Ch.4: Machine Scheduling Problem

Suppose that *m* machines M_i ($i = 1, ..., m$) have to process *n* jobs j ($j =$ $1, \ldots, n$). A **schedule** is for each job an allocation of one or more time intervals to one or more machines. A schedule is *feasible* if at any time, there is at most one job on each machine; each job is run on at most one machine. A schedule is optimal if it minimizes (or maximizes) a given optimality criterion. A scheduling problem type can be specified using three- field classification α / β / γ composed of machine environment, the job characteristics, and the optimality criterion.

4.1 Job Data

Let *n* denote the number of jobs. The following data is specified for each job *j* (*j=1, 2,…, n*):

- p_{ij} A processing time of its *i*th operation, *i=1, 2, ...,* m_j , where m_j is the number of operations on job *j* . If $m_j = 1$, we shall write p_j instead of p_{ij} .
- r_j A release date on which job *j* become available for processing.
- d_i A due date, the time by which job *j* ideally be completed.
- \tilde{d} *i [~]* A deadline, the time by which*^j* must be completed.
- *wj* The weight of job *j* representing the importance of job *j* relative to another job.
- f_j A non-decreasing real cost function measuring the cost $f_j(t)$ incurred if job *j* completed at time *t*.

In general p_{ij} , d_j , r_j , \tilde{d}_j and w_j are given positive integer constants.

4.2 Machine environment

The first field $\alpha = \alpha_1 \alpha_2$ represents the machine environment. If $\alpha_{1} \in \{\phi, P, Q, R\}$, each job *j* consists of a single operation which can be processed on any machine M_i . Let p_{ij} denote the time to process job *j* on M_i . $\alpha_I = \phi$: **Single machine**, there is only one machine, $p_{ij} = p_j$ for all *j*.

 α_1 = P : **Identical parallel machines**; there are multiple machines operate at the same speed, $p_{ij} = p_j$ (*i=1, 2, ..., m*).

- $\alpha_1 = Q$: **Uniform parallel machines**; there are multiple machines, each machine M_i has its own speed v_i , $p_{ij} = p_j / v_i$ for all M_i and jobs *j*.
- $\alpha_1 = R$: **Unrelated parallel machines**; there are multiple machines with different job-related speeds, that is the processing times are unrelated. If machine M_i runs job *j* with a job-dependent speed v_{ij} , $p_{ij} = p_j / v_{ij}$ for all M_i and jobs *j*.

 In parallel machine environment, a job can be processed in any of the m machines.

If α _I \in { J, F, O }, each job *j* consists of a set of operations ${O_{1j},O_{2j},...,O_{m,j}}.$

 $a_j = J$: **Job-shop**; each job *j* consists of a chain of operations

 ${O_{1}}_{j}$, ${O_{2}}_{j}$,..., ${O_{m}}_{j}$ *}*, which must be processed in that order. Each operation*Oij* must be processed on a designated machine for *pij* units of time. The order in which operations are processed is fixed by the ordering of the chain, but the order may be different for different jobs.

- $a_I = F$: **Flow-shop**; is a special case of job-shop, each job *j* consists of a chain of operations $\{O_{1j},O_{2j},...,O_{mj}\}$, where O_{ij} is to be processed on machine M_i for p_{ij} units of time. The order of the operations is the same for every job.
- $\alpha_1 = O$: **Open-shop**; each job *j* composed of a chain of operations

 $\{O_{l,i},O_{2,i},...,O_{mi}\}$, where O_{ij} is to be processed on M_i for p_{ij}

 units of time. The order in which operations are executed is arbitrary. α ₂ \in $\{\phi\}$ U \aleph , where \aleph is the set of natural numbers.

 $\alpha_2 \in \aleph$: *m*, the number of machines, is constant and equal to α_2 .

 $\alpha_2 = \phi$: *m* is variable.

4.3 Job Characteristics

The second field $\beta \in \{ \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6 \}$ indicates certain job characteristics which are defined as follows: β _{*l*} ∈ { *pmtn,* ϕ }

- $\beta_1 = p$ mtn: Preemptions are allowed, the processing of any job can be interrupted at no cost and resumed at a later time on any machine or at the same time on a different machine.
- $\beta_1 = \phi$: Preemptions are not allowed, once a job is started on a machine, the job occupies that machine until it is finished.

$$
\beta_2 \in \{ \text{ prec, tree, chain,} \phi \}
$$

 $\beta_2 = prec$: A general precedence relation \prec exists between the jobs, that is, if $i \prec j$ (job *i* precedes job *j*), then job *i* must be completed before job *j* can be started.

