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𝑆𝑆. 𝑡𝑡.     2𝑥𝑥1 + 4𝑥𝑥2 ≤ 80  
             6𝑥𝑥1 + 2𝑥𝑥2 ≥ 60  
             8𝑥𝑥1 + 6𝑥𝑥2 ≥ 120  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
2.9       The Simplex Method 
The graphical method cannot be applied when the number of variables in the 
LPP is more than three, or rather two, since even with three variables the 
graphical solution becomes tedious as it involves intersection of planes in three 
dimensions. The simplex method can be used to solve any LPP (for which the 
solution exists) involving any number of variables and constraints. 
The computational procedure in the simplex method is based on a 
fundamental property that the optimal solution to an LPP, if it exists, occurs 
only at one of the corner points of the feasible region. The simplex method is 
an iterative method starts with initial basic feasible solution  at the origin, i.e. 
Z=0. If the solution is not optimal, we move to the adjacent corner, until after a 
finite number of trials, the optimal solution, if it exists, is obtained.  
The steps of the simplex method are as follows: 
Step 1: Convert the given problem into the standard form. The Right Hand Side 
(RHS) of each constraint must be non-negative. Write the objective function in 
the form: 𝑍𝑍 − ∑ 𝑐𝑐𝑗𝑗𝑥𝑥𝑗𝑗  = 0              𝑛𝑛

𝑗𝑗=1  
Step 2: Set 𝑥𝑥1 =  𝑥𝑥2 =  … =  𝑥𝑥𝑛𝑛 = 0, i.e. 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 are non-basic variables, 
thus 𝑠𝑠1, 𝑠𝑠2, … , 𝑠𝑠𝑚𝑚 are the basic-variables. 
Step 3: Construct the initial simplex table (or tableau) with all slack variables in 
the BVS. The simplex table for the general LPP (in 2.4) is: 

Basic 
variables 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 … 𝒙𝒙𝒏𝒏 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 … 𝒔𝒔𝒎𝒎 Solution 

𝒔𝒔𝟏𝟏 𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑛𝑛 1 0 … 0 𝑏𝑏1 
𝒔𝒔𝟐𝟐 𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑛𝑛 0 1 … 0 𝑏𝑏2 
⋮ ⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮ ⋮ 
𝒔𝒔𝒎𝒎 𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 … 𝑎𝑎𝑚𝑚𝑚𝑚 0 0 … 1 𝑏𝑏𝑚𝑚 
𝒁𝒁 − 𝑐𝑐1 −𝑐𝑐2 … −𝑐𝑐𝑛𝑛 0 0 … 0 0 

Table (2.1) 
The coefficients 𝑎𝑎𝑖𝑖𝑖𝑖  in the constraints (written under non-basic variables  
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is called the body matrix (or coefficient matrix). The last column 
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of the table (2.1) is called solution value column (briefly solution column) or 
quantity column or b-column or RHS column. 
Step 4: Check the optimality of the current solution: In maximization 
(minimization) problem the simplex table is optimal, if in the Z-row there are 
non-negative (non-positive) coefficients in any NBV’s. If the table is optimal the 
algorithm terminates, and the optimal value and decision can be read from the 
BV and RHS columns. 
Step 5: If the current solution is not optimal, then determine which non-basic 
variable should become a basic variable (entering variable) and which basic 
variable should become a non-basic variable (leaving variable) to find a new 
BFS with a better objective function value.  
i) In maximization (minimization) problem, the entering variable will 

correspond to the variable with the most negative (positive) coefficient in 
the objective function. The column of this variable is called the pivot (key) 
column. 

ii) The mechanics of determining the leaving variable from the simplex table 
calls for computing the non-negative ratio of the b-column to the 
corresponding coefficients in the pivot column (since solutions must 
satisfy the non-negativity condition). The minimum non-negative ratio 
identifies the leaving variable; its row is called the pivot (key) row. The 
rule associated with this ratio is called the feasibility condition. 

iii) Update the solution by preparing the new simplex table. This is done by 
performing Gauss-Jordan row operations. The intersection of the pivot 
row and the pivot column is called the pivot (key) element. 

The Gauss-Jordan computations needed to produce the new BFS includes: 
a) Pivot row: 

1- Replace leaving variable in the Basic variables column with the 
entering variable. 

2- New pivot row=Current pivot row ÷ Pivot element 
b) All other rows, including Z: 

New row= Current row – its pivot column coefficient × New pivot row 
Step 6: Repeat steps 4 and 5 until, after a finite number of steps, an optimal 
solution, if it exists, is reached. 
Example (2.16): 
Find the optimal solution of the following LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 12𝑥𝑥1 + 15𝑥𝑥2 + 14𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.    − 𝑥𝑥1 + 𝑥𝑥2 ≤ 0  
            −𝑥𝑥2 + 2𝑥𝑥3 ≤ 0  
            𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 ≤ 100  
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    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
The standard form of the LPP (with modification of the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 − 12𝑥𝑥1 − 15𝑥𝑥2 − 14𝑥𝑥3 = 0  
𝑆𝑆. 𝑡𝑡.    − 𝑥𝑥1 + 𝑥𝑥2 + 𝑠𝑠1 = 0  
            −𝑥𝑥2 + 2𝑥𝑥3 + 𝑠𝑠2 = 0  
            𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 + 𝑠𝑠3 = 100  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0 
Set 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0in the constraints yield the following initial basic feasible 
solution: 𝑠𝑠1 = 0, 𝑠𝑠2 = 0, 𝑠𝑠3 = 100,𝑍𝑍 = 0. The simplex table is: 

Basic 
variables 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  

𝒔𝒔𝟏𝟏 −1 1 0 1 0 0 0 0/1=0 
𝒔𝒔𝟐𝟐 0 −1 2 0 1 0 0  
𝒔𝒔𝟑𝟑 1 1 1 0 0 1 100 100/1=100 
𝒁𝒁 − 12 −15 −14 0 0 0 0  

Since some elements in Z row are negative then the initial solution is not 
optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution 
𝒙𝒙𝟐𝟐 −1 1 0 1 0 0 0 
𝒔𝒔𝟐𝟐 −1 0 2 1 1 0 0 
𝒔𝒔𝟑𝟑 2 0 1 −1 0 1 100 
𝒁𝒁 −27 0 −14 15 0 0 0 

