Ch.4: Machine Scheduling Problem

Suppose that m machines M_i (i = 1, ..., m) have to process n jobs j (j = 1, ..., m) $1, \ldots, n$). A *schedule* is for each job an allocation of one or more time intervals to one or more machines. A schedule is *feasible* if at any time, there is at most one job on each machine; each job is run on at most one machine. A schedule is optimal if it minimizes (or maximizes) a given optimality criterion. A scheduling problem type can be specified using three- field classification $\alpha / \beta / \gamma$ composed of machine environment, the job characteristics, and the optimality criterion.

4.1 Job Data

Let *n* denote the number of jobs. The following data is specified for each job *j* (*j=1, 2,..., n*):

- A processing time of its *i*th operation, *i=1, 2, ..., m_j*, where m_j is the p_{ii} number of operations on job j. If $m_i = 1$, we shall write p_i instead of p_{ii} .
- A release date on which job *j* become available for processing. r_i
- d_i A due date, the time by which job *j* ideally be completed.
- \tilde{d}_{i} A deadline, the time by which *j* must be completed.
- wj The weight of job *j* representing the importance of job *j* relative to another job.
- A non-decreasing real cost function measuring the cost $f_j(t)$ fi incurred if job *j* completed at time *t*.

In general p_{ij} , d_j , r_j , \tilde{d}_j and w_j are given positive integer constants.

4.2 Machine environment

The first field represents the machine environment. lf $\alpha = \alpha_1 \alpha_2$ $\alpha_1 \in \{\phi, P, Q, R\}$, each job j consists of a single operation which can be processed on any machine M_i . Let p_{ii} denote the time to process job j on M_i . $\alpha_1 = \phi$: *Single machine*, there is only one machine, $p_{ij} = p_j$ for all *j*.

 $\alpha_1 = P$: *Identical parallel machines*; there are multiple machines operate at

the same speed, $p_{ij} = p_j$ (*i=1, 2, ..., m*).

- $\alpha_1 = Q$: **Uniform parallel machines**; there are multiple machines, each machine M_i has its own speed v_i , $p_{ij} = p_j / v_i$ for all M_i and jobs j.
- $\alpha_{I} = R$: Unrelated parallel machines; there are multiple machines with different job-related speeds, that is the processing times are unrelated. If machine M_{i} runs job *j* with a job-dependent speed v_{ij} , $p_{ij} = p_{j}/v_{ij}$ for all M_{i} and jobs *j*.

In parallel machine environment, a job can be processed in any of the m machines.

If $\alpha_1 \in \{J, F, O\}$, each job *j* consists of a set of operations $\{O_{1j}, O_{2j}, \dots, O_{m_i j}\}$.

 $\alpha_1 = J$: **Job-shop**; each job *j* consists of a chain of operations

 $\{O_{1j}, O_{2j}, ..., O_{m_j j}\}$, which must be processed in that order. Each operation O_{ij} must be processed on a designated machine for p_{ij} units of time. The order in which operations are processed is fixed by the ordering of the chain, but the order may be different for different jobs.

- $\alpha_{1} = F$: *Flow-shop*; is a special case of job-shop, each job *j* consists of a chain of operations { $O_{1j}, O_{2j}, ..., O_{mj}$ }, where O_{ij} is to be processed on machine M_{i} for p_{ij} units of time. The order of the operations is the same for every job.
- $\alpha_1 = O$: **Open-shop**; each job *j* composed of a chain of operations

 $\{O_{1i}, O_{2i}, \dots, O_{mi}\}$, where O_{ii} is to be processed on M_i for p_{ii}

units of time. The order in which operations are executed is arbitrary. $\alpha_2 \in \{\phi\} \bigcup \aleph$, where \aleph is the set of natural numbers.

 $\alpha_2 \in \aleph$: *m*, the number of machines, is constant and equal to α_2 .

 $\alpha_2 = \phi$: *m* is variable.

