AMINO ACIDS, PEPTIDES AND PROTEINS

المرحلة الثالثة /قسم الكيمياء/الفصل الثاني أد.فيحاء مقداد خليل

Syllabus of proteins, DNA& RNA:

- 1. Types of amino acids.
- 2. Types of identification proteins.
- 3. Stereochemistry of Amino Acids
- 4. Classification of α -Amino acids.
- 5. Acid-Base Behavior of Amino Acids.
- 6. Electrophoresis.
- 7. properties of their side chains.
- 8. Proteins and peptides.
- 9. Protein Structure.
- 10. Hemoglobin(H) and Myoglobin (M).
- 11. Classification of Proteins on the Basis of Biological Role.
- 12. Denaturation of Proteins.
- 13. Cleavage of proteins.
- 14. DNA Structure.
- 15. RNA Structure.
- 16. DNA& RNA functions.

Nonpolar, aliphatic R groups

Polar, uncharged R groups

COO⁻ COO⁻ COO⁻ H₃N̄-C-H H₃N̄-C-H CH₂ CH₂ SH Serine Threonine Cysteine

$$\begin{array}{ccccc}
COO^- & COO^-$$

Aromatic R groups

Phenylalanine Tyrosine **Tryptophan**

Positively charged R groups

Negatively charged R groups

Aspartate Glutamate ■Ninhydrin's test (specific to all Proteins & Amino acids ■Biuret's test (specific to Proteins) ■Sakaguchi's test (specific to Arginine) ■Nitropruside's test (specific to Cysteine) ■Millon's test (specific to Tyrosine) ■ Hopkins-Cole's test (specific to Tryptophan)

Stereochemistry of Amino Acids: The natural configuration of the α -carbon is L. D-Amino acids are found in the cell walls of bacteria. The D-amino acids are not genetically encoded, but derived from the epimerization of L-isomers

peptide (< 50 amino acids)

R = sidechain

monomer unit: α- Amino Acid α-amino acids

protein (> 50 amino acids, Peptide or protein (polypeptide)

Proteins / polypeptides - chains formed by the condensation/combination of 20 different α - amino acids. Polypeptides - may be di-, tri -, etc; up to 10 a.a.

Proteins - longer than 10 a.a. units; ie. MW>10,000

Classification of Amino Acids. A A's are classified according to the location of the amino group.

according to the location of the amino group.

$$H_2N-\overset{H}{C}-CO_2H$$
 $H_2N-\overset{H}{C}-\overset{H}{C}-CO_2H$
 $H_2N-\overset{G}{C}-\overset{G}{C}-CO_2H$
 $H_3N-\overset{G}{C}-\overset$

There are 20 genetically encoded α -amino acids found in peptides and proteins . The R configuration denotes a clockwise rotation, while the S configuration denotes an anticlockwise rotation.

Isoleucine and threonine are the only two amino acids with two chirality centers Assign R or S configuration to the methyl-bearing carbon atom of isoleucine. 19 are primary amines, 1 (proline) is a secondary amine19 are "chiral", 1 (glycine) is achiral; the natural configuration of the α -carbon is L.

 α -Amino acids are classified by the properties of their side chains *Nonpolar*: using the designations 'R' (from the Latin *rectus*, meaning right-handed) or 'S' (from the Latin *sinister*, meaning left-handed)

Polar but non-ionizable:

Acidic:

(S)-(+)-Aspartic Acid (Asp, D)
pKa ~ 3.6

(S)-(+)-Glutamic Acid (*Glu, E*)

pKa ~ 4.2

Basic:

$$H_2N$$
 H_2N
 H_3
 H_2N
 H_3

(S)-(+)-Lysine (Lys, K)

pKa ~ 10.5

(S)-(-)-Histidine (His, H)

pKa ~ 6.0

(S)-(+)-Arginine (Arg, R)

pKa ~ 12.5