[a,b] = fisbounded = |f(x)|<k,k=>0
But [(af) ()| = laf (x)| < |al| f(x) < |alk

= af isbounded ... (ii)

From (i) and (ii) we get, «f € C°[a,b]

(b) Vf € C?[a,b] and a, B € R, to prove (aB)f = a(Bf)

(@B f)(x) = (@B)f (x) = a(Bf(x)) = a(Bf)(x)
= (aB)f = a(Bf)
(c) Vf,g € CP[a,b],a € R,toprove a(f + g) = af + ag

11
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(a(f +9))(x) = a(f + 9)(x) = a(f(x) + g(x))
=af(x)+ agx) = (af +ag)(x)

(d) Vf € CP[a,b],a, B € R, toprove (a+B)f = af + Bf

((@+Pf)) = (a+Bf(x) =af()+B f(x)

= (af)(x) + (BHHx) = (af +BH(x)
(e) Let f € CP[a, b] and 1isthe unity of R, then (1f)(x) = 1 f(x) = f(x) .

General Properties of Linear Space (without prove)

Theorem(1.12):- Let (L, +,.) be a linear space over F .Then

(1) 0.x=0,, VxeL
(2) A OL = OL ) A EF
(3) (—a.x)=(—a).x=a.(—x) ,VXx€E€L a€F

(4) Ifx,yeL=3'z€L suchthatx+z =y

(5 a.(x—-y)= ax— ay,Vx,y€EL, a€F

(6) If a.x=0,= a=0 orx=0,

(7) Ifx+#0,and a;x= a,x = a1 = a,

(8) Ifx#0,, a#0,y#0, and a.x= ay =>x=y

Linear subspace

Definition(1.13):- Let L be a linear space over F and @ # S € L, then we say

that S is linear subspace of L if S itself is a linear spase over F .
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Theorem (1.14):- If L be a linear space over Fand @ + S € L, then S is linear

subspace if satisfy the following conditions

QDx+yesS,vx,y€eS

(Da.xeS,VxeSanda€EF

Or satisfy the equivalent condition of two conditions above ,
ax+pL.yeESVx,yeESand a,fEF

Remark(1.15):-

(1) A special subspace of L is improper subspace S = L
(2) Every other subspace of L(# {0})is called proper
(3) Another special subspace of any linear space L is S={0}

Example (1.16):- show that S = {(x,x,) € R?; x, = 3x;} is subspace of R??
Solution :- It is clear that S € R?,and S # @ because (0,0) =0€ S
Toprovethat a.x+B.y€S,Va, EF =R,x,y € R?
x = (x1,%2),y = V1, ¥2)
a.x+ B.y = (axy,axz) + (By, BY,)

= (axy + By, ax; + By,)
Now, ax, + By, = a(3x,) + B(3y1) = 3(ax; + By1)

= a.x+p.YyES.
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(; Z) ;a,b € R} is subspace of My, (R)?

Example (1.17):- show that S = {(

Solution:- Itis clear that S € M,,,(R),and S +# @ because 0 = (s ?)) €S
Vx,y€Sand a,f €F.

0 aq
by 0

Toprovethat a.x+ .y = a.(
=)+ ()

_ (0 a'a1+,3a2) €s
(Zb1+,3b2 0

)+ B-(5—%)

Example (1.18):- show that S = {(x;,x,) € R%;ax; + bx, = 0} is subspace of

R? ? (H.W.)

Example (1.19):-The set S = {(x;,x,,%3) € R®; x; = 1 + x,} is not subspace
of R3?

Solution:

Consider a = 2and x = (2,1,0) € S,because 2 =1+ 1)

a.x =2.(2,1,0) = (4,2,0) € S,because(4 # 1 + 2)

Hence, S is not subspace of R3.

Theorem(1.20):-Let S; and S, be two subspaces of linear space L . then

(1) S, n S, is subspace of linear space L .
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(2) S; + S, is subspace of linear space L
3)S; €85 +5,,5, €5, +5,. (HW.)

Exercise :

(1) Which of the following subsets of R be a subspace of R3
a) S; ={x = (xq,x,,%3); X1 = x, and x5 = 0}
b) S, = {(x1,x5,x3); x3 = x, + 1}
) Sz = {(x1,%2,%3); X1,%3,%3 =0}

d) Sy = {(x1,%2,x3); x; — x5 + x3 = k}

(2)If S; and S, are subspaces of linear space L , then S; U S, not necessary
subspace of L (Give example)

(3)If S # @ is any subset of L show that span S is subspace of L .