𝑥𝑥1 = 0, 𝑠𝑠2 = 0, 𝑠𝑠3 = 100,𝑍𝑍 = 0  and it is not optimal, then:  

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  

𝒙𝒙𝟐𝟐 0 1 1/2 1/2 0 1/2 50 50/(1/2)=100 

𝒔𝒔𝟐𝟐 0 0 5/2 1/2 1 1/2 50 50/(5/2)=20 

𝒙𝒙𝟏𝟏 1 0 1/2 −1/2 0 1/2 50 50/(1/2)=100 

𝒁𝒁 0 0 −1/2 3/2 0 27/2 1350  
𝑥𝑥1 = 50, 𝑠𝑠2 = 50, 𝑥𝑥1 = 50,𝑍𝑍 = 1350  and it is not optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution 
𝒙𝒙𝟐𝟐 0 1 0 2/5 −1/5 2/5 40 
𝒙𝒙𝟑𝟑 0 0 1 1/5 2/5 1/5 20 
𝒙𝒙𝟏𝟏 1 0 0 −3/5 −1/5 2/5 40 
𝒁𝒁 0 0 0 8/5 1/5 68/5 1360 
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Optimal solution is: 𝑥𝑥1 = 40, 𝑥𝑥2 = 40,𝑥𝑥3 = 20,𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 1360. 
Example (2.17): 
Find the optimal solution of the following LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.    3𝑥𝑥1 − 𝑥𝑥2 + 2𝑥𝑥3 ≤ 7  
            2𝑥𝑥1 + 4𝑥𝑥2 ≥ −12  
            −4𝑥𝑥1 + 3𝑥𝑥2 + 8𝑥𝑥3 ≤ 10  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
The RHS of the second constrain is negative, it is made positive by multiplying 
both side of the constraint by −1. Thus, the constraint takes the form:  
            −2𝑥𝑥1 − 4𝑥𝑥2 ≤ 12  
The standard form of the LPP (with modification of the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 − 𝑥𝑥1 + 3𝑥𝑥2 − 3𝑥𝑥3 = 0  
𝑆𝑆. 𝑡𝑡.    3𝑥𝑥1 − 𝑥𝑥2 + 2𝑥𝑥3 + 𝑠𝑠1 = 7  
           −2𝑥𝑥1 − 4𝑥𝑥2 + 𝑠𝑠2 = 12  
            −4𝑥𝑥1 + 3𝑥𝑥2 + 8𝑥𝑥3 + 𝑠𝑠3 = 10  

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0 
Set 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0  in the constraints yield the following initial basic 
feasible solution: 𝑠𝑠1 = 7, 𝑠𝑠2 = 12, 𝑠𝑠3 = 10,𝑍𝑍 = 0. This solution and further 
improved solutions are given in the following tables: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 3 −1 2 1 0 0 7  
𝒔𝒔𝟐𝟐 −2 −4 0 0 1 0 12  
𝒔𝒔𝟑𝟑 −4 3 8 0 0 1 10  
𝒁𝒁 − 1 3 −3 0 0 0 0  
𝒔𝒔𝟏𝟏 5/3 0 14/3 1 0 1/3 31/3  
𝒔𝒔𝟐𝟐 −22/3 0 32/3 0 1 4/3 76/3  
𝒙𝒙𝟐𝟐 −4/3 1 8/3 0 0 1/3 10/3  
𝒁𝒁 3 0 −11 0 0 −1 −10  
𝒙𝒙𝟏𝟏 1 0 14/5 3/5 0 1/5 31/5  
𝒔𝒔𝟐𝟐 0 0 156/5 22/5 1 14/5 354/5  
𝒙𝒙𝟐𝟐 0 1 32/5 12/5 0 3/5 58/5  
𝒁𝒁 0 0 −97/5 −9/5 0 −8/5 −143/5  
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Optimal solution is: 𝑥𝑥1 = 31
5

, 𝑥𝑥2 = 58
5

, 𝑥𝑥3 = 0,𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = −143/5  . 

Exercises 2.3 (In addition to the text book exercises) 
Solve the following problems by the simplex method: 
𝟏𝟏.      𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 6𝑥𝑥1 + 3𝑥𝑥2  
         𝑆𝑆. 𝑡𝑡.    3𝑥𝑥1 + 6𝑥𝑥2 ≤ 30  
                   3 𝑥𝑥1 + 3𝑥𝑥2 ≤ 18  
                    3𝑥𝑥1 − 3𝑥𝑥2 ≤ 6  
                   3𝑥𝑥1 − 6𝑥𝑥2 ≤ 3  

        𝑥𝑥1 , 𝑥𝑥2,≥ 0                
𝟐𝟐.     𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 2𝑥𝑥1 + 𝑥𝑥2 − 3𝑥𝑥3 + 5𝑥𝑥4      
        𝑆𝑆. 𝑡𝑡.    𝑥𝑥1 + 7𝑥𝑥2 + 3𝑥𝑥3 + 7𝑥𝑥4 ≤ 46  

        3𝑥𝑥1 − 𝑥𝑥2 + 𝑥𝑥3 + 2𝑥𝑥4 ≤ 8  
        2𝑥𝑥1 + 3𝑥𝑥2 − 𝑥𝑥3 + 𝑥𝑥4 ≤ 10  
       𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4 ≥ 0           

2.10      The M-method (Big M-method) 

If the LPP has any contain of (≥ ) or (= ) type, then the slack variables cannot 
provide an initial basic feasible solution. In such cases, we introduce another 
type of variables called artificial variables. These variables have no physical 
meaning; they are only a device to get the starting BFS so that the simplex 
algorithm is applied as usual to get optimal solution. This method consists of 
the following steps: 
Step 1: Express the LPP in standard form, add slack variables to the constraints 
of (≤) type and subtract them to the constraints of (≥) type. 
Step 2:  Add non-negative variables to the left-hand-side of all constraints of 
(≥ ) or (= ) type. These variables are called artificial variables. In order to get 
rid of the artificial variables in the final optimum iteration, we assign a very 
large penalty  −M ( M) in maximization ( minimization) problem to the artificial 
variables.  
Step 3: Solve the modified LPP by simplex method. While making iterations by 
this method, one of the following three cases may arise: 
1. If no artificial variable remains in the basis, and the optimal condition is 

satisfied, then the current solution is an optimal BFS. 
2. If at least one artificial variable appears in the basis zero level (with zero 

value in the solution column), and the optimality condition is satisfied, then 
the current solution is optimal BFS (though degenerate). 
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3. If at least one artificial variable appears in the basis zero level (with positive 
value in the solution column), and the optimality condition is satisfied, then 
the original problem has no feasible solution. The solution satisfies the 
constraints but does not optimize the objective function because it 
contains a very large penalty M and is termed as the pseudo optimal 
solution. 

