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Ch. 2: Game Theory 
        
The theory of games (or game theory or competitive strategies) is a 
mathematical theory that deals with the general feature of competitive 
situations. This theory is helpful when two or more opponents (individuals, 
companies,… etc.) with conflicting objectives try to make decision. In such 
situations, a decision made by one decision-maker affects the decision made 
by one or more of the remaining decision-makers and the final outcome 
depend on the decision of all parties. 
The game theory is based on the minimax principle put forward by J. von 
Neuman (1903-1957) which implies that each competitor will act so as to 
minimize his maximum loss (or maximize his minimum gain) or achieve the 
best of the worst. The theory does not describe how a game should be played; 
it describes only the procedure and principles by which plays should be 
selected. 
2.1    Characteristics of the Game 
A competitive game has the following characteristics: 
a) There is finite number of participants or competitors. If the number of 

participants is 2, the game is called two- person game; for number greater 
than two, it is called n-person game. 

b) Each participant has a list of finite number of possible courses of actions 
available to him. The list may not be the same for each participant. 

c) Each participant knows all the possible choices available to others but does 
not know which of them is going to be chosen by them. 

d) A play is said to occur when each of the participants chooses one of the 
courses of actions available to him. The choices are assumed to be made 
simultaneously so that no participant knows the choices made by others 
until he has decided his own. 

e) Every combination of courses of actions determines an outcome which 
results in gains of the participants. The gain (payoff) may be positive, 
negative or zero. Negative gain is called loss. 

f) The gain of a participant depends not only on his own actions but also on 
those of others. 

g) The gains of each and every play are fixed and specified in advance and are 
known to each player. 
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h) The players make individual decisions without direct communication. 
2.2    Definitions 
Definition (2.1): 
A game is an activity between two or more persons, involving action by each 
one of them according to a set of rules which results in some gain ( +ve, −ve 
or zero) for each.  
Definition (2.2): 
Each participant or competitor playing a game is called a player. 
Definition (2.3): 
A strategy is a predetermined rule by which a player decides his course of 
action from his list of courses of actions during the game. To decide a 
particular strategy the player needs to know the other’s strategy. 
Definition (2.4): 
A pure strategy is the decision rule to always select a particular course of 
action. 
Definition (2.5): 
Mixed strategy is the decision, in advance of all plays, to choose a course of 
action for each play in accordance with some probability distribution. Thus, a 
mixed strategy is a selection among pure strategies with some fixed 
probabilities. 
Definition (2.6): 
The strategy that puts the player in the most preferred position irrespective of 
the strategy of his opponents is called an optimal strategy. Any deviation from 
this strategy would reduce his payoff. 
Definition (2.7): 
Zero-sum game is a game in which the sum of payments to all the players, 
after the play of the game, is zero. In such a game, the gain of players that win 
is  exactly equal the loss of players that lose
Definition (2.8): 
Two-person zero-sum game is a game involving only two players in which the 
gain of one player equals the loss of the other. It is also called a rectangular 
game or matrix game because the payoff matrix is rectangular in form.                                              
Definition (2.9): 
A nonzero- game is a game in which a third party receives or makes some 
payment. 
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Definition (2.10): 
Payoff (gain or game) matrix is the table showing the amounts received by the 
player named at the left-hand-side after all possible plays of the game. The 
payment is made by the player named at the top of the table. 
In a two-person zero-sum game, the cell entries in B’s payoff matrix will be the 
negative of the corresponding cell entries in A’s payoff matrix. A is called 
maximizing player as he would try to maximize his gains, while B is called 
minimizing player as he would try to minimize his losses. 

  Player B    Player B 
  1 2 … 𝒋𝒋 … 𝒏𝒏    1 2 … 𝑗𝑗 … 𝑛𝑛 

Pl
ay

er
 A

 

1 𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑗𝑗 … 𝑎𝑎1𝑛𝑛 

 
Pl

ay
er

 A
 

1 −𝑎𝑎11 −𝑎𝑎12 … −𝑎𝑎1𝑗𝑗 … −𝑎𝑎1𝑛𝑛 
2 𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑗𝑗 … 𝑎𝑎2𝑛𝑛 2 −𝑎𝑎21 −𝑎𝑎22 … −𝑎𝑎2𝑗𝑗 … −𝑎𝑎2𝑛𝑛 
⁞ ⁞ ⁞  ⁞  ⁞ ⁞ ⁞ ⁞  ⁞  ⁞ 
𝒊𝒊 𝑎𝑎𝑖𝑖1 𝑎𝑎𝑖𝑖2 … 𝑎𝑎𝑖𝑖𝑖𝑖  … 𝑎𝑎𝑖𝑖𝑖𝑖 𝑖𝑖 −𝑎𝑎𝑖𝑖1 −𝑎𝑎𝑖𝑖2 … −𝑎𝑎𝑖𝑖𝑖𝑖 … −𝑎𝑎𝑖𝑖𝑖𝑖 
⁞ ⁞ ⁞  ⁞  ⁞ ⁞ ⁞ ⁞  ⁞  ⁞ 
𝒎𝒎 𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 … 𝑎𝑎𝑚𝑚𝑚𝑚 … 𝑎𝑎𝑚𝑚𝑚𝑚 𝑚𝑚 −𝑎𝑎𝑚𝑚1 −𝑎𝑎𝑚𝑚2 … −𝑎𝑎𝑚𝑚𝑚𝑚 … −𝑎𝑎𝑚𝑚𝑚𝑚 

  A’s payoff matrix    B’s payoff matrix 
Thus the sum of payoff matrices for A and B is a null matrix. Then, we shall 
usually omit B’s payoff matrix; keeping in mind that it is just the negative of A’s 
payoff matrix. That is if 𝑎𝑎𝑖𝑖𝑖𝑖 > 0, it is a gain for player A, 𝑎𝑎𝑖𝑖𝑖𝑖 < 0, it is a gain for 
player B, 𝑎𝑎𝑖𝑖𝑖𝑖 = 0, players gain nothing. 