(4) Show that the Cartesian product L = L; X L, of two linear spaces over the

same field becomes a vector space , we define the two algebraic operations

by

V x= (xlr xZ)
(x1,%2) + (1, ¥2) = (1 + y1, x5 + yz)} y =0 y2)
a(xq,x5) = (axq, axy) a€F

} EL

(5) Let M be a subspace of a linear space L . The coset of an element x € L with

respect to M is denoted by x + M where

x+M={z,z=x+m,me M}. Show that (ﬁ, +,.) is linear space over

under algebraic operations defined as
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(x+m)+(y+m)=(x+y)+m,Vx+m,y+me%

a.(x+m)=a.x+m,‘v’x+m€%, a €F

Note : The space (ﬁ, +,.) is called quotient space (or factor space) .

Definition (1.21):- A linear combination of vectors x,, x5, ...., x,, of a linear
space L is an expression of the from «;x; + ayx, + -+ a,x,, where a4, a,,

..., 0ty are any scalars

i.e., x is linear combination of x4, x5, ..., x,, If Iy, ay, .....,ay s t.

X = Ollxl + azxz + ... + anxn.

Example (1.22):- Let S = {(1,2,3),(1,0,2)}, Express x = (—1,2,—1),asalinear

combination of x; and x,, .

Solution: We must find scalars a4, @, € F such that x = a;.x; + a3. x5

(-1,2,-1) = a;.(1,2,3) + a,.(1,0,2)

= (a1, 2ay,3a;) + (a3,0,2a;,)

SO,a1+a2=—1 :>a’2=—a’1—1
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2a1+0=2$2a1:2$a1:1
and, 3“1"‘2“2 =—-1

day=—1-1=-2.

Example (1. 23):-1f S = {(1,2,3),(1,0,2)}. Show that x = (—1,2,0), is not linear

combination of x;, x, .

Solution:
Let ay, @, € F and x;,x, € Ssuchthat x = a;.x; + a5.x,, we have

aq +a2=_12a1+ 0= 2
3a; +2a, =0

( 1 1 :-1 ) (1 1 :-10 -2 :4)
=3
2 0 :23 2 :0 0 -—-1:3

The system has no solution

}

~ x not linear combination of x, x,.

Example (1.24):- LetS = {x;, x5, x3}where x; = (1,2), x, = (0,1) and x5 =
(1,1) . Express (1,0) as a linear combination of x,, x, and xs.

Solution:

We must find scalars ay, a,, @3 € F suchthat x = a;.x; + @,.x, + a3. x5

(1,0) =a;.(1,2) + a,.(0,1) + a3.(1,1)
(110) = (C(l, 2“1) + (O, aZ) + ((13, a3)

a1+a3=1$a1=1—a3
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20+ a,+a;=0=>2(1—-a3) +a,+ta3=0= —az;+a, = -2
a, = —2—a;
This system has multiple solutions in this case there are multiple possibilities for

the aj.

Definition (1.25):- Let @ = M < L the smallest subspace of L contains M is called

subspace generated by M and denoted by [M] or span M.

Remark(1.26):-

1.Let® = M C L, the set of all linear combinations of vectors of M is called span

of M.
2. M cspan (M).

3. Span (M) = the intersection of all subspace of L containing M.

Example (1.27):- Find span {x;, x,} where x; = (1,2,3) and x, = (1,0,2) ?
Solution :- The span {x,, x,} is the set of all vectors (x, y, z) € R3 such that
(x,y,2) = a;.(1,2,3) + «,.(1,0,2)

We wish to know for what values of (x, y, z) does this system of equations have

solutions for a4, a,
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a,.(1,2,3) + a,.(1,0,2) = (x,y,2)

(@1, 2ay,3ay) + (@;,0,2a;) = (x,y,2)
A ta,=x=a, =x—,

2o =y =>a; = %y

30 + 20, =z= 6a; +4a, —2z=0
6(%y)+4(x—%y)—22=0
3y+4x—2y—2z=0
4x+y—2z=0

So, solutions when 4x +y — 2z =0

Thus span {x;,x,}istheplane 4x +y — 2z =0

Example (1.28):-Show that {x;, x,} span R? , when x; = (1,1),x, = (2,1).
Solution : we being asked to show that any vectors in R? can written as a linear

combination of x;, x,. Let (a,b) € R%and (a,b) = a;.(1,1) + a,.(2,1)
(ay, 1) + 2ay, a;) = (a,b)
a,+2a, =a=a, =a—2a,

a,+a,=b=a,=b—(a—2a,)
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—a,=b—a=>a,=a—0>

a; = a—2(a —b) = 2b — a .Note that these two vectors span R? , that is every

vector R? can be expressed as a linear combination of them .