While applying the simplex method, whenever an artificial variable happens to 
leave the basis, we drop artificial variable, and omit all the entries 
corresponding to its column from the simplex table. 
Step 4: Application of simplex method until, either an optimal BFS is obtained 
or there is an indication of the existence of an unbounded solution to the given 
LPP. 
Remark (2.4): 
1. For computer solutions, some specific value must be assigned to M.  
2. Variables, other than the artificial variables, once driven out in an iteration, 

may re-enter in a subsequent iteration. But, an artificial variable, once 
driven out, can never re-enter because of the large penalty coefficient M 
associated with it. 

Example (2.18): 
Find the optimal solution of the following LPP: 

 𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2  
 𝑆𝑆. 𝑡𝑡.        𝑥𝑥1 − 2𝑥𝑥2 ≥ 8  
                𝑥𝑥1 + 𝑥𝑥2 ≤ 16  
                𝑥𝑥1 ≥ 8 
               𝑥𝑥1 , 𝑥𝑥2 ≥ 0     
Solution: 

The standard form of the LPP after adding the artificial variables is: 
  𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2 −𝑀𝑀𝑅𝑅1 −𝑀𝑀𝑅𝑅2  
 𝑆𝑆. 𝑡𝑡.        𝑥𝑥1 − 2𝑥𝑥2 − 𝑠𝑠1 + 𝑅𝑅1 = 8  
                𝑥𝑥1 + 𝑥𝑥2 + 𝑠𝑠2 = 16  
                𝑥𝑥1 − 𝑠𝑠3 + 𝑅𝑅2 = 8 
               𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3,𝑅𝑅1,𝑅𝑅2 ≥ 0     
From the first and the third constraints: 

 𝑅𝑅1 = 8 − 𝑥𝑥1 + 2𝑥𝑥2 + 𝑠𝑠1        
𝑅𝑅2 = 8−𝑥𝑥1 + 𝑠𝑠3  
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Substitute 𝑅𝑅1 and 𝑅𝑅2  in Z-equation: 
𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2 −𝑀𝑀(8 − 𝑥𝑥1 + 2𝑥𝑥2 + 𝑠𝑠1) −𝑀𝑀(8−𝑥𝑥1 + 𝑠𝑠3)  
𝑍𝑍 = 3𝑥𝑥1 − 𝑥𝑥2 − 8𝑀𝑀 + 𝑀𝑀𝑥𝑥1 − 2𝑀𝑀𝑥𝑥2 −𝑀𝑀𝑠𝑠1 − 8𝑀𝑀 + 𝑀𝑀𝑀𝑀1 −𝑀𝑀𝑠𝑠3  
𝑍𝑍 − (3 + 2𝑀𝑀)𝑥𝑥1 + (1 + 2𝑀𝑀)𝑥𝑥2 + 𝑀𝑀𝑠𝑠1 + 𝑀𝑀𝑠𝑠3 = −16𝑀𝑀  
The standard form of LPP (with modification of the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 − (3 + 2𝑀𝑀)𝑥𝑥1 + (1 + 2𝑀𝑀)𝑥𝑥2 + 𝑀𝑀𝑠𝑠1 + 𝑀𝑀𝑠𝑠3 = −16𝑀𝑀   
 𝑆𝑆. 𝑡𝑡.        𝑥𝑥1 − 2𝑥𝑥2 − 𝑠𝑠1 + 𝑅𝑅1 = 8  
                𝑥𝑥1 + 𝑥𝑥2 + 𝑠𝑠2 = 16  
                𝑥𝑥1 − 𝑠𝑠3 + 𝑅𝑅2 = 8 
               𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3,𝑅𝑅1,𝑅𝑅2 ≥ 0 

Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑠𝑠1 = 𝑠𝑠3 = 0  ,then 𝑅𝑅1 = 8, 𝑠𝑠2 = 16,𝑅𝑅2 = 8,𝑍𝑍 = −16𝑀𝑀. The 
simplex table is: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 Solution  

𝑹𝑹𝟏𝟏 1 −2 −1 0 0 1 0 8 8/1=8 
𝒔𝒔𝟐𝟐 1 1 0 1 0 0 0 16 16/1=16 
𝑹𝑹𝟐𝟐 1 0 0 0 −1 0 1 8 8/1=8 
𝒁𝒁 −3−2M 1+2M M 0 M 0 0 −16M  

The current solution is not optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝑹𝑹𝟐𝟐 Solution  

𝒙𝒙𝟏𝟏 1 −2 −1 0 0 0 8  
𝒔𝒔𝟐𝟐 0 3 1 1 0 0 8 8/3=2.7 
𝑹𝑹𝟐𝟐 0 2 1 0 −1 1 0 0/2=0 
𝒁𝒁 0 −5−2M −3−M 0 M 0 24  

 𝑥𝑥1 = 8, 𝑠𝑠2 = 8,𝑅𝑅2 = 0,𝑍𝑍 = 24, the current solution is not optimal, further 
improved solutions are given in the following tables  

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution 
𝒙𝒙𝟏𝟏 1 0 0 0 −1 8 
𝒔𝒔𝟐𝟐 0 0 −1/2 1 3/2 8 
𝒙𝒙𝟐𝟐 0 1 1/2 0 −1/2 0 
𝒁𝒁 0 0 −1/2 0 −5/2 24 
𝒙𝒙𝟏𝟏 1 0 −1/3 2/3 0 40/3 
𝒔𝒔𝟑𝟑 0 0 −1/3 2/3 1 16/3 
𝒙𝒙𝟐𝟐 0 1 1/3 1/3 0 8/3 
𝒁𝒁 0 0 −4/3 5/3 0 112/3 
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𝒙𝒙𝟏𝟏 1 1 0 1 0 16 
𝒔𝒔𝟑𝟑 0 1 0 1 1 8 
𝒔𝒔𝟏𝟏 0 3 1 1 0 8 
𝒁𝒁 0 4 0 3 0 48 

