تجربة ()

ممانعة ملف ومتسع ومقاومة

الأجهزة المستخدمة:

مصدر للتيار المتناوب متغير التردد (مذبذب), فولتميتر (),أميتر (),ملف ,متسع,مقاومة,أسلاك توصيل .

النظرية:

في دوائر التيار المستمر () تكون المقاومة هي ثابت التناسب بين فرق الجهد والتيار وتعطى بالعلاقة:

$$I = \frac{V}{R}$$

أما في دوائر التيار المتناوب فأن الممانعة هي ثابت التناسب بين فرق الجهد والتيار وتعطى بالعلاقة

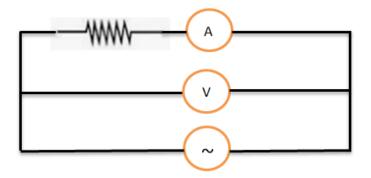
$$Z = \frac{V}{I}$$

وتكون الممانعة () لدائرة توالي تضم ملف ومتسع ومقاومة ومذبذب بالشكل التالي

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

حيث ان

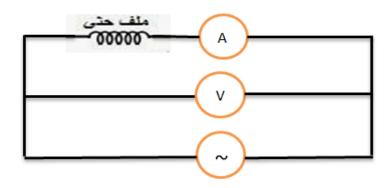
$$X_L = 2\pi f L$$
.


$$X_C = \frac{1}{2\pi f C}.$$

حيث أن (),()هما ممانعة الملف والمتسع على التوالي ,() معامل الحث للملف ,() سعة المتسع وان () تردد المصدر واضح من العلاقتين الاخيرتين ان كل من ممانعة المصدر والمتسع تتغيران تبعا لتردد المصدر .

طريقة العمل

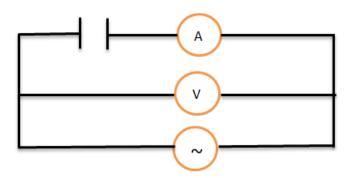
اولا: تعيين ممانعة مقاومة صرفة.


1- أربط الدائرة الكهربائية كما في الشكل أدناه

- 2- غير تردد المذبذب كما محدد لك.
- 3- ثبت قيمة الفولتية لقراءة الفولتميتر لكل قيمة من قيم التردد.
 - 4- سجل قيم التيار المناظرة لكل قيمة من قيم التردد.
- 5- ارسم تخطيطا بيانيا بين قيم ممانعة المقاومة وقيم التردد, ناقش الرسم البياني.

ثانيا: تعيين ممانعة الملف

1- اربط الدائرة الكهرائية كما في الشكل ادناه.


- 2- كرر الخطوات 2,3,4 التي اجريتها في الجزء الاول.
- 3- ارسم تخطيطا بيانيا بين قيم ممانعة الملف وقيم التردد, أحسب ميل الخط المستقيم حيث ان

$$Slope = \frac{Zl}{f} = 2\pi l$$

ومنه جد قيمة الحث الذاتي للملف.

ثالثا: تعيين ممانعة متسع.

1- اربط الدائرة الكهرائية كما في الشكل ادناه.

2- كرر الخطوات 2,3,4 التي اجريتها في الجزء الاول.

3- ارسم تخطيطا بيانيا بين قيم ممانعة المتسع ومقلوب قيم التردد, أحسب ميل الخط المستقيم حيث ان

$$Slope = \frac{Zc}{1/f} = \frac{1}{2\pi C}$$

ومنه نحسب قيمة سعة المتسعة