4.3 Job Characteristics

The second field $\beta \in \{\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6\}$ indicates certain job characteristics which are defined as follows:

 $\beta_1 \in \{ pmtn, \phi \}$

- $\beta_I = pmtn$: Preemptions are allowed, the processing of any job can be interrupted at no cost and resumed at a later time on any machine or at the same time on a different machine.
- $\beta_1 = \phi$: Preemptions are not allowed, once a job is started on a machine, the job occupies that machine until it is finished.

$$\beta_2 \in \{ prec, tree, chain, \phi \}$$

 $\beta_2 = prec$: A general precedence relation \prec exists between the jobs, that is, if $i \prec j$ (job *i* precedes job *j*), then job *i* must be completed before job *j* can be started.

 $\beta_2 = tree$: A precedence tree describes the precedence relation between jobs

- , that is each vertex in the associated graph has outdegree or indegree of at most one.
- $\beta_2 = chain$: Precedence constraints between jobs are of chain-type where each vertex in the associated graph has outdegree and indegree of at most one.

 $\beta_2 = \phi$: There is no precedence relation for the jobs; jobs are independent. $\beta_3 \in \{r_i, \phi\}$

 $\beta_3 = r_i$: Jobs have release dates.

 $\beta_3 = \phi$: $r_j=0$, (j=1,2,...,n); all jobs are released at the same time.

$$\beta_4 \in \{ \tilde{d}_i, \phi \}$$

 $\beta_4 = \tilde{d}_i$: Jobs have deadlines.

 $\beta_4 = \phi$: No deadlines are specified.

 $\beta_5 \in \{ p_{ij} = l, pl \le p_{ij} \le pu, \phi \}$

 $\beta_5 = p_{ii} = 1$: Each operation has a unit processing time.

 $\beta_5 = pl \le p_{ij} \le pu$: Processing times are bounded below by pl and above by pu.

 $\beta_5 = \phi$: No bounds on processing times.

$$\beta_6 \in \{s_f, \phi\}$$

 $\beta_6 = s_f$: There are sequence independent family set-up times, jobs are subdivided into families and a set-up time is incurred whenever there is a switch from processing a job in a family to a job in another family

 $\beta_6 = \phi$: There are no set-up times.

4.4 Optimality Criteria

The third field γ defines the optimality criterion or the objective, the value which is to be optimized (minimized). Given a schedule, the following can be computed for each job *j*:

- C_j The completion time, the time at which the processing of job j is completed.
- F_j The flow time, the time job *j* spends in the system, $F_j = C_j r_j$.
- L_j The lateness, $L_j = C_j d_j$, the amount of time by which the completion time of job j exceed its due date. Lateness can be negative if job j finishes earlier than its due date.
- T_i The tardiness, $T_i = max \{L_i, 0\}$.
- E_i The earliness, $E_i = max \{-L_i, 0\}$.
- U_j The unit penalty, a unit penalty of job *j* if it fails to meet its deadline. $U_j = 0$ if $C_j \le d_j$, $U_j = 1$ otherwise.

The cost f_j for each job j usually takes one of the variables described above or the product of the weight w_j with one of the variables. The optimality criterion can be any function of the costs f_j , j = 1, ..., n. Common optimality criteria are usually in the form:

1.
$$f = f_{\max} = \max\{f_j | j = 1, ..., n\}.$$

$$f = \sum f_j \, .$$

The following objective functions have frequently been chosen to be minimized.

 $f = \sum (w_i) C_i$: The total (weighted) completion time.

Introducing due dates d_j (j=1,...,n) we have the following objective functions:

$$f = C_{max}$$
: The maximum completion time (makespan)
 $f = L_{max} = \max_{j} \{L_{j}\}$: The maximum lateness.
 $f = T_{max} = \max_{j} \{T_{j}\}$: The maximum tardiness.
 $f = \sum T_{j}$: The total tardiness.
 $f = \sum U_{j}$: The total number of late jobs.

