DATA STRUCTURE LAB

Tuples

‘ Dr. Halah H. Mahmoud
omputer science department / College of Science for Women




Tuples

Python Tuples are like a list. It can hold a sequence of
1tems. The difference 1s that it 1s immutable

How to Create a Python Tuple?

To declare a Python tuple, you must type a list of
1tems separated by commas, inside parentheses. Then
assign 1t to a variable.

>>> percentages=(90,95,89)

You should use a tuple when you don’t want to
change just an item 1n future.



Tuples

1. Python Tuples Packing

You can also create a Python tuple without parentheses.
This 1s called tuple packing.

>>> b= 1, 2.0, 'three'

2. Python Tuples Unpacking

Python tuple unpacking is when you assign values from a
tuple to a sequence of variables in python.

>>> percentages=(99,95,90,89,93,96)
>>> a,b,c,d,e,f=percentages
>>> ¢

Output: 90



Tuples

3. Creating a tuple with a single item

Until now, we have seen how easy it 1s to declare a
Python tuple. But when you do so with just one element,
1t may create some problems. Let’s take a look at it.

>>> a=(1)
>>> type(a)

Output
<class ‘int™>



Tuples

Wasn’t the type() method supposed to return class ‘tuple’?
To get around this, we add a comma after the item.

>>> a=(1,)

>>> type(a)

Output
<class ‘tuple’™>

Also, like a list, a Python tuple may contain items of
different types.

>>> g=(1,2.0,'three")



Tuples

How to Access Python Tuple?
1. Accessing the entire tuple
To access a tuple in python, just type its name.
>>> percentages
Output: (90, 95, 89)
Or, pass it to the print statement.

>>> print(percentages)
Output: (90, 95, 89)

2. Accessing a single item

To get a single 1item from a Python tuple, use its index in
square brackets. Indexing begins at 0.

>>> percentages|1]
Output: 95



Tuples
Slicing a Tuple in Python

If you want a part(slice) of a tuple in Python, use the
slicing operator [].

>>> percentages=(99,95,90,89,93,96)
1. Positive Indices

When using positive indices, we traverse the list from the
left.

>>> percentages|2:4]

Output: (90, 89)

This prints out items from index 2 to index 3 (4-1) (items
third to fourth).

>>> percentages|:4]



Tuples
Slicing a Tuple in Python
Output: (99, 95, 90, 89)

This prints out items from the beginning to the item at
index 3.

>>> percentages|[4:]

Output: (93, 96)
This prints out items from index 4 to the end of the list.
>>> percentages|2:2]

Output: ()
However, this returns an empty Python tuple.



Tuples

2. Negative indexing

Now, let’s look at negative indexing. Unlike positive
indexing, it begins traversing from the right.

>>> percentages|[:-2]

Output: (99, 95, 90, 89)

This prints out the items from the tuple’s beginning to
two 1items from the end.

>>> percentages|-2:]
Output: (93, 96)



Tuples

2. Negative indexing

This prints out items from two items from the end to the
end.

>>> percentages|[2:-2]

Output: (90, 89)

This prints out items from index 2 to two items from the
end.

>>> percentages|[-2:2]:

Output: ()



Tuples

2. Negative indexing

This last piece of code, however, returns an empty tuple.
This 1s because the

start(-2) 1s behind the end(2) in this case.

Lastly, when you provide no indices, 1t prints the whole
Python tuple.

>>> percentages|:]
Output: (99, 95, 90, 89, 93, 96)



Tuples

Deleting a Python Tuple

a Python tuple 1s immutable. This also means that you
can’'t delete just a part of it. You must delete an entire
tuple, 1f you may.

>>> del percentages[4]

Output

Traceback (most recent call last):File “<pyshell#19>", line
1, 1n <module>

del percentages|[4]
TypeError: ‘tuple’ object doesn’t support item deletion



Tuples

Deleting a Python Tuple

So, deleting a single element didn’t work. Let’s try deleting a slice.
>>> del percentages[2:4]

Output

Traceback (most recent call last):File “<pyshell#20>", line 1, in
<module>del percentages[2:4]

TypeError: ‘tuple’ object does not support item deletion

deleting the entire tuple.
>>> del percentages

>>> percentages
Output

Traceback (most recent call last):File “<pyshell#40>", line 1, in
<module>

percentages
NameError: name ‘percentages’ is not defined



Tuples

Reassigning Tuples in Python

As we discussed, a Python tuple 1s immutable. So let’s
try changing a value. But before that, let’s take a new
tuple with a list as an 1item 1n it.