2.3    Rule 1: Look for a Pure Strategy (Saddle Point) 
The steps required to detect a saddle point: 
1) At the right of each row, write the row minimum and ring the largest of 

them (maximin). 
2) At the bottom of each column, write the column maximum and ring the 

smallest of them (minimax). 
3) If minimax = maximin, the cell where the corresponding row and column 

meet is a saddle point (equilibrium point) and the element in that cell is 
the value of the game, the game is called stable game. 

4) If minimax ≠ maximin , there is no saddle point and the value of the game 
lies between these two values. 

5) If there are more than one saddle points then there will be more than one 
solution, each solution corresponding to each saddle point. 

Example (2.1): 
In a game of matching coins, the payoff matrix is given in the following table. 
Determine the best strategies for each player and the value of the game> 
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  B 
  H T 

A 
H 0 5 
T −2 0 

Solution: 
First, we search for a saddle point: 

  B  
  H T min 

 A 
H 0 5 0 
T −2 0 -2 

 max 0 5  
 
Minimax=0, maximin=0. Since minimax=maximin, then there is a saddle point 
(1,1)[means first strategy of A and first strategy of B]. 
Optimal strategy for player A :( 1, 0) 
Optimal strategy for player B :( 1, 0) 
The value of the game V=0 
Example (2.2): 
Does the following game have a saddle point? 

  B 
  B1 B2 B3 

A A1 0 7 6 
A2 3 12 2 

Solution: 
  B  
  B1 B2 B3 min 

A 
A1 0 7 6 0 
A2 3 12 1 1 

 max 3 12 6  
Minimax=3, maximin=1. Since minimax≠maximin, then there is no saddle 
point. 
2.4    Rule 2: Reduce the Game 
If no pure strategy exists, the next step is to eliminate certain strategies (rows 
and/or columns) by dominance. The resulting game can be solved for some 
mixed strategy. The dominance rules are: 
For rows: The row 𝑖𝑖  dominating row 𝑘𝑘 if : 𝑎𝑎𝑖𝑖𝑖𝑖 ≥ 𝑎𝑎𝑘𝑘𝑘𝑘 , 𝑗𝑗 = 1, … ,𝑛𝑛. 
For columns: The column 𝑗𝑗  dominating column 𝑘𝑘 if : 𝑎𝑎𝑖𝑖𝑖𝑖 ≤ 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑚𝑚. 

NANA
Text Box
1
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Example (2.3): 
Two players P and Q play a game. Each of them has to choose one of the three 
colors, white (W), black (B), and red (R) independently of the other. Thereafter 
the colors are compared. If both P and Q have chosen white (W,W), neither 
wins anything. The payoff matrix is shown below. Does the game have a saddle 
point? If not reduce the game. 

  P 
  W B R 

Q 
W 0 −2 7 
B 2 5 6 
R 3 −3 8 

Solution: 
  P  
  W B R min 

Q 
W 0 −2 7 −2 
B 2 5 6 2 
R 3 −3 8 −3 

 max 3 5 8  
Minimax=3, maximin=2. Since minimax≠maximin, then there is no saddle 
point. 2 ≤ 𝑉𝑉 ≤ 3. To reduce the matrix: the first column dominating the third 
column (0 < 7,2 < 6,3 < 8 ). The resulting matrix is: 

  P 
  W B 

Q 
W 0 −2 
B 2 5 
R 3 −3 

 
The second row dominating the first row (2 > 0, 5 > −2 ). The resulting matrix 
is: 

  P 
  W B 

Q B 2 5 
R 3 −3 

Remark (2.1) 
Sometimes the previous dominance rules are not useful; in this case we can 
use the average rule: 
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For rows: The rows 𝑖𝑖 and 𝑘𝑘 dominating row ℎ if every element in the average 
of rows 𝑖𝑖 and 𝑘𝑘 is greater than or equal the corresponding element in row ℎ. 
For columns: The columns 𝑗𝑗 and 𝑘𝑘 dominating column ℎ if every element in the 
average of columns 𝑗𝑗 and 𝑘𝑘 is smaller than or equal the corresponding element 
in column ℎ. 
Example (2.4): 
Consider the following game: 

  B 
  1 2 3 

A 
1 6 1 3 
2 0 9 7 
3 2 3 4 

This game has no saddle point, since: 
  B  
  1 2 3 min 

A 
1 6 1 3 1 
2 0 9 7 0 
3 2 3 4 2 

 max 6 9 7  
Minimax=6, maximin=2, minimax≠maximin. 2 ≤ 𝑉𝑉 ≤ 6. The game cannot be 
reduced by dominance rules. The average of A’s first and second strategy is: 

�6+0
2

, 1+9
2

, 3+7
2
� = (3,5,5) .  By comparing each element in the average with the 

corresponding element in the third row: 3 > 2, 5 > 3, 5 > 4. The resulting 
matrix will be: 

  B 
  1 2 3 

A 1 6 1 3 
2 0 9 7 

2.5    Rule 3: Solve for a Mixed Strategy 
In case where there is no saddle point and dominance has been used to reduce 
the game matrix, players will use mixed strategies. Such games are called 
unstable games.  
2.6    Mixed Strategies for 2 x 2 Games 
2.6.1       Arithmetic method ( Odds Method)  
It provides an easy method for finding the optimum strategies for each player 
in a 2 x 2 game without a saddle point. It consists of the following steps: 
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i) Subtract the two digits in column 1 and write the difference under 
column 2, ignoring sign. 

ii) Subtract the two digits in column 2 and write the difference under 
column 1, ignoring sign. 

iii) Similarly proceed for the two rows, write the results to the right of each 
row. 

           These values are called oddments.  
iv) To find the frequency (probability) in which the players must use their 

courses of action in their optimum strategy, divide the oddment of each 
player on the sum of his oddments. 

v) The value of the game result by multiplying the elements of a row or 
column by the probabilities corresponding to these elements.  

