Deoxy Sugars and Amino Sugars

 one quite ubiquitous deoxy sugar is 2'deoxy ribose which is the sugar found in DNA.

الريبوز المنقوص الاوكسجين ــ D

Reducing Sugars

Reducing sugars

- Are monosaccharides with a carbonyl group that oxidizes to give a carboxylic acid.
- Undergo reaction with Benedict's reagent (Cu²⁺⁾ to give the corresponding carboxylic acid.
- Include the monosaccharides glucose, galactose, and fructose.

Oxidation reactions

- Aldoses may be oxidized to 3 types of acids
- Aldonic acids: aldehyde group is converted to a carboxyl group
- Uronic acids: aldehyde is left intact and primary alcohol at the other end is oxidized to COOH
- <u>Saccharic acids</u> (glycaric acids) oxidation at both ends of monosaccharide)

Oxidation of D-Glucose

Glucose is a reducing sugar

Br2 is a mild oxidant that gives good yields of aldonic acid products

D-Glucose

D-Gluconic acid (an aldonic acid)

Aldoses are oxidized in warm, dilute HNO3 to dicarboxylic acids called aldaric acids

D-Glucose

D-Glucaric acid (an aldaric acid)

Enzymatic oxidation at the –CH2OH end of aldoses yields <u>uronic acids</u>

Enzymatic oxidation at the –CH2OH end of aldoses yields <u>uronic acids</u>

Reduction of Monosaccharides

The reduction of monosaccharides

- Involves the carbonyl group.
- Produces sugar alcohols called alditols.
- Such as D-glucose gives Dglucitol also called sorbitol.
- Learning Check

Write the products of the oxidation and reduction of

D-mannose.

n U.S.A. Wm. Wrigley Jr. Com ©1983. Made of: sorbitol, gum ol, natural and artificial flavors, rs, aspartame, BHT (to maintain ketonurics: contains phenyla

D-Glucitol

Effect of acids:

Learning Check

****Write the products of the oxidation and reduction of D-mannose.

Important Disaccharides

A disaccharide

Consists of two monosaccharides.

```
MonosaccharidesDisaccharideGlucose + glucose→ maltose + H_2OGlucose + galactose→ lactose + H_2OGlucose + fructose→ sucrose + H_2O
```

Maltose

Maltose is

- A disaccharide also known as malt sugar.
- Composed of two D-glucose molecules.
- Obtained from the hydrolysis of starch.
- Linked by an α-1,4-glycosidic bond formed from the α –OH on C1 of the first glucose and –OH on C4 of the second glucose.
- Used in cereals, candies, and brewing.
- Found in both the α and β forms.

Formation of Maltose

 α -Maltose, a disaccharide

Lactose

Lactose

- Is a disaccharide of β-D-galactose and α- or β-D-glucose.
- Contains a β -1,4glycosidic bond.
- Is found in milk and milk products.

Copyright © 2007 by Pearson Education, Inc. Publishing as Benjamin Cummings

Sucrose

Sucrose or table sugar

- Is obtained from sugar cane and sugar beets.
- Consists of α -D-glucose and β -D-fructose..
- Has an α, β -1,2-glycosidic bond.

Learning Check

***Write the structures and names of the two monosaccharides that form when sucrose is hydrolyzed.

****Identify the monosaccharides in each of the following:

- A. lactose
 - (1) α-D-glucose

- (2) β -D-fructose (3) β -D-galactose

- B. maltose
 - (1) α -D-glucose

- (2) β -D-fructose (3) β -D-galactose

- C. sucrose
 - (1) α -D-glucose

- (2) β -D-fructose (3) β -D-galactose