>>> my_tuple=(1,2,3,[4,5])

Now, let’s try changing the list [4,5]. Its index 1s 3.
>>> my_tuple[3]=6

Output

Traceback (most recent call last):File “<pyshell#43>",
line 1, 1n <module>

my_tuple[3]=6

TypeError: ‘tuple’ object does not support item
assignment



PYTHON TUPLE FUNCTIONS

Data

S A Python Tuple Functions

len() max() min() sum()

- —_— — ——— — —_—, —_—
N 3 N\ f/

any() all() - sorted() tuple()
‘ |




Tuples

1. len()

Like a list, a Python tuple is of a certain length.
The len() function returns its length.

>>> my_tuple
Output

(1, 2, 3, [6, 5])
>>> len(my_tuple)
Output

4

It returned 4, not 5, because the list counts as 1.



Tuples

2. max()
It returns the item from the tuple with the highest value.

We can’t apply this function on the tuple my_tuple,
because ints cannot be compared to a list. So let’s take
yet another tuple in Python.

>>> a=(3,1,2,5,4,6)
>>> max(a)
Output

6

ax(('"H1','h1','Hello"))
Output
Chi’



Tuples

3. min()

Like the max() function, the min() returns the item
with the lowest values.

>>> min(a)
Output

1

As you can see, 1 is the smallest item in this Python
tuple.



Tuples

4. sum()

This function returns the arithmetic sum of all the items in the
tuple.

>>> sum(a)

Output: 21

However, you can’t apply this function on a tuple with strings.
>>> gum(('1','2",'3"))

Output

Traceback (most recent call last):File “<pyshell#57>", line 1, in
<module>

sum(('1','2','3))
TypeError: unsupported operand type(s) for +: ‘int’ and ‘str’



Tuples

5. any()

If even one item 1n the tuple has a Boolean value of
True, then this function returns True. Otherwise, 1t
returns False.

>>> any((",'0',"))

Output: True

The string ‘0’ does have a Boolean value of True. If it
was rather the integer 0O, 1t would’ve returned False.

>>> any((",0,"))

Output: False



Tuples

6. all()

Unlike any(), all() returns True only if all items have
a Boolean value of True. Otherwise, it returns False.

>>> all(('1",1,True,"))
Output: False



Tuples

7. sorted()

This function returns a sorted version of the tuple.
The sorting 1s in ascending order, and it doesn’t
modify the original tuple in Python.

>>> gorted(a)
Output: [1, 2, 3, 4, 5, 6]



Tuples

8. tuple()

This function converts another construct into a Python tuple.
Let’s look at some of those.

>>> list1=[1,2,3]

>>> tuple(list])

Output: (1, 2, 3)

>>> gtring1="string"

>>> tuple(stringl)

Output: (s’, t’, ', 7, n’, ‘@)
How well would 1t work with sets?
>>> getl1={2,1,3}

>>> tuple(setl)

Output: (1, 2, 3)

>>> getl

Output: {1, 2, 3}



Tuples

Python Tuple Methods

A method 1s a sequence of instructions to perform on
something. Unlike a function, it does modify the construct on
which 1t 1s called. You call a method using the dot operator in
python. Let’s learn about the two 1in-built methods of Python.

1. index()

This method takes one argument and returns the index of the
first appearance of an item in a tuple. Let’s take a new tuple.

>>> 9=(1,2,3,2,4,5,2)
>>> g.1ndex(2)
Output

1

As you can see, we have 2s at indices 1, 3, and 6. But it returns
only the first index.



Tuples

Python Tuple Methods
2. count()

This method takes one argument and returns the
number of times an item appears in the tuple.

>>> g.count(2)
Output
3



Tuples

Python Tuple Operations
1. Membership

We can apply the ‘Iin’ and ‘not in’ operators on items. This tells us
whether they belong to the tuple.

>>>"'a' in tuple("string")
Output: False
>>>'x' not in tuple("string")

Output: True

2. Concatenation

Like we’ve previously discussed on several occasions,
concatenation is the act of joining. We can join two tuples using
the concatenation operator ‘+.

>>>(1,2,3)+(4,5,6)
Output: (1, 2, 3, 4, 5, 6)
Other arithmetic operations do not apply on a tuple.



Tuples

Python Tuple Operations

3. Logical
All the logical operators (like >,>=,..) can be applied on a tuple.
>>>(1,2,3)>(4,5,6)
Output: False
>>> (1,2)==("1",'2")
Output: False

As 1s obvious, the ints 1 and aren’t equal to the strings ‘1’ and ‘2.
Likewise, 1t returns False.

4. Identity

Remember the ‘1s’ and ‘is not’ operators we discussed about in our
tutorial on Python Operators? Let’s try that on tuples.

>>> a=(1,2)
>>>(1,2) 1s a
Output: False