Example (2.5): 
Consider the game in example (2.3), find the optimal strategy for each player 
and the value of the game. 
Solution: 
The game is reduced to a  2 x 2 game which we must check the existence of a 
saddle point: 

  P  
  W B min 

Q B 2 5 2 
R 3 −3 −3 

 max 3 5  
Minimax=3, maximin=2. Since minimax≠maximin, then there is no saddle 
point and 2 ≤ 𝑉𝑉 ≤ 3.  Then: 

  P   
  W B   

Q 
B 2 5 6 6/9 
R 3 −3 3 3/9 

  8 1   
  8/9 1/9   

Optimal strategy for player P is : (8/9, 1/9, 0) 
Optimal strategy for player Q is : (0, 6/9, 3/9) 
To obtain the value of the game: 
By using Q’s oddments: 

V= 2×6+3×3
9

= 21/9    when Q plays B 
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V= 5×6−3×3
9

= 21/9    when Q plays R 

By using P’s oddments: 

V= 2×8+5×1
9

= 21/9    when P plays W 

V= 3×8−3×1
9

= 21/9    when P plays B 

Remark (2.2) 
The above values of V are equal only if sum of the oddments vertically and 
horizontally are equal. 
Example (2.6): 
In a game of matching coins, the payoff matrix is given in the following table. 
Determine the best strategies for each player and the value of the game> 

  B 
  H T 

A 
H 2 −1 
T −1 0 

Solution: 
First, we search for a saddle point: 

  B  
  H T min 

 A 
H 2 −1 −1 
T −1 0 −1 

 max 2 0  
 
Minimax=0, maximin= −1. Since minimax≠ maximin, then there is no saddle 
point and −1 ≤ 𝑉𝑉 ≤ 0. 

  B   
  H T   

A H 2 −1 1 1/4 
T −1 0 3 3/4 

  1 3   
  1/4 3/4   

Optimal strategy for player A is : (1/4, 3/4) 
Optimal strategy for player B is : (1/4, 3/4) 

V=2×1−1×3
4

= −1/4, that is B is the winner. 

Example (2.7): 
Find the optimal strategy of each player and the value of the following game: 
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  B 
  I II III IV 

A 

1 3 2 4 0 
2 3 4 2 4 
3 4 2 4 0 
4 0 4 0 8 

Solution: 
  B  
  I II III IV min 

A 

1 3 2 4 0 0 
2 3 4 2 4 2 
3 4 2 4 0 0 
4 0 4 0 8 0 

 max 4 4 4 8  
Minimax=4, maximin=2. Since minimax≠ maximin, then there is no saddle 
point and 2 ≤ 𝑉𝑉 ≤ 4. Then we try to reduce the matrix: 

 
 
 
𝑅𝑅1 𝑣𝑣𝑣𝑣 𝑅𝑅3
������  
 
 

                                                                                             No saddle point 
 
                                                                                        

𝐶𝐶𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣 (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶+𝐶𝐶𝐶𝐶𝐶𝐶)/2
���������������  

𝐶𝐶𝐶𝐶 𝑣𝑣𝑣𝑣 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
�������                                                        
 
 
                                 No saddle point                                               No saddle point 
 
 
𝑅𝑅2 𝑣𝑣𝑣𝑣 (𝑅𝑅3+𝑅𝑅4)/2
�������������  
 
The last matrix has no saddle point (  maximin=0, minimax=4), then: 
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  B   
  III IV   

A 
3 4 0 8 2/3 
4 0 8 4 1/3 

  8 4   
  2/3 1/3   

Optimal strategy for player A is: ( 0, 0, 2/3,1/3) 
Optimal strategy for player B is: ( 0, 0, 2/3,1/3) 

V= 4×2+0×1
3

= 8/3 

Example (2.8): 
Reduce the following game and find the optimal strategy of each player and 
the value of the following game: 

  B 
  1 2 3 4 5 

A 

I 1 3 2 7 4 
II 3 4 1 5 6 
III 6 5 7 6 5 
IV 2 0 6 3 1 

Solution: 
 

𝐶𝐶4 𝑣𝑣𝑣𝑣 𝐶𝐶2
𝐶𝐶5 𝑣𝑣𝑣𝑣 𝐶𝐶2������ 

𝑅𝑅𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
��������                                                               
 
 
 
 

𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑅𝑅𝑅𝑅𝑅𝑅 𝑣𝑣𝑣𝑣 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅��������                                                                

  B 
  1 2 3 

A III 6 5 7 
 
Optimal strategy for player A is: ( 0, 0, 1,0) 
Optimal strategy for player B is: ( 0, 1, 0,0,0) [ B must play strategy 2 in order to 
minimize his losses] 
V=5 
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Example (2.9): 
A company is currently involved in negotiations with its union on the upcoming 
wage contract. Positive signs in the following table represent wages increase 
while negative sign represents wage reduction. What are the optimal 
strategies for the company as well as the union and what is the value of the 
game? 

  Union strategies 
  U1 U2 U3 U4 

Company 
strategies 

C1 +0.25 +0.27 +0.35 −0.02 
C2 +0.20 +0.16 +0.08 +0.08 
C3 +0.14 +0.12 +0.15 +0.13 
C4 +0.30 +0.14 +0.19 +0.00 

Solution: 
Since in a game matrix, player to its left is a maximizing player and the one at 
the top is a minimizing player, the above table is transposed and rewritten as 
the following table since company’s interest is to minimize the wage increase 
while union’s interest is to get the maximum wage increase. 

  Company strategies 
  C1 C2 C3 C4 

Union 
strategies 

U1 0.25 0.2 0.14 0.3 
U2 0.27 0.16 0.12 0.14 
U3 0.35 0.08 0.15 0.19 
U4 −0.02 0.08 0.13 0.00 

First, we must look for a saddle point: 
  Company strategies  

  C1 C2 C3 C4 min 

Union 
strategies 

U1 0.25 0.2 0.14 0.3 0.14 
U2 0.27 0.16 0.12 0.14 0.12 
U3 0.35 0.08 0.15 0.19 0.08 
U4 −0.02 0.08 0.13 0.00 −0.02 

 max 0.35 0.2 0.15 0.3  
Maximin=0.14, minimax=0.15, since maximin ≠ minimax, then there is no 
saddle point and 0.14 ≤ 𝑉𝑉 ≤ 0.15 
 

𝐶𝐶1𝑣𝑣𝑣𝑣.𝐶𝐶2
𝐶𝐶4𝑣𝑣𝑣𝑣.𝐶𝐶3�����  

𝑈𝑈3𝑣𝑣𝑣𝑣.𝑈𝑈4������                                                                  
 
 

There is no saddle point There is no saddle point 
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𝑈𝑈2𝑣𝑣𝑣𝑣.𝑈𝑈1������  

  Company strategies 
  C2 C3 min 

Union 
strategies 

U1 0.2 0.14 0.14 
U3 0.08 0.15 0.08 

 max 0.2 0.15  
There is no saddle point. 