 β_2 = tree : A precedence tree describes the precedence relation between jobs

- , that is each vertex in the associated graph has outdegree or indegree of at most one.
- $\beta_2 = chain$: Precedence constraints between jobs are of chain-type where each vertex in the associated graph has outdegree and indegree of at most one.

 $\beta_2 = \phi$: There is no precedence relation for the jobs; jobs are independent. $\beta_3 \in \{r_i, \phi\}$

 $\beta_3 = r_i$: Jobs have release dates.

 $\beta_3 = \phi$: *r_j*=0, (*j*=1,2,…,*n*); all jobs are released at the same time.

$$
\beta_4 \in \{ \tilde{d}_j, \phi \}
$$

 $\beta_4 = \widetilde{d}_j$: Jobs have deadlines.

 $\beta_4 = \phi$: No deadlines are specified.

 $\beta_5 \in \{p_{ij} = 1, pl \leq p_{ij} \leq pu, \phi\}$

 $\beta_5 = p_{ii} = I$: Each operation has a unit processing time.

 $\beta_5 = pl \leq p_{ij} \leq pu$: Processing times are bounded below by *pl* and above by *pu* .

 $\beta_5 = \phi$: No bounds on processing times.

$$
\beta_6 \in \{s_f, \phi\}
$$

 $\beta_6 = s_f$: There are sequence independent family set-up times, jobs are subdivided into families and a set-up time is incurred whenever there is a switch from processing a job in a family to a job in

another family

 $\beta_6 = \phi$: There are no set-up times.

4.4 Optimality Criteria

The third field γ defines the optimality criterion or the objective, the value which is to be optimized (minimized). Given a schedule, the following can be computed for each job i :

- C_i The completion time, the time at which the processing of job *j* is completed.
- F_i The flow time, the time job *j* spends in the system, $F_i = C_i r_i$.
- L_i The lateness, $L_i = C_i d_i$, the amount of time by which the completion time of job j exceed its due date. Lateness can be negative if job j finishes earlier than its due date.
- T_i The tardiness, $T_i = max \{L_i, 0\}.$
- E_i The earliness, $E_i = max \{-L_i, 0\}.$
- U_i The unit penalty, a unit penalty of job *j* if it fails to meet its deadline. $U_i = 0$ if $C_i \le d_i$, $U_i = 1$ otherwise.

The cost f_i for each job j usually takes one of the variables described above or the product of the weight w_i with one of the variables. The optimality criterion can be any function of the costs f_i , $j = 1, ..., n$. Common optimality criteria are usually in the form:

1.
$$
f = f_{\text{max}} = \max\{f_j | j = 1,...,n\}
$$
.

$$
2. \qquad f = \sum f_j \, .
$$

The following objective functions have frequently been chosen to be minimized.

 $f = \sum (w_i) C_i$: The total (weighted) completion time.

Introducing due dates d_i ($j=1,...,n$) we have the following objective functions:

$$
f = C_{max}
$$
: The maximum completion time (makespan)
\n
$$
f = L_{max} = max\{L_j\}
$$
: The maximum lateness.
\n
$$
f = T_{max} = max\{T_j\}
$$
: The maximum tardiness.
\n
$$
f = \sum T_j
$$
: The total tardiness.
\n
$$
f = \sum U_j
$$
: The total number of late jobs.

We may also choose to minimize:

 $f = \sum w_j T_j$: The total weighted tardiness.

 $f = \sum w_i U_i$: The total weighted number of late jobs.

 $f = \sum w_j E_j$: The total weighted earliness.

Example (4.1):

 $1/r_i / \sum w_i C_i$ is the problem of minimizing the total weighted completion time on single machine subject to non-trivial release date.

 $P3/pmtn, prec / L_{max}$ is the problem of minimizing maximum lateness on three identical parallel machines subject to general precedence constraint, allowing preemption.

