
DATA STRUCTURE LAB

Dr. Halah H. Mahmoud

Computer science department / College of Science for Women

Tuples

 Python Tuples are like a list. It can hold a sequence of

items. The difference is that it is immutable



 How to Create a Python Tuple?

 To declare a Python tuple, you must type a list of

items separated by commas, inside parentheses. Then

assign it to a variable.

 >>> percentages=(90,95,89)

 You should use a tuple when you don’t want to

change just an item in future.

Tuples

1. Python Tuples Packing

 You can also create a Python tuple without parentheses.

This is called tuple packing.

 >>> b= 1, 2.0, 'three'

2. Python Tuples Unpacking

 Python tuple unpacking is when you assign values from a

tuple to a sequence of variables in python.

 >>> percentages=(99,95,90,89,93,96)

 >>> a,b,c,d,e,f=percentages

 >>> c

 Output: 90



Tuples

3. Creating a tuple with a single item

 Until now, we have seen how easy it is to declare a

Python tuple. But when you do so with just one element,

it may create some problems. Let’s take a look at it.

 >>> a=(1)

 >>> type(a)

 Output

 <class ‘int’>

Tuples

 Wasn’t the type() method supposed to return class ‘tuple’?

 To get around this, we add a comma after the item.

 >>> a=(1,)

 >>> type(a)

 Output

 <class ‘tuple’>

Also, like a list, a Python tuple may contain items of

different types.

 >>> a=(1,2.0,'three')

Tuples

 How to Access Python Tuple?

1. Accessing the entire tuple

 To access a tuple in python, just type its name.

 >>> percentages

Output: (90, 95, 89)

 Or, pass it to the print statement.

 >>> print(percentages)

 Output: (90, 95, 89)

2. Accessing a single item

 To get a single item from a Python tuple, use its index in

square brackets. Indexing begins at 0.

 >>> percentages[1]

 Output: 95

Tuples

 Slicing a Tuple in Python

 If you want a part(slice) of a tuple in Python, use the

slicing operator [].

 >>> percentages=(99,95,90,89,93,96)

 1. Positive Indices

 When using positive indices, we traverse the list from the

left.

 >>> percentages[2:4]

 Output: (90, 89)

 This prints out items from index 2 to index 3 (4-1) (items

third to fourth).

 >>> percentages[:4]

Tuples

 Slicing a Tuple in Python

 Output: (99, 95, 90, 89)

 This prints out items from the beginning to the item at

index 3.

 >>> percentages[4:]

 Output: (93, 96)

 This prints out items from index 4 to the end of the list.

 >>> percentages[2:2]

 Output: ()

 However, this returns an empty Python tuple.

Tuples

2. Negative indexing

 Now, let’s look at negative indexing. Unlike positive

indexing, it begins traversing from the right.

 >>> percentages[:-2]

 Output: (99, 95, 90, 89)

 This prints out the items from the tuple’s beginning to

two items from the end.

 >>> percentages[-2:]

 Output: (93, 96)

Tuples

2. Negative indexing

 This prints out items from two items from the end to the

end.

 >>> percentages[2:-2]

 Output: (90, 89)

 This prints out items from index 2 to two items from the

end.

 >>> percentages[-2:2]:

 Output: ()

Tuples

2. Negative indexing

 This last piece of code, however, returns an empty tuple.

This is because the

 start(-2) is behind the end(2) in this case.

 Lastly, when you provide no indices, it prints the whole

Python tuple.

 >>> percentages[:]

 Output: (99, 95, 90, 89, 93, 96)

Tuples

 Deleting a Python Tuple

 a Python tuple is immutable. This also means that you

can’t delete just a part of it. You must delete an entire

tuple, if you may.

 >>> del percentages[4]

 Output

 Traceback (most recent call last):File “<pyshell#19>”, line

1, in <module>

 del percentages[4]

 TypeError: ‘tuple’ object doesn’t support item deletion

Tuples

 Deleting a Python Tuple

 So, deleting a single element didn’t work. Let’s try deleting a slice.

 >>> del percentages[2:4]

 Output

 Traceback (most recent call last):File “<pyshell#20>”, line 1, in

<module>del percentages[2:4]

 TypeError: ‘tuple’ object does not support item deletion

 deleting the entire tuple.

 >>> del percentages

 >>> percentages

 Output

 Traceback (most recent call last):File “<pyshell#40>”, line 1, in

<module>

 percentages

 NameError: name ‘percentages’ is not defined

Tuples

 Reassigning Tuples in Python

 As we discussed, a Python tuple is immutable. So let’s
try changing a value. But before that, let’s take a new
tuple with a list as an item in it.

 >>> my_tuple=(1,2,3,[4,5])

 Now, let’s try changing the list [4,5]. Its index is 3.