  Company 
strategies  

  C2 C3   
Union 

strategies 
U1 0.2 0.14 0.07 7/13 
U3 0.08 0.15 0.06 6/13 

  0.01 0.12   
  1/13 12/13   

Optimal strategy for the company: (0, 1/13, 12/13,0) 
Optimal strategy for the union: (7/13, 0, 6/13, 0) 

The value of the game is V= 0.2∗7+0.08∗6
13

= 1.88
13

= 0.145 

2.6.2    Algebraic Method for Finding Optimum Strategies and Game Value 
 Consider the following  2 x 2 game: 

  B 
  B1 B2  

A A1 a b 𝑥𝑥 
A2 c d 1 − 𝑥𝑥 

  𝑦𝑦 1 − 𝑦𝑦  
While applying this method it is assumed that 𝑥𝑥 represents the fraction of time 
(frequency) for which player A uses strategy 1 and (1 − 𝑥𝑥) represents the 
fraction of time (frequency) for which player A uses strategy 2. Then the value 
of the game: 
𝑉𝑉 =  𝑎𝑎 ∗ 𝑥𝑥 + 𝑐𝑐 ∗ (1 − 𝑥𝑥) = 𝑏𝑏 ∗ 𝑥𝑥 + 𝑑𝑑 ∗ (1 − 𝑥𝑥)  
Solve these equations to find the value of 𝑥𝑥. Similarly 𝑦𝑦 and (1 − 𝑦𝑦) represents 
the fraction of time (frequency) for which player B uses strategies 1 and 2 
respectively. Then the value of the game: 
𝑉𝑉 =  𝑎𝑎 ∗ 𝑦𝑦 + 𝑏𝑏 ∗ (1 − 𝑦𝑦) = 𝑐𝑐 ∗ 𝑦𝑦 + 𝑑𝑑 ∗ (1 − 𝑦𝑦)  
Solve these equations to find the value of 𝑦𝑦. 
Example (2.10): 
Two armies are at war. Army A has two airbases, one of which is thrice as 
valuable as the other. Army B can destroy an undefended airbase, but it can 
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destroy only one of them. Army A can also defend only one of them. Find the 
best strategy for A to minimize his losses and find the optimal strategy for B. 
Solution: 
Since both armies have only two possible courses of action, the gain matrix for 
the game is: 

   Army A 
   1 2 

   Defend the smaller 
airbase 

Defend the larger 
airbase 

Army B 1 Attack the smaller airbase 0 1 
2 Attack the larger airbase 3 0 

First, we check for the existence of a saddle point: 
  Army A  
  1 2 min 

Army B 1 0 1 0 
2 3 0 0 

max  3 1  
Maximin=0, minimax=1. Since minimax ≠ maximin, then there is no saddle 
point and  0 ≤ 𝑉𝑉 ≤ 1. 
Let 𝑥𝑥 and (1 − 𝑥𝑥) represents the fraction of time (frequency) for which player B 
uses strategies 1 and 2 respectively. Then the value of the game: 
𝑉𝑉 = 0 × 𝑥𝑥 + 3 × (1 − 𝑥𝑥) = 1 × 𝑥𝑥 + 0 × (1 − 𝑥𝑥)  
⇒ 3 − 3𝑥𝑥 = 𝑥𝑥 ⇒ 3 = 4𝑥𝑥 ⇒ 𝑥𝑥 = 3

4
⇒ 1 − 𝑥𝑥 = 1

4
  

Similarly let 𝑦𝑦 and (1 − 𝑦𝑦) represents the fraction of time (frequency) for which 
player A uses strategies 1 and 2 respectively. Then the value of the game: 
𝑉𝑉 = 0 × 𝑦𝑦 + 1 × (1− 𝑦𝑦) = 3 × 𝑦𝑦 + 0 × (1 − 𝑦𝑦)  
⇒ 1 − 𝑦𝑦 = 3𝑦𝑦 ⇒ 1 = 4𝑦𝑦 ⇒ 𝑦𝑦 = 1

4
⇒ 1 − 𝑦𝑦 = 3

4
  

The optimal strategy for player A : (1/4, 3/4) 
 The optimal strategy for player B : (3/4, 1/4) 

The value of the game 𝑉𝑉 = 0 × 1
4

+ 1 × 3
4

= 3
4
 

Exercise 2.1 (in addition to text book exercises) 
Find the optimum strategies for each player and the value of the games: 
1-        B 
        1 2 3 
      

A 
1 −1 −2 8 

      2 7 5 −1 
       3 6 0 12 
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2- Two breakfast food manufacturers, A and B are competing for an increased 
market share. The payoff matrix, represented in the following table, shows the 
increase in market share for A and decrease in in market share for B: 
  B 

  Give gifts Decrease 
price 

Maintain 
present 
strategy 

Increase 
advertising 

A 

Give gifts 2 −2 4 1 
Decrease price 6 1 12 3 

Maintain present 
strategy −3 2 0 6 

Increase advertising 2 −3 7 1 
Find the optimal strategies for both manufacturers and the value of the game. 
2.7    Mixed Strategies for 𝟐𝟐 x 𝒏𝒏 or 𝒎𝒎 x 𝟐𝟐 Games 
These are games in which one player has only two courses of action open to 
him while his opponent may have any number. If the game has no saddle point 
and cannot be reduced to a 2 x 2 game, it can be still solved by method of 
subgames or graphical method. 
2.7.1       Method of Subgames for 𝟐𝟐 x 𝒏𝒏 or 𝒎𝒎 x 𝟐𝟐 Games 
This method subdivides the given 2 x 𝑛𝑛 or 𝑚𝑚 x 2 game into a number of 2 x 2 
games, each of which is then solved and then the optimal strategies are 
determined. If 𝑘𝑘 = 𝑛𝑛 (for 2 x 𝑛𝑛 games) or  𝑘𝑘 = 𝑚𝑚 (for 𝑚𝑚 x 2 games), then the 

number of subgames  is: 𝑘𝑘!
2!(𝑘𝑘−2)!