We may also choose to minimize:

 $f = \sum w_i T_i$: The total weighted tardiness.

 $f = \sum w_i U_i$: The total weighted number of late jobs.

 $f = \sum w_i E_i$: The total weighted earliness.

Example (4.1):

 $1/r_j / \sum w_j C_j$ is the problem of minimizing the total weighted completion time on single machine subject to non-trivial release date.

 $P3/pmtn, prec / L_{max}$ is the problem of minimizing maximum lateness on three identical parallel machines subject to general precedence constraint, allowing preemption.

Example (4.2):

Consider the following schedule:

j	1	2	3	4	5	6	7	8
P _j	7	3	2	9	5	1	2	6
d _j	5	13	20	5	30	21	29	25

Then to calculate the total completion time, maximum lateness, total earliness, total tardiness, and the total number of late jobs:

j	1	2	3	4	5	6	7	8
P _j	7	3	2	9	5	1	2	6
d _j	5	13	20	5	30	21	29	25
<i>C_j</i>	7	10	12	21	26	27	29	35
Lj	2	-3	-8	16	-4	6	0	10
Ej	0	3	8	0	4	0	0	0
T _j	2	0	0	16	0	6	0	10

Then: $\sum C_j = 7 + 10 + 12 + 21 + 26 + 27 + 29 + 35 = 167, L_{max} = 16, \sum E_j = 15, \sum T_j = 34, \sum U_j = 4.$

4.5 Single Machine Scheduling Problems

4.5.1 1 / $\sum C_i$ Problem

This is the problem of sequencing n jobs on a single machine to minimize the total completion time. This problem is solved by the SPT (shortest processing

time) rule. The jobs are sequenced in non-decreasing order of processing times P_j .

Example (4.3):

Solve the following $1/\sum C_j$ problem:

j	1	2	3	4	5	6	7	8
P _j	7	3	2	9	5	1	2	6

To minimize $\sum C_i$, we use the SPT rule as follows:

j	6	3	7	2	5	8	1	4
P _j	1	2	2	3	5	6	7	9
C _j	1	3	5	8	13	19	26	35

Then by SPT rule: $\sum C_j = 1 + 3 + 5 + 8 + 13 + 19 + 26 + 35 = 110$. That is the optimal schedule is s= (6,3,7,2,5,8,1,4) with $\sum C_j = 110$.

4.5.2 1 / $\sum w_j C_j$ Problem

This is the problem of sequencing n jobs on a single machine to minimize the weighted total completion time. This problem is solved by the SWPT (shortest weighted processing time) rule. The jobs are sequenced in non-decreasing order of processing times P_j/w_j .

Example (4.4):

Consider the following schedule:

j	1	2	3	4	5
P _j	6	10	12	18	4
w _j	2	4	3	3	4

To minimize $\sum w_i C_i$, we must first find P_i/w_i for each job *j*:

j	1	2	3	4	5
P _j	6	10	12	18	4
w _j	2	4	3	3	4
P_j/w_j	3	2.5	4	6	1

Then, use the SWPT rule as follows:

j	5	2	1	3	4
P_j/w_j	1	2.5	3	4	6
P _j	4	10	6	12	18
w _j	4	4	2	3	3
Cj	4	14	20	32	50
w _j C _j	16	56	40	96	150

Then by SWPT: $\sum w_j C_j = 358$. That is the optimal schedule is s= (5,2,1,3,4) with $\sum w_j C_j = 358$ ($\sum w_j C_j = 498$ for the original sequence).

4.5.3 1 / / *L_{max}* Problem

This is the problem of sequencing n jobs on a single machine to minimize the maximum lateness. This problem is solved by the EDD (earliest due date) rule. The jobs are sequenced in non-decreasing order of due dates d_i .