Example (4.2):

Consider the following schedule:

Then to calculate the total completion time, maximum lateness, total earliness, total tardiness, and the total number of late jobs:

Then: $\sum C_i = 7 + 10 + 12 + 21 + 26 + 27 + 29 + 35 = 167$, $L_{max} =$ $16, \sum E_i = 15, \sum T_i = 34, \sum U_i = 4.$

4.5 Single Machine Scheduling Problems

4.5.1 1 / $\sum C_i$ Problem

This is the problem of sequencing n jobs on a single machine to minimize the total completion time. This problem is solved by the SPT (shortest processing

time) rule. The jobs are sequenced in non-decreasing order of processing times P_i .

Example (4.3):

Solve the following $1// \sum C_i$ problem:

To minimize $\sum C_i$, we use the SPT rule as follows:

Then by SPT rule: $\sum C_j = 1 + 3 + 5 + 8 + 13 + 19 + 26 + 35 = 110$. That is the optimal schedule is s= (6,3,7,2,5,8,1,4) with $\sum C_i = 110$.

4.5.2 1 / $\sum W_i C_i$ Problem

This is the problem of sequencing n jobs on a single machine to minimize the weighted total completion time. This problem is solved by the SWPT (shortest weighted processing time) rule. The jobs are sequenced in non-decreasing order of processing times P_j/w_j .

Example (4.4):

Consider the following schedule:

To minimize $\sum w_i C_i$, we must first find P_i/w_i for each job j:

Then, use the SWPT rule as follows:

Then by SWPT: $\sum w_i C_i = 358$. That is the optimal schedule is s= (5,2,1,3,4) with $\sum w_i C_i = 358$ ($\sum w_i C_i = 498$ for the original sequence).

4.5.3 1 / $/L_{max}$ Problem

This is the problem of sequencing n jobs on a single machine to minimize the maximum lateness. This problem is solved by the EDD (earliest due date) rule. The jobs are sequenced in non-decreasing order of due dates d_i .

Example (4.5):

Consider the following schedule:

To minimize L_{max} we use the EDD rule:

∴ L_{max} = 6(for the original schedule L_{max} = 10). The optimal schedule is s = $(4,3,1,2)$ with $L_{max} = 6$.

4.5.4 1 / $\sum U_i$ Problem

This is the problem of sequencing n jobs on a single machine to minimize the number of late jobs (minimize the total unit penalties). This problem is solved by Moore algorithm. Let E denote the set of early jobs and L denote the set of late jobs. The jobs of E are sequenced in EDD rule followed by the jobs of L .

Moore (and Hodgson) Algorithm

Step 1: Number the jobs in EDD order. Set $E = \phi$, $L = \phi$, $k = 0$, $t = 0$.

Step 2: Let $k = k + 1$. If $k > n$ go to step 4.

Step 3: Let $t = t + P_k$ and $E = E \cup \{k\}$. If $t \le d_k$ go to step 2. If $t > d_k$, find $j \in E$ with P_i as large as possible and let $t = t - P_i$, $E = E - \{j\}, L = L \cup \{j\}.$ Go to step 2.

Step 4: E is the set of early jobs and L is the set of late jobs.

Example (4.6):

Minimize $\sum U_i$ for the following schedule:

To minimize $\sum U_i$ we use Moore algorithm:

∴ $\sum U_i = 1, E = \{3, 1, 7, 5, 8, 6, 2\}, L = \{4\}.$ The optimal schedule is: s= (3,1,7) ,5,8,6,2,4) (in the original schedule $\sum U_j = 3$).

Example (4.7):

Minimize $\sum U_i$ for the following schedule:

Solution:

To minimize $\sum U_i$ we use Moore's algorithm:

Remark: 5th job (Job 6) is selected although it is early since it has the greatest P_i among all jobs in E .

∴ $\sum U_j = 2, E = \{7, 1, 4, 2, 8, 5\}, L = \{3, 6\}.$ The optimal schedule is: s=(7,1,4,2,8,5,3,6). Also, s=(7,1,4,2,8,5,6,3) is an optimal schedule.

Example (4.8):

Minimize $\sum U_i$ for the following schedule:

Solution:

To minimize $\sum U_i$ we use Moore's algorithm:

∴ $\sum U_i = 4, E = \{3, 7, 6, 5\}, L = \{8, 2, 1, 4\}.$ The optimal schedule is: s=(3,7,6,5,8,2,1,4).