   . 

Example (2.11): 
Find the optimal strategy for each player and the value of the following game: 

  B 
  1 2 3 

A 1 275 −50 −75 
2 125 130 150 

Solution: 
First we search for a saddle point: 

  B  
  1 2 3 min 

A 1 275 −50 −75 −75 
2 125 130 150 125 

 max 275 130 150  
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There is no saddle point and 125 ≤ 𝑉𝑉 ≤ 130. The game cannot be reduced. 
This game can be thought as three 2 x 2 games. 
Subgame 1: 

  B  
  1 2 min 

A 1 275 −50 −50 
2 125 130 125 

 max 275 130  
There is no saddle point, then: 

  B   
  1 2   

A 1 275 −50 5 1/66 
2 125 130 325 65/66 

  180 150   
  36/66 30/66   

The strategy for A: (1/66, 65/66) 
The strategy for B: (36/66, 30/66, 0) 

The value of the game: 𝑉𝑉 = 275×1+125×65
66

= 127.3 

Subgame 2: 
  B  
  1 3 min 

A 
1 275 −75 −75 
2 125 150 125 

 max 275 150  
There is no saddle point, then: 

  B   
  1 3   

A 
1 275 −75 25 1/15 
2 125 150 350 14/15 

  225 150   
  9/15 6/15   

The strategy for A: (1/15, 14/15) 
The strategy for B: (9/15, 0, 6/15) 

The value of the game: 𝑉𝑉 = 275×1+125×14
15

= 135 
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Subgame 3: 
  B  
  2 3 min 

A 1 −50 −75 −75 
2 130 150 130 

 max 130 150  
There is a saddle point (2, 2), thus: 
The strategy for A: (0, 1) 
The strategy for B: (0, 1, 0) 
The value of the game: 𝑉𝑉 = 130 
Since player B has the flexibility to play any two of the courses of action 
available to him, he will play those strategies for which his loss is minimum. AS 
the value of all subgames are positive, player A is the winner. Hence Player B 
will play subgame 1 for which the loss is minimum, i.e. 127.3. The complete 
solution of the problem is: 
The optimal strategy for A: (1/66, 65/66) 
The optimal strategy for B: (36/66, 30/66, 0) 
The value of the game: 𝑉𝑉 = 127.3 
2.7.2    Graphical Method for 𝟐𝟐 x 𝒏𝒏 or 𝒎𝒎 x 𝟐𝟐 Games 
Graphical method is applicable to only those games in which one of the players 
has two strategies only. The advantage of this method is that it is relatively 
fast. It reduces the 2 x 𝑛𝑛 or 𝑚𝑚 x 2  game to 2 x 2 game and the game can then 
be solved by the methods discussed earlier. The resulting solution is also the 
solution of the original problem. 
Example (2.12): 
Solve the game given in the following table: 

  B 
  B1 B2 B3 B4 

A 

A1 19 6 7 5 
A2 7 3 14 6 
A3 12 8 18 4 
A4 8 7 13 −1 

Solution: 
First, we must search for a saddle point: 
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  B  
  B1 B2 B3 B4 min 

A 

A1 19 6 7 5 5 
A2 7 3 14 6 3 
A3 12 8 18 4 4 
A4 8 7 13 −1 −1 

 max 19 8 18 6  
There is no saddle point and 5 ≤ 𝑉𝑉 ≤ 6. Columns B1 and B3 are dominated by 
column B2, then the reduced matrix will be:  

  B 
  B2 B4 

A 

A1 6 5 
A2 3 6 
A3 8 4 
A4 7 −1 

Row A3 dominates row A4 and the reduced matrix will be: 
  B 
  B2 B4 

A 
A1 6 5 
A2 3 6 
A3 8 4 

  𝑦𝑦2 𝑦𝑦4 = 1 − 𝑦𝑦2 
Let A1, A2, and A3 be the strategies which A mixes with probabilities 𝑥𝑥1, 𝑥𝑥2, and 
𝑥𝑥3 respectively and B2, B4 be the strategies which B mixes with probabilities 𝑦𝑦2 
and 𝑦𝑦4 = 1 − 𝑦𝑦2.When B adopts strategy B2, 𝑦𝑦2 = 1 and the probability with 
which he will adopt strategy B4, i.e. 𝑦𝑦4 = 0. B’s expected Payoffs corresponding 
to A’s pure strategies are given below: 

A’s pure strategies B’s expected Payoffs 
A1 6𝑦𝑦2 + 5𝑦𝑦4 = 6𝑦𝑦2 + 5(1 − 𝑦𝑦2) = 𝑦𝑦2 + 5  
A2 3𝑦𝑦2 + 6𝑦𝑦4 = 3𝑦𝑦2 + 6(1 − 𝑦𝑦2) = −3𝑦𝑦2 + 6  
A3 8𝑦𝑦2 + 4𝑦𝑦4 = 8𝑦𝑦2 + 4(1 − 𝑦𝑦2) = 4𝑦𝑦2 + 4  

These three lines can be plotted as functions of 𝑦𝑦2 as follows: draw two lines B2 
and B4 parallel to each other one unit apart and mark a scale on each of them. 
To represent A’s first strategy, A1, join mark 5 on B4 (when 𝑦𝑦2 = 0 ) to 6 on B2 
(when 𝑦𝑦2 = 1 ). Similarly for other A’s strategies, A2 and A3, and bound the 
figure from above as shown since B is a minimization player. 
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Since player B wishes to minimize his maximum expected losses, the two lines 
which intersect at the lowest point of the upper bound show the two courses 
of action A should choose in his best strategy, i.e. A1 and A2. Thus, we can 
reduce the 3 x 2 game to the following 2 x 2 game which has no saddle point: 

  B   
  B2 B4   

A A1 6 5 3 3/4 
A2 3 6 1 1/4 

  1 3   
  1/4 3/4   

The optimal strategies are: A (3/4, 1/4, 0, 0), B (0, 1/4, 0, 3/4) 

The value of the game is:𝑉𝑉 = 6×1+5×3
4

= 21
4

 

Example (2.13): 
Solve the following 2 x 5 game: 