The optimal solution is: 𝑥𝑥1 = 16, 𝑥𝑥2 = 0,𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 48 
Example (2.19): 
Find the optimal solution of the following LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 ≥ 6  

 6𝑥𝑥1 + 4𝑥𝑥2 = 12 
 2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2 
    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 

Solution: 
The standard form of the LPP after adding the artificial variables is: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3 + 𝑀𝑀𝑅𝑅1 + 𝑀𝑀𝑅𝑅2  
𝑆𝑆. 𝑡𝑡.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 − 𝑠𝑠1 + 𝑅𝑅1 = 6  

 6𝑥𝑥1 + 4𝑥𝑥2 + 𝑅𝑅2 = 12 
 2𝑥𝑥1 − 2𝑥𝑥2 + 𝑠𝑠2 = 2 

 𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2,𝑅𝑅1,𝑅𝑅2 ≥ 0  
From the first and the second constraints: 

 𝑅𝑅1 = 6 − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 + 𝑠𝑠1       
𝑅𝑅2 = 12−6𝑥𝑥1 − 4𝑥𝑥2  
Substitute 𝑅𝑅1 and 𝑅𝑅2  in Z-equation: 
𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3 + 𝑀𝑀(6 − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 + 𝑠𝑠1) + 𝑀𝑀(12−6𝑥𝑥1 − 4𝑥𝑥2) 
𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3 + 6𝑀𝑀− 6𝑀𝑀𝑥𝑥1 − 2𝑀𝑀𝑥𝑥2 − 6𝑀𝑀𝑥𝑥3 + 𝑀𝑀𝑠𝑠1 + 12𝑀𝑀−
6𝑀𝑀𝑀𝑀1 − 4𝑀𝑀𝑥𝑥2  
𝑍𝑍 + (−3 + 12𝑀𝑀)𝑥𝑥1 + (−8 + 6𝑀𝑀)𝑥𝑥2 + (−1 + 6𝑀𝑀)𝑥𝑥3 −𝑀𝑀𝑠𝑠1 = 18𝑀𝑀  
The LPP (with modification of the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 + (−3 + 12𝑀𝑀)𝑥𝑥1 + (−8 + 6𝑀𝑀)𝑥𝑥2 + (−1 + 6𝑀𝑀)𝑥𝑥3 −𝑀𝑀𝑠𝑠1 = 18𝑀𝑀 
𝑆𝑆. 𝑡𝑡.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 − 𝑠𝑠1 + 𝑅𝑅1 = 6  

 6𝑥𝑥1 + 4𝑥𝑥2 + 𝑅𝑅2 = 12 
 2𝑥𝑥1 − 2𝑥𝑥2 + 𝑠𝑠2 = 2 

 𝑥𝑥1 , 𝑥𝑥2, 𝑠𝑠1, 𝑠𝑠2,𝑅𝑅1,𝑅𝑅2 ≥ 0  
Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 𝑠𝑠1 = 𝑠𝑠3 = 0  ,then 𝑅𝑅1 = 6, 𝑠𝑠2 = 2,𝑅𝑅2 = 12,𝑍𝑍 = 18𝑀𝑀. The 
simplex table is: 

-

NANA
Text Box
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B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟏𝟏 𝑹𝑹𝟐𝟐 Solution  

𝑹𝑹𝟏𝟏 6 2 6 −1 0 1 0 6 6/6=1 
𝑹𝑹𝟐𝟐 6 4 0 0 0 0 1 12 12/6=2 
𝒔𝒔𝟐𝟐 2 −2 0 0 1 0 0 2 2/2=1 
𝒁𝒁 −3+12M −8+6M −1+6M −M 0 0 0 18M  

The current solution is not optimal, then: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝑹𝑹𝟐𝟐 Solution  

𝒙𝒙𝟏𝟏 1 1/3 1 −1/6 0 0 1 1/(1/3)=3 
𝑹𝑹𝟐𝟐 0 2 −6 1 0 1 6 6/2=3 
𝒔𝒔𝟐𝟐 0 −8/3 −2 1/3 1 0 0  
𝒁𝒁 0 −7+2M 2 − 6M (−1/2)+M 0 0 3+6M  

 𝑥𝑥1 = 1, 𝑠𝑠2 = 0,𝑅𝑅2 = 6,𝑍𝑍 = 3 + 6𝑀𝑀, the current solution is not optimal, 
further improved solutions are given in the following tables: 

B.V. 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 Solution  
𝒙𝒙𝟏𝟏 1 0 2 −1/3 0 0  
𝒙𝒙𝟐𝟐 0 1 −3 1/2 0 3 3/(1/2)=6 
𝒔𝒔𝟐𝟐 0 0 −10 5/3 1 8 8/(5/3)=4.8 
𝒁𝒁 0 0 −19 3 0 24  
𝒙𝒙𝟏𝟏 1 0 0 0 1/5 8/5  
𝒙𝒙𝟐𝟐 0 1 0 0 −3/10 3/5  
𝒔𝒔𝟏𝟏 0 0 −6 1 3/5 24/5  
𝒁𝒁 0 0 −1 0 −9/5 48/5  

The optimal solution is: 𝑥𝑥1 = 8
5

, 𝑥𝑥2 = 3
5

, 𝑥𝑥3 = 0,𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 48/5 

Exercises 2.4 (In addition to the text book exercises) 
Find the optimal solution of the following LPP: 
𝟏𝟏.          𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 9𝑥𝑥1 + 6𝑥𝑥2 + 3𝑥𝑥3  
             𝑆𝑆. 𝑡𝑡.        3𝑥𝑥1 + 12𝑥𝑥2 + 9𝑥𝑥3 ≥ 150  
                            6𝑥𝑥1 + 3𝑥𝑥2 + 3𝑥𝑥3 ≥ 90  
                           −9𝑥𝑥1 − 6𝑥𝑥2 − 3𝑥𝑥3 ≤ −120  

                𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
𝟐𝟐.           𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = − 12𝑥𝑥1 − 3𝑥𝑥2  
               𝑆𝑆. 𝑡𝑡.        9𝑥𝑥1 + 3𝑥𝑥2 = 9  
                             12𝑥𝑥1 + 9𝑥𝑥2 ≥ 18  
                              3 𝑥𝑥1 + 6𝑥𝑥2 ≤ 9  
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                  𝑥𝑥1 , 𝑥𝑥2 ≥ 0 
2.11      Definition of the Dual Problem 
The dual problem is an LPP defined directly and systematically from the primal 
(or original) LP model. The two problems are so closely related that the 
optimal solution of one problem automatically provides the optimal solution to 
the other. If the primal problem contains a large number of constraints and a 
smaller number of variables, the computational procedure can be considerably 
reduced by converting it into dual and then solving it. 
2.12      Dual Problem Characteristics 
1. If the primal contains n variables and m constraints, the dual will contain m 
variables and n constraints. 
2. The maximization problem in the primal becomes a minimization problem in 
the dual and vice versa. 
3. Constraints of (≤) 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the primal become of (≥) 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 in the dual and 
vice versa. 
4. The coefficient matrix of the constraints of the dual is the transpose of the 
coefficient matrix in the primal and vice versa. 
5. A new set of variables appear in the dual. 
6.  The constants 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑛𝑛 in the objective function of the primal appear in 
the right-hand-side of the constraints of the dual.  
7.  The constants 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚 in the constraints of the primal appear in the 
objective function of the dual.  
8. The variables of both problems are non-negative. 
9. For each constraint in the primal there is an associated variable in the dual. 
Example (2.20): 
Construct the dual of the primal problem 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 3𝑥𝑥1 − 2𝑥𝑥2 + 4𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.        3𝑥𝑥1 + 5𝑥𝑥2 + 4𝑥𝑥3 ≥ 7  
               6𝑥𝑥1 + 𝑥𝑥2 + 3𝑥𝑥3 ≥ 4  
               7𝑥𝑥1 − 2𝑥𝑥2 − 𝑥𝑥3 ≤ 10  
                  𝑥𝑥1 − 2𝑥𝑥2 + 5𝑥𝑥3 ≥ 3  
                4𝑥𝑥1 + 7𝑥𝑥2 − 2𝑥𝑥3 ≥ 2  
                  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
Solution: 



Ch.2: Linear Programming Models Solution                  Operations Research I                                        P a g e  | 36 

All the constraints must be of the same type. Multiplying the third constraint 
by (−1) on both sides, we get: 
   −7𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3 ≥ −10     
The dual of the given problem is: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑊𝑊 = 7𝑦𝑦1 + 4𝑦𝑦2 − 10𝑦𝑦3 + 3𝑦𝑦4 + 2𝑦𝑦5  
𝑆𝑆. 𝑡𝑡.        3𝑦𝑦1 + 6𝑦𝑦2 − 7𝑦𝑦3 + 𝑦𝑦4 + 4𝑦𝑦5 ≤ 3  
               5𝑦𝑦1 + 𝑦𝑦2 + 2𝑦𝑦3 − 2𝑦𝑦4 + 7𝑦𝑦5 ≤ −2  
               4𝑦𝑦1 + 3𝑦𝑦2 + 𝑦𝑦3 + 5𝑦𝑦4 − 2𝑦𝑦5 ≤ 4 
                  𝑦𝑦1,𝑦𝑦2,𝑦𝑦3,𝑦𝑦4, 𝑦𝑦5 ≥ 0  
Example (2.21): 
Construct the dual of the primal problem 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 3𝑥𝑥1 + 5𝑥𝑥2  
𝑆𝑆. 𝑡𝑡.     2𝑥𝑥1 + 7𝑥𝑥2 = 12  
         −9𝑥𝑥1 + 𝑥𝑥2 ≤ 4  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
Solution: 
The first constraint is of equality form, which is equivalent to: 
 2𝑥𝑥1 + 7𝑥𝑥2 ≤ 12  𝑎𝑎𝑎𝑎𝑎𝑎  2𝑥𝑥1 + 7𝑥𝑥2 ≥ 12 
 The primal problem can be expressed as: 
𝑚𝑚𝑚𝑚𝑚𝑚    𝑍𝑍 = 3𝑥𝑥1 + 5𝑥𝑥2  
𝑆𝑆. 𝑡𝑡.      2𝑥𝑥1 + 7𝑥𝑥2 ≤ 12      
          −2𝑥𝑥1 − 7𝑥𝑥2 ≤ −12  
          −9𝑥𝑥1 + 𝑥𝑥2 ≤ 4  
               𝑥𝑥1, 𝑥𝑥2 ≥ 0  
Let 𝑦𝑦1′,𝑦𝑦1′′ and  𝑦𝑦2 be the dual variables associated with the first, second, and 
third constraints. Then the dual problem is: 
𝑚𝑚𝑚𝑚𝑚𝑚         𝑊𝑊 = 12𝑦𝑦1′ − 12𝑦𝑦1′′ + 4𝑦𝑦2  
𝑆𝑆. 𝑡𝑡.         2𝑦𝑦1′ − 2𝑦𝑦1′′ − 9𝑦𝑦2 ≥ 3  
                7𝑦𝑦1′ − 7𝑦𝑦1′′ + 𝑦𝑦2 ≥ 5  
                𝑦𝑦1′,𝑦𝑦1′′,𝑦𝑦2 ≥ 0  
Or equivalently: 
𝑚𝑚𝑚𝑚𝑚𝑚         𝑊𝑊 = 12(𝑦𝑦1′ − 𝑦𝑦1′′) + 4𝑦𝑦2  
𝑆𝑆. 𝑡𝑡.         2(𝑦𝑦1′ − 𝑦𝑦1′′) − 9𝑦𝑦2 ≥ 3  
                7(𝑦𝑦1′ − 𝑦𝑦1′′) + 𝑦𝑦2 ≥ 5  
                𝑦𝑦1′,𝑦𝑦1′′,𝑦𝑦2 ≥ 0  
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If we put  𝑦𝑦1 = 𝑦𝑦1′ − 𝑦𝑦1′′ , then the new variable 𝑦𝑦1, which is the difference 
between two non-negative variables, become unrestricted in sign and the dual 
problem becomes: 
𝑚𝑚𝑚𝑚𝑚𝑚         𝑊𝑊 = 12𝑦𝑦1 + 4𝑦𝑦2  
𝑆𝑆. 𝑡𝑡.         2𝑦𝑦1 − 9𝑦𝑦2 ≥ 3  
                7𝑦𝑦1 + 𝑦𝑦2 ≥ 5  
                   𝑦𝑦1 unrestricted ,𝑦𝑦2 ≥ 0  
This example leads to the following remark. 
Remark (2.5): 
The dual variable which corresponds to an equality constraint must be 
unrestricted in sign. Conversely, when a primal variable is unrestricted in sign, 
its dual constraint must be in equality form. 
2.13      Some Duality Theorems 
Theorem (2.1): 
If either the primal or the dual problem has an unbounded solution, then the 
solution to the other problem is infeasible. 
Theorem (2.2) (Fundamental Theorem of Duality): 
If both the primal and the dual problems have feasible solutions, then both 
have optimal solutions and 𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊 (and  𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑊𝑊). 
Remark (2.6): 
Values of the decision variables of the primal are given by the Z-row of the 
solution under the slack variables (if there are any) in the dual, neglecting the –
ve sign if any.  
Example (2.22): 
Use duality to solve the following LPP: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 36𝑥𝑥 + 60𝑦𝑦 + 45𝑧𝑧  
𝑆𝑆. 𝑡𝑡.        𝑥𝑥 + 2𝑦𝑦 + 2𝑧𝑧 ≥ 40  
               2𝑥𝑥 + 𝑦𝑦 + 5𝑧𝑧 ≥ 25  
                  𝑥𝑥 + 4𝑦𝑦 + 𝑧𝑧 ≥ 50  
                  𝑥𝑥,𝑦𝑦, 𝑧𝑧 ≥ 0  
Solution: 
The dual problem of the LPP is: 
𝑚𝑚𝑚𝑚𝑚𝑚      𝑊𝑊 = 40𝑦𝑦1 + 25𝑦𝑦2 + 50𝑦𝑦3  
𝑆𝑆. 𝑡𝑡.        𝑦𝑦1 + 2𝑦𝑦2 + 𝑦𝑦3 ≤ 36  
             2𝑦𝑦1 + 𝑦𝑦2 + 4𝑦𝑦3 ≤ 60  
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             2𝑦𝑦1 + 5𝑦𝑦2 + 𝑦𝑦3 ≤ 45  
               𝑦𝑦1,𝑦𝑦2,𝑦𝑦3 ≥ 0  
Adding slack variables 𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3, we get: 
𝑚𝑚𝑚𝑚𝑚𝑚      𝑊𝑊 − 40𝑦𝑦1 − 25𝑦𝑦2 − 50𝑦𝑦3 = 0  
𝑆𝑆. 𝑡𝑡.        𝑦𝑦1 + 2𝑦𝑦2 + 𝑦𝑦3 + 𝑠𝑠1 = 36  
             2𝑦𝑦1 + 𝑦𝑦2 + 4𝑦𝑦3 + 𝑠𝑠2 = 60  
             2𝑦𝑦1 + 5𝑦𝑦2 + 𝑦𝑦3 + 𝑠𝑠3 = 45  
               𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0  
The initial basic feasible solution of the dual is: 𝑦𝑦1 = 𝑦𝑦2 = 𝑦𝑦3 = 0, 𝑠𝑠1 =
36, 𝑠𝑠2 = 60, 𝑠𝑠3 = 45,𝑊𝑊 = 0. This solution and further improved solutions are 
given in the following tables: 