 >>> my_tuple[3]=6

 Output

 Traceback (most recent call last):File “<pyshell#43>”,
line 1, in <module>

 my_tuple[3]=6

 TypeError: ‘tuple’ object does not support item
assignment

Tuples

PYTHON TUPLE FUNCTIONS

1. len()

 Like a list, a Python tuple is of a certain length.

The len() function returns its length.

 >>> my_tuple

 Output

 (1, 2, 3, [6, 5])

 >>> len(my_tuple)

 Output

 4

 It returned 4, not 5, because the list counts as 1.

Tuples

2. max()

 It returns the item from the tuple with the highest value.

 We can’t apply this function on the tuple my_tuple,
because ints cannot be compared to a list. So let’s take
yet another tuple in Python.

 >>> a=(3,1,2,5,4,6)

 >>> max(a)

 Output

 6

 ax(('Hi','hi','Hello'))

 Output

 ‘hi’

Tuples

3. min()

 Like the max() function, the min() returns the item

with the lowest values.

 >>> min(a)

 Output

 1

 As you can see, 1 is the smallest item in this Python

tuple.

Tuples

 4. sum()

 This function returns the arithmetic sum of all the items in the
tuple.

 >>> sum(a)

 Output: 21

 However, you can’t apply this function on a tuple with strings.

 >>> sum(('1','2','3'))

 Output

 Traceback (most recent call last):File “<pyshell#57>”, line 1, in
<module>

 sum((‘1′,’2′,’3’))

 TypeError: unsupported operand type(s) for +: ‘int’ and ‘str’

Tuples

 5. any()

 If even one item in the tuple has a Boolean value of
True, then this function returns True. Otherwise, it
returns False.

 >>> any(('','0',''))

 Output: True

 The string ‘0’ does have a Boolean value of True. If it
was rather the integer 0, it would’ve returned False.

 >>> any(('',0,''))

 Output: False

Tuples

6. all()

 Unlike any(), all() returns True only if all items have

a Boolean value of True. Otherwise, it returns False.

 >>> all(('1',1,True,''))

 Output: False

Tuples

7. sorted()

 This function returns a sorted version of the tuple.

The sorting is in ascending order, and it doesn’t

modify the original tuple in Python.

 >>> sorted(a)

 Output: [1, 2, 3, 4, 5, 6]

Tuples

8. tuple()

 This function converts another construct into a Python tuple.
Let’s look at some of those.

 >>> list1=[1,2,3]

 >>> tuple(list1)

 Output: (1, 2, 3)

 >>> string1="string"

 >>> tuple(string1)

 Output: (‘s’, ‘t’, ‘r’, ‘i’, ‘n’, ‘g’)

 How well would it work with sets?

 >>> set1={2,1,3}

 >>> tuple(set1)

 Output: (1, 2, 3)

 >>> set1

 Output: {1, 2, 3}

Tuples

 Python Tuple Methods

 A method is a sequence of instructions to perform on
something. Unlike a function, it does modify the construct on
which it is called. You call a method using the dot operator in
python. Let’s learn about the two in-built methods of Python.

 1. index()

 This method takes one argument and returns the index of the
first appearance of an item in a tuple. Let’s take a new tuple.

 >>> a=(1,2,3,2,4,5,2)

 >>> a.index(2)

 Output

 1

 As you can see, we have 2s at indices 1, 3, and 6. But it returns
only the first index.

Tuples

 Python Tuple Methods

 2. count()

 This method takes one argument and returns the

number of times an item appears in the tuple.

 >>> a.count(2)

 Output

 3

Tuples

 Python Tuple Operations

1. Membership

 We can apply the ‘in’ and ‘not in’ operators on items. This tells us
whether they belong to the tuple.

 >>> 'a' in tuple("string")

 Output: False

 >>> 'x' not in tuple("string")

 Output: True

2. Concatenation

 Like we’ve previously discussed on several occasions,
concatenation is the act of joining. We can join two tuples using
the concatenation operator ‘+’.

 >>> (1,2,3)+(4,5,6)

 Out`put: (1, 2, 3, 4, 5, 6)

 Other arithmetic operations do not apply on a tuple.

Tuples

 Python Tuple Operations

3. Logical

 All the logical operators (like >,>=,..) can be applied on a tuple.

 >>> (1,2,3)>(4,5,6)

 Output: False

 >>> (1,2)==('1','2')

 Output: False

 As is obvious, the ints 1 and aren’t equal to the strings ‘1’ and ‘2’.
Likewise, it returns False.

4. Identity

 Remember the ‘is’ and ‘is not’ operators we discussed about in our
tutorial on Python Operators? Let’s try that on tuples.

 >>> a=(1,2)

 >>> (1,2) is a

 Output: False

Tuples