  B  
  B1 B2 B3 B4 B5  

A A1 −5 5 0 −1 8  
A2 8 −4 −1 6 −5  

Solution: 
First, we must look for a saddle point; it does not exist in this problem. 
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  B   
  B1 B2 B3 B4 B5 min  

A 
A1 −5 5 0 −1 8 −5 𝑥𝑥1 
A2 8 −4 −1 6 −5 −5 𝑥𝑥2 = 1 − 𝑥𝑥1 

 max 8 5 0 6 8   
In this problem, the matrix cannot be reduced to a smaller matrix. The A’s 
expected payoffs corresponding to B’s pure strategies are: 
B’s pure strategies A’s expected payoffs 

1 −5𝑥𝑥1 + 8𝑥𝑥2 = −5𝑥𝑥1 + 8(1− 𝑥𝑥1) = −13𝑥𝑥1 + 8  
2 5𝑥𝑥1 − 4𝑥𝑥2 = 5𝑥𝑥1 − 4(1− 𝑥𝑥1) = 9𝑥𝑥1 − 4  
3 0𝑥𝑥1 − 1𝑥𝑥2 = −(1 − 𝑥𝑥1) = 𝑥𝑥1 − 1  
4 −1𝑥𝑥1 + 6𝑥𝑥2 = −1𝑥𝑥1 + 6(1− 𝑥𝑥1) = −7𝑥𝑥1 + 6  
5 8𝑥𝑥1 − 5𝑥𝑥2 = 8𝑥𝑥1 − 5(1− 𝑥𝑥1) = 13𝑥𝑥1 − 5  

The five lines can be plotted as a function of 𝑥𝑥1 as follows: draw two lines A1 
and A2 parallel to each other one unit apart and mark a scale on each of them. 
To represent B’s first strategy, B1, join mark 8 on A2 (when 𝑥𝑥1 = 0 ) to −5 on A1 
(when 𝑥𝑥1 = 1 ) and so on. Bound the figure from below as shown since A is a 
maximization player. 
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Since player A wishes to maximize his minimum expected payoff, the two lines 
which intersect at the highest point of the lower bound show the two courses 
of action B should choose in his best strategy, i.e. B1 and B3. Thus, we can 
reduce the 2 x 5 game to the following 2 x 2 game which has no saddle point: 

  B   
  B1 B3   

A 
A1 −5 0 9 9/14 
A2 8 −1 5 5/14 

  1 13   
  1/14 13/14   

The optimal strategies are: A (9/14, 5/14), B (1/14, 0, 13/14, 0, 0) 

The value of the game is:𝑉𝑉 = −5×1+0×13
14

= −5
14

 

Exercise 2.2 (in addition to text book exercises) 
Solve the following game in two ways: 

  B 
  1 2 

A 

1 3 −1 
2 0 5 
3 7 −2 
4 −3 4 
5 6 2 

2.8    Mixed strategies for 3 x 3 Game – Method of Matrices 
If the game has no saddle point and it reduced to a 3 x 3 matrix, the game can 
be solved by the method of matrices. The steps of this method are as follows: 
Step 1: subtract 2nd row from the 1st and 3rd row from the 2nd and write down 
the values below the matrix. 
Step 2: similarly, subtract each column from the column to its left (i.e. subtract 
2nd column from the 1st and 3rd column from the 2nd ) and write down the 
values to the right of the matrix. 
Step 3: Calculate the oddments for A1, A2, A3, B1, B2, and B3. The oddment of 
each strategy is the determinant of the numbers calculated in steps 1 and 2 , 
after neglecting the strategy numbers. Write down these elements to the right 
and down the table, neglecting their signs. 
Step 4: If the sum of the oddments of the players are equal, then there is a 
solution to the game; if not, this method fails. 
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Step 5: For each player calculate the probability in which he uses his strategies 
by dividing his oddments on the sum of oddments. 
Example (2.14): 
Solve the following game: 

  B 
  1 2 3 

A 
1 7 1 7 
2 9 −1 1 
3 5 7 6 

Solution:  
  B  
  1 2 3 min 

A 
1 7 1 7 1 
2 9 −1 1 −1 
3 5 7 6 5 

 max 9 7 7  
 

There is no saddle point and 5 ≤ 𝑉𝑉 ≤ 7. The matrix cannot be reduced, then:  
  B   
  1 2 3   

A 
1 7 1 7 6 −6 
2 9 −1 1 10 −2 
3 5 7 6 −2 1 

  −2 2 6   
  4 −8 −5   

The oddments are: 

Oddment for 𝐴𝐴1 = ��10 −2
−2 1 �� = 6 

Oddment for 𝐴𝐴2 = �� 6 −6
−2 1 �� = 6 

Oddment for 𝐴𝐴3 = �� 6 −6
10 −2�� = 48 

Oddment for 𝐵𝐵1 = �� 2 6
−8 −5�� = 38 

Oddment for 𝐵𝐵2 = ��−2 6
4 −5�� = 14 

Oddment for 𝐵𝐵3 = ��−2 2
4 −8�� = 8 
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sum of oddments for 𝐴𝐴 = 6 + 6 + 48 = 60, sum of oddments for 𝐵𝐵 = 38 +
14 + 8 = 60 . Then: 

  B   
  1 2 3   

A 
1 7 1 7 6 3/30 
2 9 −1 1 6 3/30 
3 5 7 6 48 24/30 

  38 14 8   
  19/30 7/30 4/30   

The optimal strategies are: 
A (3/30, 3/30, 24/30), B (19/30, 7/30, 4/30) 

The value of the game: 𝑉𝑉 = 7×3+9×3+5×24
30

= 168
30

= 28
5

 

Exercise 2.3 (in addition to text book exercises) 
Solve the following game: 

  B 
  1 2 3 

A 
1 1 −1 −1 
2 −1 −1 3 
3 −1 2 −1 

2.9    Method of Linear Programming 
Game theory bears a strong relationship to linear programming, since every 
finite two-person zero-sum game can be expressed as a linear program and 
vice versa. Linear programming is the most general method of solving any  
two-person zero-sum game. Consider the following game: 

  Player B 
  1 2 … 𝒋𝒋 … 𝒏𝒏 

Pl
ay

er
 A

 