B.V. 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 1 2 1 1 0 0 36 36/1=36 

𝒔𝒔𝟐𝟐 2 1 4 0 1 0 60 60/4=15 

𝒔𝒔𝟑𝟑 2 5 1 0 0 1 45 45/1=45 

W −40 −25 −50 0 0 0 0  
𝒔𝒔𝟏𝟏 1/2 7/4 0 1 −1/4 0 21 21/(1/2)=42 

𝒚𝒚𝟑𝟑 1/2 1/4 1 0 1/4 0 15 15/(1/2)=30 

𝒔𝒔𝟑𝟑 3/2 19/4 0 0 −1/4 1 30 30/(3/2)=20 

W −15 −25/2 0 0 25/2 0 750  

𝒔𝒔𝟏𝟏 0 1/6 0 1 −1/6 −1/3 11  
𝒚𝒚𝟑𝟑 0 −4/3 1 0 1/3 −1/3 5  
𝒚𝒚𝟏𝟏 1 19/6 0 0 −1/6 2/3 20  
W 0 35 0 0 10 10 1050  

The optimal solution of the primal is 𝑥𝑥 = 0,𝑦𝑦 = 10, 𝑧𝑧 = 10,𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 = 1050. 
Example (2.23): 
Use the duality to find the optimal solution of the LPP in example (2.19). 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 ≥ 6  
            6𝑥𝑥1 + 4𝑥𝑥2 = 12  
            2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2    

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
Multiplying the third constraint by (−1) on both sides, we get: 
−2𝑥𝑥1 + 2𝑥𝑥2 ≥ −2    
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The dual problem of the LPP is: 
𝑚𝑚𝑚𝑚𝑚𝑚     𝑊𝑊 = 6𝑦𝑦1 + 12𝑦𝑦2 − 2𝑦𝑦3  
𝑆𝑆. 𝑡𝑡.      6𝑦𝑦1 + 6𝑦𝑦2 − 2𝑦𝑦3 ≤ 3        
             2𝑦𝑦1 + 4𝑦𝑦2 + 2𝑦𝑦3 ≤ 8  
             6𝑦𝑦1 ≤ 1  
               𝑦𝑦1,𝑦𝑦3 ≥ 0,𝑦𝑦2 is unrestrected  
Adding slack variables 𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3, we get: 
𝑚𝑚𝑚𝑚𝑚𝑚     𝑊𝑊− 6𝑦𝑦1 − 12𝑦𝑦2 + 2𝑦𝑦3 = 0  
𝑆𝑆. 𝑡𝑡.      6𝑦𝑦1 + 6𝑦𝑦2 − 2𝑦𝑦3 + 𝑠𝑠1 = 3        
             2𝑦𝑦1 + 4𝑦𝑦2 + 2𝑦𝑦3 + 𝑠𝑠2 = 8  
             6𝑦𝑦1 + 𝑠𝑠3 = 1  
               𝑦𝑦1,𝑦𝑦3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0,𝑦𝑦2 is unrestrected  
The initial basic feasible solution of the dual is: 𝑦𝑦1 = 𝑦𝑦2 = 𝑦𝑦3 = 0, 𝑠𝑠1 = 3, 𝑠𝑠2 =
8, 𝑠𝑠3 = 1,𝑊𝑊 = 0. This solution and further improved solutions are given in the 
following tables: 