Example (1.29):-Show that S = {x;,x,, x5} span R? , where x; = (1,1),x, =

2,1),%; = (32). (HW.)

Definition (1.30):- LetS={x4,...,x,}beasubsetof L, then S iscalled linearly

independent if there exist a4, a5, ..., a, such that
ifa.x; +a,.x,+ 4+ a,.x, =0thena; = a, = ... = a, =0.

Definition (1.31):- LetS={xy,xy,....,x,} beasubset of L, then S is said to be

linearly dependent if it is not linearly independent that is if
Q. X1 + ay. x5 + -+ a,.x, =0 butthe oy, @, ..., a, notall zero .

Example (1.32):- Determine S = {x;,x,} is linearly dependent or independent
where x; = (1,2,3), x, = (1,0,2).

Solution : Leta;,a, € F

a,(1,2,3) + a,(1,0,2) = (0,0,0), only solution is trivial solution a; = a, = 0.
Thus, S is linearly independent.

Example (1.33):-Determine S = {x;,x,} is linearly dependent or independent
where x; = (1,1,1),x, = (2,2,2)?

Solution: Let @y, a, € F

a,(1,1,1) + a,(2,2,2) = (0,0,0)
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a1+2a2=0$0{1=2a2

So, S is linearly dependent
Theorem (1.34):-  (without prove)

(1) Every m vectors set in R™ , if m > n then , the set is linearly dependent
(2) A linearly independent set in R™ has at most n vectors .

Remark (1.35):- Let L linear space over F ,S € L and x, € L , then

(D) If 0, € S = Sis linear dependent . i.e., every subspace is linear dependent
set
(2)If xo # 0, = {x,} is linearly independent
Definition (1.36):- Let L be a linear space over F .A subset B of L is a basis if it

is linearly independent and spans L i.e,

(1) B is linearly independent
(2)Span (B) =L L Jis B
The number of elements in a basis for L is called the dimension of L and is denoted

by dim (L)
Example(1.37):- Consider the linear space (R3, +,..)
The dimension of L is 3. i.e.,dim (R3) =3

Since B = {(1,0,0), (0,1,0), (0,0,1)} is basis for R3
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Remark (1.38):-

(1) Every linear space L # {0} has a basis
QIfL={0} =dim(L)=0
(3)If L finite dimension linear space and S be a subspace of L, then dim S <

dimL.
@IfdimS=dimL=S=1L

B)If S ={xq,....,x,} be a linearly independent in L then there exists ¢ > 0
such that Xl = 1 2 aixq | = ¢ Ximqla;] .

(6) The dimension of quotient space (or factor space) is called codimension of

M and denoted by codm(M) = dim (%).

The Convexity

Definition (1.39):- Let A be a subset of linear space L then , we say that A is

convex set if satisfy the following condition :

vx,y € A,A1€[0,1] then Ax+ (1 —-A)y€EA.

Examples About Convex Sets

Example(1.40):- If A = (a,b) € = A is convex set
Solution :

Letx,y €A, A€ [0,1]
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x€E(a,b)=a<x<b=>Aa <Ax<ib ..(1)
yE(@b)=a<y<b=>0-Da<Q-ADy<@A-1)b (2
By summing up (1) and (2)
Aa+(1-DNa<Ax+A-ADy<ib+(1-1b
a<Ax+(1—-2A1y<b.

Example(1.41):- Every linear subspace is convex, but the converse is not true in
general

Solution :

Let M be a subspace of linear spaceL = ax + fy € M ,Vx,y € M ,a, 8 € F.Put

a=4=1-21,0<1<1
= Ax+(1—-AD)yeEM, Vx,yeM,0< 1 <1 = M isconvex set
For the converse , consider the following example

Let L=R*M ={(x,y) € R, x>0,y >0}, then M is convex set but not

subspace.
s To prove M is convex set.

Let  (xq,y1),(x3,y,) EMand 0< A <1. To prove A(xq,y)+(1-

AN (xz,y,) EM.
(X, V1) EM= x;,=20,y;, 20 and (x,,y,) EM = x, =20,y, = 0.

Thus, Ax; + (1 —A)y; = 0and Ax, + (1 — A1)y, = 0.
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Then, A(xy,y1) + (1 = D) (x2,y2) = (Ax; + (1 = Dy, Ax, + (1 = 1)y,) € M.

+ Show that M is not a subspace (H.W.)

Theorem(1.42): (Some Properties About Convex Sets)

5.

The singleton set is convex set

The intersection of convex set is convex.

The empty set and the whole space are convex. (H.W.)
If Ais convex set = aA also convex a € F. (H.W.)

If A and B are convex set = A + B also convex set.

