Carbohydrate

Carbohydrate chemistry

الكيمياء الحيوية ١/المرحلة الثالثة /الفصل الأول

اد فیحاء مقداد خلیل

Carbohydrate chemistry

- INTRODUCTION: DEFINITION, CLASSIFICATION AND FUNCTIONS OF CARBOHYDRATES
- Classification
- Aldoses , Ketoses
- Enantiomers , epimers and anomers
- Glycoside Formation
- Derivatives of Monosaccharides
- Disaccharides
- Polysaccharides (Glycans)
- Glycoproteins
- Summary
- Exercise

Carbohydrates

Carbohydrates are

- A major source of energy from our diet.
- Composed of the elements C, H, and O.
- Also called saccharides, which means "sugars." Are produced by photosynthesis in plants.
- Such as glucose are synthesized in plants from CO₂, H₂O, and energy from the sun.
- Are oxidized in living cells (respiratic.., to produce CO₂, H₂O, and energy

Classification

- Carbohydrates polyhydroxyaldehydes or polyhydroxyketones of formula (CH2O)n, or compounds that can be hydrolyzed to them. (sugars or saccharides)
- Monosaccharides carbohydrates that cannot be hydrolyzed to simpler carbohydrates; eg. Glucose or fructose.
- Disaccharides carbohydrates that can be hydrolyzed into two monosaccharide units; eg. Sucrose, which is hydrolyzed into glucose and fructose.
- Oligosaccharides carbohydrates that can be hydrolyzed into a few monosaccharide units. up to 9 or 10
 - Polysaccharides Polysaccharides or glycans
 - Homo and Heteropolysaccharides
 - Complex carbohydrates
- that are are polymeric sugars; eg Starch or cellulose.

- Aldose polyhydroxyaldehyde, eg glucose
- Ketose polyhydroxyketone, eg fructose
- Triose, tetrose, pentose, hexose, etc. carbohydrates that contain three, four, five, six, etc. carbons per molecule (usually five or six); eg. Aldohexose, ketopentose, etc.
- Reducing sugar a carbohydrate that is oxidized by Tollen's, Fehling's or Benedict's solution.
- Tollen's: $Ag + \rightarrow Ag$ (silver mirror)
- Fehling's or Benedict's: Cu2+ (blue) \rightarrow Cu1+ (red ppt)
- These are reactions of aldehydes and alpha-hydroxyketones.
- <u>All monosaccharides</u> (both aldoses and ketoses) and most* disaccharides are reducing sugars.
- *Sucrose (table sugar), a disaccharide, is <u>not</u> a reducing sugar.

Types of Carbohydrates

Monosaccharides

Monosaccharides consist of

- 3 to 6 carbon atoms, typically.
- A carbonyl group (aldehyde or ketone).
- Several hydroxyl groups.
- also known as simple sugars
- classified by 1. the number of carbons and 2. whether aldoses or ketoses
- most (99%) are straight chain compounds
- D-glyceraldehyde is the simplest of the aldoses (aldotriose)
- all other sugars have the ending <u>ose</u> (glucose, galactose, ribose, lactose, etc...)

Aldoses

Aldoses are monosaccharides

- With an aldehyde group.
- With many hydroxyl (–OH) groups.

triose (3 C atoms) tetrose (4 C atoms) pentose (5 C atoms) hexose (6 C atoms)

Erythose, an aldotetrose

Aldose sugars

Ketoses

Ketoses are monosaccharides With a ketone group. With many hydroxyl (–OH) groups. OH - C - Htriose (3 C atoms) *tetrose* (4 C atoms) pentose (5 C atoms) hexose (6 C atoms)

CH₂OH ketose C=O H-C-OH H-C-OH CH₂OH

Fructose, a ketohexose

Ketose sugars

n = 3

Aldotetrose

Aldopentoses: C5, three chiral carbons, eight stereoisomers

aldohexoses

Examples of D and L Isomers of Monosaccharides

Optical isomerism

Asymmetric compounds rotate plane polarized light

POLARIMETRY

Measurement of optical activity in chiral or asymmetric molecules using plane polarized light Molecules may be chiral because of certain atoms or because of chiral axes or chiral planes Measurement uses an instrument called a polarimeter Rotation is either (+) dextrorotatory or (-) levorotatory

POLARIMETER

Learning Check

Identify each as aldo- or keto- and as tetrose, pentose, or hexose:

Β