B.V. 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 6 6 −2 1 0 0 3 3/6=1/2 

𝒔𝒔𝟐𝟐 2 4 2 0 1 0 8 8/4=2 

𝒔𝒔𝟑𝟑 6 0 0 0 0 1 1  

W −6 −12 2 0 0 0 0  
𝒚𝒚𝟐𝟐 1 1 −1/3 1/6 0 0 1/2  

𝒔𝒔𝟐𝟐 −2 0 10/3 −2/3 1 0 6  

𝒔𝒔𝟑𝟑 6 0 0 0 0 1 1  

W 6 0 −2 2 0 0 6  

𝒚𝒚𝟐𝟐 4/5 1 0 1/10 −1/10 0 11/10  
𝒚𝒚𝟑𝟑 −3/5 0 1 −1/5 3/10 0 9/5  
𝒔𝒔𝟑𝟑 6 0 0 0 0 1 1  
W 24/5 0 0 8/5 3/5 0 48/5  

The optimal solution of the primal is 𝑥𝑥1 = 8/5, 𝑥𝑥2 = 3/5, 𝑥𝑥3 = 0,𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 = 48/5. 

Exercises 2.5 (In addition to the text book exercises) 
Use the duality to solve the following LPP: 
𝟏𝟏.  𝑚𝑚𝑚𝑚𝑚𝑚         𝑍𝑍 = 10𝑥𝑥1 + 15𝑥𝑥2 + 30𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.                𝑥𝑥1 + 3𝑥𝑥2 + 𝑥𝑥3 ≥ 90  
                      2𝑥𝑥1 + 5𝑥𝑥2 + 3𝑥𝑥3 ≥ 120  
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                       𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 ≥ 60  
                         𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
𝟐𝟐.    𝑚𝑚𝑚𝑚𝑚𝑚          𝑍𝑍 = 10𝑥𝑥1 + 24𝑥𝑥2 + 8𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.                   2𝑥𝑥1 + 4𝑥𝑥2 + 2𝑥𝑥3 ≤ 10  
                          4𝑥𝑥1 − 2𝑥𝑥2 + 6𝑥𝑥3 = 4  
                            𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥2 ≥ 0  
2.14     The Dual Simplex Method 
The dual simplex method starts with a solution that satisfies the optimality 
condition but infeasible. To start the LP optimal and infeasible, two 
requirements must be met: 
1. The objective function must satisfy the optimality condition of the regular 

simplex method. 
2. All the constraints must be of the type (≤ ). 
The dual simplex method consists of the following steps: 
Step 1: Convert the (≥ ) type constraint to a (≤ ) type constraint by multiplying 
both sides by (−1). If the LPP includes an equality constraint, the equation can 
be replaced by two inequalities, then convert the constraint of (≥) type into a 
constraint of (≤ ) type. 
Step 2: Convert the LPP into the standard form and express the problem 
information in the form of a table known as the dual simplex table. 
Step 3: Three cases arises: 
a) If the Z- row satisfies the optimality condition and all 𝑏𝑏𝑖𝑖 ≥ 0, then the 

current solution is optimal basic feasible solution. 
b) If at least one element in the Z-row doesn’t satisfy the optimality condition, 

the method fails. 
c) If the Z- row satisfies the optimality condition and at least one  𝑏𝑏𝑖𝑖 ≤ 0, then 

proceed to step 4. 
Step 4: Select the row that contains the most negative 𝑏𝑏𝑖𝑖. Ties are broken 
arbitrarily. This row is called the pivot (key) row. The corresponding variable 
leaves the basis. This is called the dual feasibility condition.  
Step 5: Look at the elements of the pivot row: 
a) If all elements are non-negative, the problem does not have a feasible 

solution. 
b) If at least one element is negative, divide the elements of the Z-row to the 

corresponding negative elements in the pivot row. Choose the smallest of 
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these ratios. Ties are broken arbitrarily. The corresponding column is the 
key column and the associated variable is the entering variable. This is 
called dual optimality condition. Mark the pivot (key) element. 

Step 6: Make the key element unity. Perform as in regular simplex method and 
repeat iterations until an optimal feasible solution is obtained in a finite 
number of steps or there is an indication of the non-existence of a feasible 
solution. 
Example (2.24): 
Find the optimal solution of the following LPP 
𝑚𝑚𝑚𝑚𝑚𝑚     𝑍𝑍 = −3𝑥𝑥1 − 2𝑥𝑥2 − 𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.       2𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3 ≥ 4  
             3𝑥𝑥1 + 𝑥𝑥2 + 3𝑥𝑥3 ≥ 10  
            −𝑥𝑥1 + 2𝑥𝑥2 − 𝑥𝑥3 ≥ 1  
               𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
Solution: 
First we convert constraints of (≥) type into constraints of (≤ ) type , so the 
LPP will be: 
𝑚𝑚𝑚𝑚𝑚𝑚     𝑍𝑍 = −3𝑥𝑥1 − 2𝑥𝑥2 − 𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.      − 2𝑥𝑥1 − 𝑥𝑥2 − 𝑥𝑥3 ≤ −4  
             −3𝑥𝑥1 − 𝑥𝑥2 − 3𝑥𝑥3 ≤ −10  
                  𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3 ≤ −1  
                  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3 ≥ 0  
The standard form (with modification in the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚     𝑍𝑍 + 3𝑥𝑥1 + 2𝑥𝑥2 + 𝑥𝑥3 = 0  
𝑆𝑆. 𝑡𝑡.      − 2𝑥𝑥1 − 𝑥𝑥2 − 𝑥𝑥3 + 𝑠𝑠1 = −4  
             −3𝑥𝑥1 − 𝑥𝑥2 − 3𝑥𝑥3 + 𝑠𝑠2 = −10  
                  𝑥𝑥1 − 2𝑥𝑥2 + 𝑥𝑥3 + 𝑠𝑠3 = −1  
                  𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0  
Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0, then 𝑠𝑠1 = −4, 𝑠𝑠2 = −10, and  𝑠𝑠3 = −1. Since 
𝑠𝑠1, 𝑠𝑠2, and 𝑠𝑠3 are negative, then solution is infeasible. The dual simplex table is: 
 