Example (4.5):

Consider the following schedule:

j	1	2	3	4
P _j	4	5	3	2
d _j	7	8	5	4

To minimize L_{max} we use the EDD rule:

j	4	3	1	2
P _j	2	3	4	5
d _j	4	5	7	8
C _j	2	5	9	14
Lj	-2	0	2	6

 $\therefore L_{max} = 6$ (for the original schedule $L_{max} = 10$). The optimal schedule is s = (4,3,1,2) with $L_{max} = 6$.

4.5.4 1 / $\sum U_j$ Problem

This is the problem of sequencing n jobs on a single machine to minimize the number of late jobs (minimize the total unit penalties). This problem is solved

by Moore algorithm. Let E denote the set of early jobs and L denote the set of late jobs. The jobs of E are sequenced in EDD rule followed by the jobs of L.

Moore (and Hodgson) Algorithm

<u>Step 1</u>: Number the jobs in EDD order. Set $E = \phi$, $L = \phi$, k = 0, t = 0. <u>Step 2</u>: Let k = k + 1. If k > n go to step 4.

<u>Step 3</u>: Let $t = t + P_k$ and $E = E \cup \{k\}$. If $t \le d_k$ go to step 2. If $t > d_k$, find $j \in E$ with P_j as large as possible and let $t = t - P_j$, $E = E - \{j\}$, $L = L \cup \{j\}$. Go to step 2.

<u>Step 4</u>: *E* is the set of early jobs and L is the set of late jobs.

Example (4.6):

Minimize $\sum U_i$ for the following schedule:

j	1	2	3	4	5	6	7	8
P _j	5	3	1	8	4	7	5	3
d _j	12	32	10	18	23	27	15	24

To minimize $\sum U_i$ we use Moore algorithm:

j	3	1	7	4	5	8	6	2
Pj	1	5	5	8	4	3	7	3
d _j	10	12	15	18	23	24	27	32
Cj	1	6	11	19				
C _j	1	6	11	*	15	18	25	28

: $\sum U_j = 1, E = \{3,1,7,5,8,6,2\}, L = \{4\}$. The optimal schedule is: s= (3,1,7,5,8,6,2,4) (in the original schedule $\sum U_j = 3$).

Example (4.7):

Minimize $\sum U_i$ for the following schedule:

j	1	2	3	4	5	6	7	8
P _j	4	2	7	6	4	7	5	5
d _j	12	27	10	15	30	22	8	28

Solution:

To minimize $\sum U_i$ we use Moore's algorithm:

j	7	3	1	4	6	2	8	5
P _j	5	7	4	6	7	2	5	4
d _j	8	10	12	15	22	27	28	30
С _ј	5	12						
С _ј	5	*	9	15	22	24	29	
С _ј	5	*	9	15	*	17	22	26

Remark: 5th job (Job 6) is selected although it is early since it has the greatest P_j among all jobs in E.

 $\therefore \sum U_j = 2, E = \{7,1,4,2,8,5\}, L = \{3,6\}$. The optimal schedule is: s=(7,1,4,2,8,5,3,6). Also, s=(7,1,4,2,8,5,6,3) is an optimal schedule.

Example (4.8):

Minimize $\sum U_i$ for the following schedule:

j	1	2	3	4	5	6	7	8
P _j	4	3	1	5	2	3	1	3
d _j	7	6	4	7	9	6	4	5

Solution:

To minimize $\sum U_i$ we use Moore's algorithm:

j	3	7	8	2	6	1	4	5
P _j	1	1	3	3	3	4	5	2
d _j	4	4	5	6	6	7	7	9
C _j	1	2	5	8				
C _j	1	2	*	5	8			
С _ј	1	2	*	*	5	9		
C _j	1	2	*	*	5	*	10	
Ċj	1	2	*	*	5	*	*	7

 $\therefore \sum U_j = 4, E = \{3,7,6,5\}, L = \{8,2,1,4\}.$ The optimal schedule is: s=(3,7,6,5,8,2,1,4).