1 𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑗𝑗 … 𝑎𝑎1𝑛𝑛 
2 𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑗𝑗 … 𝑎𝑎2𝑛𝑛 
⁞ ⁞ ⁞  ⁞  ⁞ 
𝒊𝒊 𝑎𝑎𝑖𝑖1 𝑎𝑎𝑖𝑖2 … 𝑎𝑎𝑖𝑖𝑖𝑖  … 𝑎𝑎𝑖𝑖𝑖𝑖 
⁞ ⁞ ⁞  ⁞  ⁞ 
𝒎𝒎 𝑎𝑎𝑚𝑚1 𝑎𝑎𝑚𝑚2 … 𝑎𝑎𝑚𝑚𝑚𝑚 … 𝑎𝑎𝑚𝑚𝑚𝑚 

Let 𝑝𝑝1, 𝑝𝑝2, … ,𝑝𝑝𝑚𝑚 and 𝑞𝑞1, 𝑞𝑞2, … , 𝑞𝑞𝑛𝑛 be the probabilities by which A and B 
respectively select their strategies and let V be the value of the game. Consider 
the game from A’s point of view, A is trying to maximize V, that is:  
𝑎𝑎11𝑝𝑝1 + 𝑎𝑎21𝑝𝑝2 + ⋯+ 𝑎𝑎𝑚𝑚1𝑝𝑝𝑚𝑚 ≥ 𝑉𝑉  
𝑎𝑎12𝑝𝑝1 + 𝑎𝑎22𝑝𝑝2 + ⋯+ 𝑎𝑎𝑚𝑚2𝑝𝑝𝑚𝑚 ≥ 𝑉𝑉  
⁞ 
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𝑎𝑎1𝑛𝑛𝑝𝑝1 + 𝑎𝑎2𝑛𝑛𝑝𝑝2 + ⋯+ 𝑎𝑎𝑚𝑚𝑚𝑚𝑝𝑝𝑚𝑚 ≥ 𝑉𝑉  
𝑝𝑝1 + 𝑝𝑝2 + ⋯+ 𝑝𝑝𝑚𝑚 = 1  
𝑝𝑝𝑖𝑖 ≥ 0       𝑖𝑖 = 1,2, … ,𝑚𝑚  
Since 𝑉𝑉 > 0, then divide by V, the above system will be: 
𝑎𝑎11

𝑝𝑝1
𝑉𝑉

+ 𝑎𝑎21
𝑝𝑝2
𝑉𝑉

+ ⋯+ 𝑎𝑎𝑚𝑚1
𝑝𝑝𝑚𝑚
𝑉𝑉
≥ 1  

𝑎𝑎12
𝑝𝑝1
𝑉𝑉

+ 𝑎𝑎22
𝑝𝑝2
𝑉𝑉

+ ⋯+ 𝑎𝑎𝑚𝑚2
𝑝𝑝𝑚𝑚
𝑉𝑉
≥ 1  

⁞ 
𝑎𝑎1𝑛𝑛

𝑝𝑝1
𝑉𝑉

+ 𝑎𝑎2𝑛𝑛
𝑝𝑝2
𝑉𝑉

+ ⋯+ 𝑎𝑎𝑚𝑚𝑚𝑚
𝑝𝑝𝑚𝑚
𝑉𝑉
≥ 1  

𝑝𝑝1
𝑉𝑉

+ 𝑝𝑝2
𝑉𝑉

+ ⋯+ 𝑝𝑝𝑚𝑚
𝑉𝑉

= 1
𝑉𝑉

  
𝑝𝑝𝑖𝑖
𝑉𝑉
≥ 0       𝑖𝑖 = 1,2, … ,𝑚𝑚  

Let 𝑥𝑥𝑖𝑖 = 𝑝𝑝𝑖𝑖
𝑉𝑉

, 𝑖𝑖 = 1,2, … ,𝑚𝑚. Since A is trying to maximize V, i.e. minimize 1/V, 

then let 𝑍𝑍 = 1
𝑉𝑉

= 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑚𝑚  , the LPP will be: 

𝑚𝑚𝑚𝑚𝑚𝑚          𝑍𝑍 = 𝑥𝑥1 + 𝑥𝑥2 + ⋯+ 𝑥𝑥𝑚𝑚  
S.t.          𝑎𝑎11𝑥𝑥1 + 𝑎𝑎21𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚1𝑥𝑥𝑚𝑚 ≥ 1 
                𝑎𝑎12𝑥𝑥1 + 𝑎𝑎22𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚2𝑥𝑥𝑚𝑚 ≥ 1  
                   ⁞ 
                𝑎𝑎1𝑛𝑛𝑥𝑥1 + 𝑎𝑎2𝑛𝑛𝑥𝑥2 + ⋯+ 𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥𝑚𝑚 ≥ 1  
                 𝑥𝑥𝑖𝑖 ≥ 0       𝑖𝑖 = 1,2, … ,𝑚𝑚  
In a similar way, we can write the LP model for the player B, which is, in fact, 
the dual of the LP model for player A. That is: 
𝑚𝑚𝑚𝑚𝑚𝑚          𝑊𝑊 = 𝑦𝑦1 + 𝑦𝑦2 + ⋯+ 𝑦𝑦𝑛𝑛  
S.t.          𝑎𝑎11𝑦𝑦1 + 𝑎𝑎12𝑦𝑦2 + ⋯+ 𝑎𝑎1𝑛𝑛𝑦𝑦𝑛𝑛 ≤ 1 
                𝑎𝑎21𝑦𝑦1 + 𝑎𝑎22𝑦𝑦2 + ⋯+ 𝑎𝑎2𝑛𝑛𝑦𝑦𝑛𝑛 ≤ 1  
                   ⁞ 
                𝑎𝑎𝑚𝑚1𝑦𝑦1 + 𝑎𝑎𝑚𝑚2𝑦𝑦2 + ⋯+ 𝑎𝑎𝑚𝑚𝑚𝑚𝑦𝑦𝑛𝑛 ≤ 1  
                 𝑦𝑦𝑗𝑗 ≥ 0       𝑗𝑗 = 1,2, … ,𝑛𝑛      ( where 𝑦𝑦𝑗𝑗 = 𝑞𝑞𝑗𝑗