Proof (1) Let A = {x} to prove A is convex set.

Takex e Aand A € [0,1]then Ax + (1 —A)x = x € M.

Proof (2) Let A and B are convex sets To prove A N B is convex set.

Letx,y€eAnBand0< A <1toprovedx+ (1 -1y € ANB.

x,y € Aand Aisconvex=> x+(1—-A)ye€eAd.... (1)

x,y € BandBisconvex= x+ (1—-A)y€B .... (2

From (1)&(2) we get x + (1 — A1)y € An B. Then, A N B is convex set.

Proof (5) Leta, + b;,a, + b, € A+ B, thena,,a, € Aand by, b, € B.

Toprove A (a; + b))+ (1 —A)(a, +by,) EA+ B, VA€ [0,1]
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Since A isconvex setand a;,a, € A= 21a; + (1 —2Aa, € A VA€ [0,1]...(1)

Since B is convex setand by, b, € B=>Ab; + (1 —A1)b, € B VA€ [0,1]...(2)

By summing up (1) and (2) we get

/’la1+(1_/’l)a2+/’{b1+(1_l)b2€ A+B

ie,A(a; +b)+ (@ —-2A)(a, +b,) € A+ B. Thus, A + B is a convex set.

Linear operator and linear functional

Definition(1.43):-  Let L and L’ are linear spaces over the same field F . A

mapping T: L — L' is called Linear operator or (Linear transformation) if

T(a.x+B.y) =aT(x)+ BT(y),Vx,y € Landa,f € F

Note : The linear operator T: L — F is said to be linear functional.

Examples of Linear Functional

Example (1.44):- LetT:R — R suchthat T(x) =mx,m € Rthe T is linear

functional

Solution: Letxy E R,a,f € R
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T(ax + By) = m(ax + By) = m(ax) + m(By)

= a(mx) + p(my)

= aT(x) + BT(y)

Example(1.45):- LetT:R->Rst.T(x)=mx+b, m,b*+0€R thenT s
not linear functional ?

Solution: Letx y € R

T(ax + By) =m(ax+ By)+b=ma)x + (mB)y+b
=a(mx)+pB(my)+b ... (D)

Now, aT(x) + fT(y) = a(mx + b) + f(my + b)

=amx + my+ (a+ )b ... .. (2)

Leta=1,=2, wegetl+2

Example(1.46):-  Let T:C[a,b] > R such that T (f) = [, f(x)dx
Show that T is linear functional.

Solution : Let f,g € Cla,b],a, B € R. To prove that
T(af +Bg) = aT(f) + BT(9)

b
Taf +69) = | (af +po)w)dx

= [Paf(0) dx+ [} Bg(x)dx

= afl f)dx+ B [, g(x)dx = aT(f) + BT(g).

Example(1.47):- Show that T: R> -» R? such that
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T (x1,%x5) = (x1 + x5, %, — x, + 1) is not linear operator

Solution : T(0) = T((0,0)) = (0,1) # (0,0) = T not linear functional.

Exercise
(1) IfT:R? > R s.t T(xy,x,) = x%; +x%, . Show that T is not linear
functional.
(2) IfT:R? > R s.t T(xy,x,) = (x; + X5,0). Is T linear transformation
?

(3) If T:R? > R? st T(xy,x,) = (ax;,x,),a €R. Is T linear
transformation ?
(4) If T:R3 > R3 st T (x,x,,%3) = (x3,%x; —x,0) . Is T linear

transformation ?

Some Theorems About Linear operators

Theorem(1.48):- Let L,L',L" are linear spaces over the same field F such that

T:L — L and g: L' — L" linear operators then

(1) T(0,) = 0y and g(0,) = Oy

(2) T(x—y)=Tx)-T(y)

(3) goT is linear operator .
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Theorem(1.49):- Let L, L are linear spaces over the same field Fand T, , T,: L —

L' are two linear operators. Define + and . as follows:
(AT)(x) = A.T,(x), Vx€L, A€EF

Then, T; + T, and «aT; are linear operators

Proof ;- Letx,y € L and a,f € F then

QT +T)(ax+p.y)=Ti(a.x+B.y) + To(a.x + B.y)

=a.T;(x) + . T1(y) + a.T,(x) + B.T>(y)
=a. (Ty(x) + T,(x)) + B.(T1(y) + T (y))
=a.(Ty + T,)(x) + 5. (T + TL)(¥)

(2 ATy (a.x+L.y) =A[a.Ty(x) + B.T,(v)]
=(Aa). Ty (x) + (48).T1 (¥)
= a. ()L. Tl(x)) + ,8(/1. Tl(y))

=a. (AT (x) + B. (AT (y).