BV 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b 
𝒔𝒔𝟏𝟏 −2 −1 −1 1 0 0 −4 
𝒔𝒔𝟐𝟐 −3 −1 −3 0 1 0 −10 
𝒔𝒔𝟑𝟑 1 −2 1 0 0 1 −1 
Z 3 2 1 0 0 0 0 
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(� 3
−3
� = 1, � 2

−1
� = 2, � 1

−3
� = 1/3)  

BV 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 b 
𝒔𝒔𝟏𝟏 −1 −2/3 0 1 −1/3 0 −2/3 
𝒙𝒙𝟑𝟑 1 1/3 1 0 −1/3 0 10/3 
𝒔𝒔𝟑𝟑 0 −7/3 0 0 1/3 1 −13/3 
Z 2 5/3 0 0 1/3 0 −10/3 
𝒔𝒔𝟏𝟏 −1 0 0 1 −3/7 −2/7 4/7 
𝒙𝒙𝟑𝟑 1 0 1 0 −2/7 1/7 19/7 
𝒙𝒙𝟐𝟐 0 1 0 0 −1/7 −3/7 13/7 
Z 2 0 0 0 4/7 5/7 −45/7 

The optimal solution is : 𝑥𝑥1 = 0, 𝑥𝑥2 = 13
7

, 𝑥𝑥3 = 19
7

, and  𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = −45/7 

Example (2.25): 
Use the dual simplex method to find the optimal solution of the LPP in example 
(2.19). 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.    6𝑥𝑥1 + 2𝑥𝑥2 + 6𝑥𝑥3 ≥ 6  
            6𝑥𝑥1 + 4𝑥𝑥2 = 12  
            2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2    

    𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
Solution: 
Replace the second constraint by the following two constraints: 
6𝑥𝑥1 + 4𝑥𝑥2 ≤ 12     and               6𝑥𝑥1 + 4𝑥𝑥2 ≥ 12    
Then convert each constraint of (≥ ) type into a constraint of (≤ ) type. The LPP 
will be: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 8𝑥𝑥2 + 𝑥𝑥3  
𝑆𝑆. 𝑡𝑡.  − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 ≤ −6  
              6𝑥𝑥1 + 4𝑥𝑥2 ≤ 12  
           −6𝑥𝑥1 − 4𝑥𝑥2 ≤ −12      
              2𝑥𝑥1 − 2𝑥𝑥2 ≤ 2    

     𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
The standard form (with modification in the objective function) is: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 − 3𝑥𝑥1 − 8𝑥𝑥2 − 𝑥𝑥3 = 0  
𝑆𝑆. 𝑡𝑡.  − 6𝑥𝑥1 − 2𝑥𝑥2 − 6𝑥𝑥3 + 𝑠𝑠1 = −6  
              6𝑥𝑥1 + 4𝑥𝑥2 + 𝑠𝑠2 = 12  
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           −6𝑥𝑥1 − 4𝑥𝑥2 + 𝑠𝑠3 = −12      
              2𝑥𝑥1 − 2𝑥𝑥2 + 𝑠𝑠4 = 2    

     𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4 ≥ 0 
Let 𝑥𝑥1 = 𝑥𝑥2 = 𝑥𝑥3 = 0, then 𝑠𝑠1 = −6, 𝑠𝑠2 = 12, and  𝑠𝑠3 = −12, 𝑠𝑠4 = 2. Since 
𝑠𝑠1 and 𝑠𝑠3 are negative, then solution is infeasible. The dual simplex table is: 

BV 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 𝒙𝒙𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 𝒔𝒔𝟒𝟒 b 
𝒔𝒔𝟏𝟏 −6 −2 −6 1 0 0 0 −6 
𝒔𝒔𝟐𝟐 6 4 0 0 1 0 0 12 
𝒔𝒔𝟑𝟑 −6 −4 0 0 0 1 0 −12 
𝒔𝒔𝟒𝟒 2 −2 0 0 0 0 1 2 
Z −3 −8 −1 0 0 0 0 0 
𝒔𝒔𝟏𝟏 0 2 −6 1 0 −1 0 6 
𝒔𝒔𝟐𝟐 0 0 0 0 1 1 0 0 
𝒙𝒙𝟏𝟏 1 2/3 0 0 0 −1/6 0 2 
𝒔𝒔𝟒𝟒 0 −10/3 0 0 0 1/3 1 −2 
Z 0 −6 −1 0 0 −1/2 0 6 
𝒔𝒔𝟏𝟏 0 0 −6 1 0 −4/5 3/5 24/5 
𝒔𝒔𝟐𝟐 0 0 0 0 1 1 0 0 
𝒙𝒙𝟏𝟏 1 0 0 0 0 −1/10 1/5 8/5 
𝒙𝒙𝟐𝟐 0 1 0 0 0 −1/10 −3/10 3/5 
Z 0 0 −1 0 0 −11/10 −9/5 48/5 

The optimal solution is : 𝑥𝑥1 = 8
5

, 𝑥𝑥2 = 3
5

, 𝑥𝑥3 = 0, and  𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 48/5 

Exercises 2.6 (In addition to the text book exercises) 
Use dual simplex method to find the optimal solution of the following LPP: 
𝟏𝟏.     𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = 3𝑥𝑥1 + 6𝑥𝑥2 + 9𝑥𝑥3  
        𝑆𝑆. 𝑡𝑡.        6𝑥𝑥1 − 3𝑥𝑥2 + 3𝑥𝑥3 ≥ 12  
                         3𝑥𝑥1 + 3𝑥𝑥2 + 6𝑥𝑥3 ≤ 24  
                         3𝑥𝑥2 − 6𝑥𝑥3 ≥ 6    

              𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
𝟐𝟐.     𝑚𝑚𝑚𝑚𝑚𝑚       𝑍𝑍 = −6𝑥𝑥1 − 3𝑥𝑥3  
        𝑆𝑆. 𝑡𝑡.         3𝑥𝑥1 + 3𝑥𝑥2 − 3𝑥𝑥3 ≥ 15  
                       3 𝑥𝑥1 − 6𝑥𝑥2 + 12𝑥𝑥3 ≥ 24  

             𝑥𝑥1 , 𝑥𝑥2, 𝑥𝑥3 ≥ 0 
 
 