𝑉𝑉
, 𝑗𝑗 = 1,2, … ,𝑛𝑛) 

By the duality principal, the optimal solution of one problem automatically 
yields the optimal solution of the other. 
Example (2.15): 
Use linear programming to solve the following game: 
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  B 
  1 2 3 

A 
1 −1 1 1 
2 2 −2 2 
3 3 3 −3 

Solution: 
  B  
  1 2 3 min 

A 
1 −1 1 1 −1 
2 2 −2 2 −2 
3 3 3 −3 −3 

 max 3 3 2  
There is no saddle point , −1 ≤ 𝑉𝑉 ≤ 2, and the game cannot be reduced to a 
smaller game. Player A’s linear program: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑍𝑍 = 𝑥𝑥1 + 𝑥𝑥2 + 𝑥𝑥3  
S.t.        −𝑥𝑥1 + 2𝑥𝑥2 + 3𝑥𝑥3 ≥ 1 
                 𝑥𝑥1 − 2𝑥𝑥2 + 3𝑥𝑥3 ≥ 1  
                 𝑥𝑥1 + 2𝑥𝑥2 − 3𝑥𝑥3 ≥ 1  
                 𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3 ≥ 0  
The dual of A’s LP; which is B’s linear program is: 
𝑚𝑚𝑚𝑚𝑚𝑚       𝑊𝑊 = 𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3  
S.t.          −𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3 ≤ 1 
                 2𝑦𝑦1 − 2𝑦𝑦2 + 2𝑦𝑦3 ≤ 1  
                 3𝑦𝑦1 + 3𝑦𝑦2 − 3𝑦𝑦3 ≤ 1  
                 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3 ≥ 0  
The standard form of the last LPP (with modification in the objective function) 
is: 
𝑚𝑚𝑚𝑚𝑚𝑚        𝑊𝑊− 𝑦𝑦1 − 𝑦𝑦2 − 𝑦𝑦3 = 0  
S.t.          −𝑦𝑦1 + 𝑦𝑦2 + 𝑦𝑦3 + 𝑠𝑠1 = 1 
                 2𝑦𝑦1 − 2𝑦𝑦2 + 2𝑦𝑦3 + 𝑠𝑠2 = 1  
                 3𝑦𝑦1 + 3𝑦𝑦2 − 3𝑦𝑦3 + 𝑠𝑠3 = 1  
                 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 ≥ 0  
Let 𝑦𝑦1 = 𝑦𝑦2 = 𝑦𝑦3 = 0, then 𝑠𝑠1 = 𝑠𝑠2 = 𝑠𝑠3 = 1 
Basic Var.’s 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  

𝒔𝒔𝟏𝟏 −1 1 1 1 0 0 1  
𝒔𝒔𝟐𝟐 2 −2 2 0 1 0 1 1/2 
𝒔𝒔𝟑𝟑 3 3 −3 0 0 1 1 1/3 
W −1 −1 −1 0 0 0 0  
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Basic Var.’s 𝒚𝒚𝟏𝟏 𝒚𝒚𝟐𝟐 𝒚𝒚𝟑𝟑 𝒔𝒔𝟏𝟏 𝒔𝒔𝟐𝟐 𝒔𝒔𝟑𝟑 Solution  
𝒔𝒔𝟏𝟏 0 2 0 1 0 1/3 4/3  
𝒔𝒔𝟐𝟐 0 −4 4 0 1 −2/3 1/3  
𝒚𝒚𝟏𝟏 1 1 −1 0 0 1/3 1/3  
W 0 0 −2 0 0 1/3 1/3  
𝒔𝒔𝟏𝟏 0 2 0 1 0 1/3 4/3  
𝒚𝒚𝟑𝟑 0 −1 1 0 1/4 −1/6 1/12  
𝒚𝒚𝟏𝟏 1 0 0 0 1/4 1/6 5/12  
W 0 −2 0 0 1/2 0 1/2  
𝒚𝒚𝟐𝟐 0 1 0 1/2 0 1/6 2/3  
𝒚𝒚𝟑𝟑 0 0 1 1/2 1/4 0 3/4  
𝒚𝒚𝟏𝟏 1 0 0 0 1/4 1/6 5/12  
W 0 0 0 1 1/2 1/3 11/6  

⇒𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑍𝑍𝑚𝑚𝑚𝑚𝑚𝑚 = 11
6
⇒ 𝑉𝑉 = 6

11
. 𝑥𝑥1 = 1, 𝑥𝑥2 = 1

2
, 𝑥𝑥3 = 1

3
. Since 𝑝𝑝𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑉𝑉, 𝑖𝑖 =

1,2,3, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒: 𝑝𝑝1 = 𝑥𝑥1𝑉𝑉 = 1 ∗ 6
11

= 6
11

,𝑝𝑝2 = 𝑥𝑥2𝑉𝑉 = 1
2
∗ 6
11

= 3
11

,𝑝𝑝3 = 𝑥𝑥3𝑉𝑉 = 1
3
∗

6
11

= 2
11

 . 

𝑦𝑦1 = 5
12

,𝑦𝑦2 = 2
3

,𝑦𝑦3 = 3
4

. Since 𝑞𝑞𝑗𝑗 = 𝑦𝑦𝑗𝑗𝑉𝑉, 𝑗𝑗 = 1,2,3, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒: 𝑞𝑞1 = 𝑦𝑦1𝑉𝑉 = 5
12
∗ 6
11

=
5
22

, 𝑞𝑞2 = 𝑦𝑦2𝑉𝑉 = 2
3
∗ 6
11

= 8
22

, 𝑞𝑞3 = 𝑦𝑦3𝑉𝑉 = 3
4
∗ 6
11

= 9
22

 . 

∴ The optimal strategy for player A: ( 6/11, 3/11, 2/11) 
The optimal strategy for player B: ( 5/22, 8/22, 9/22) 
The value of the game: V=6/11 

Exercise 2.4 (in addition to text book exercises) 
Solve the following games by linear programming: 

  B 
  1 2 3 

A 
1 0 2 2 
2 3 −1 3 
3 4 4 −2 

 
  B 
  1 2 3 4 

A 

1 3 −2 1 4 
2 2 3 −5 0 
3 −1 2 −2 2 
4 −3 −5 4 1 

 




