الفصل الأول

Concents
Chapter one - Rings

Rings (Definition - Example and general properties of rings).

Direct sum of rings and some remarks.

Integral domain - Division ring - Field - Boolean rings Center of a ring.

Chapter two _ Subrings

Subrings (Definition - Characterization of subring - Examples).

some operations on subrings_ Subfields (Definition and examples).

Chapter three_ Ideals

Ideals (Definitions and examples) - Operations on ideals (addition of ideal, multiplication of ideals, intersection of ideal, union of ideal). Finitely generated ideal - Principle ideal ring - finitely generated ring - rings as direct sum of ideals.

Chapter four - factor ring

Factor ring (definition and examples) - some relationships between a ring R and its factor ring.

Chapter five - Ring homomorphism

Ring homomorphism (definition and examples).

- Kernel and image of ring homomorphism - some basic properties of ring homomorphism - Fundamental. theorems of ring homomorphism - Embedding of ring and theorem of embedding.

chapter six - Cextain special types of ideals

Certain special types of ideals: maximal ideals, prime ideal, semiprime ideal, Primary ideal and vadical of ideals (definitions and example and basic properties)

chapter seven - (polynomial rings).

polynomial ring (definition and examples, some relationships between a ring R and polynomial ring over R) - degree of polynomial with some theorems related with this Concept. Division Algorithm - factor theorem - remainder theorem - irreducible polynomial - polynomial ring over field (FCXI, where F is a field). The quotient of polynomial ring over field.

Chapter eight - Extension of fields

Extension of fields (definitions) - some example to Calculate extension field of Certain field.

· Chapter nine - Modules

. Modules - Submodules - factor modules - homomorphism
of Modules.

References: Jahall

1. Introduction to abstract and linear algebra by David. M. Burton.

2- عقدمة في الحبر المجرد: تأليف دلك سلمان محمود و د محمد عسر الرزات

3- ملزمة نغرية الحلقات: تأليق درياس الهاشمي درياس الهاشمي

Definition

(chapter one)

let R be a non-empty set and let + , be two binary operations on R. Then (R,+,.) is a ring if:

1. (R,+) is an abelain group, that is

a. + is closed on R

b. + is associative

C. VaER, 3 on element OER s.t. a+0 = a,

O is Called the zero element.

d. ∀a∈R, ∃_a∈R s.t. a+ (-a) = 0, -a

is Called the additive inverse of a.

e. + is Commutative.

2. (a.b).c = a.(b.c) $\forall a,b \in R$ 3. a.(b+c) = a.b+a.c 9 (b+c).a = b.a+C.a $\forall a,b,c \in R$.

Examples

1. (R,+,,), (Q,+,,), (Z,+,,), (I,+,,) axe xings

2. ((-1,1), + . .) is not ring , for example

0.7 \((-1) 1) \(\frac{1}{-1} \) but 0.7 + 0.7 = 1.4 \(\psi \)

3. (Ze,+,.) be a ring, where Ze= [x: x=2k for]

4. let n be a fixed positive integer and n # 1.

(chapter one) Definition let R be a non-empty set and let + , be two binary operations on R. Then (R,+,.) is a ring if: 1. (R, +) is an abelain group, that is a. + is closed on R b. + is associative C. YaeR, 3 an element OER s.t. a+0=a, O is Called the zero element. d. VaeR, 3-a eR st. a+ (-a) = 0, -a is Called the additive inverse of a. e. + is Commutative. 2. (a.b). c = a. (b.c) - Va, b ∈ R 3.a(b+c) = a.b + a.c , (b+c).a = b.a+ C.a ¥a,b,c∈R. Examples 1. (R,+,.), (Q,+,.), (Z,+,.) o (T,+,.) are kings 2. ((-1,1), +,.) is not ring, for example , but 0.7+0.7=1.4 ¢ 3. (Ze,+,.) be a ring, where Ze= [x:x=2k for] 4. let n be a fixed positive integer and n #1.

	Ŭ .	
	A.In = In . A = A \forall A \in M	
	(M +1.) is a ring with unity , but (M +1.)	
¥	is not Comm. ingeneral.	_
	3. (Ze++1.) is Comm. ring without identity	_
'1	4. let X be a non-empty set. Then (P(X), D, D) is a ring, where ADB = (AUB)-(ADB) = (A-B) U(B-A). This ring is Comm. with identity X. For example:	-
-	let x={1,23. Then P(x)={0,{1], {2], x}}. A is closed on P(x) and A is Comm- and associa.	
	Ø = identity with respect to A and every element in P(x) has inverse also A is associative, then (P(x) = A) is Comm. gp.	_
	Now, A is asson and A distributed over A.	_
	Therefore (PCX), D, N) is a Comm. ring with identity	- - :
IS.	X. [since, XN[1]=[1], XN[2]=[2], XNØ=Ø	<u>}</u>
	5. let Z[√3] = [a+b√3: a,b ∈ Z]. Define +,	-
•	$(a+b\sqrt{3})+(c+d\sqrt{3})=(a+c)+(b+d)\sqrt{3}$	_
	(a+b/3)-(c+d/3)=(ac+3bd)+(bc+ad)/3	- ,
ı		

	-3-	
	A-In=In-A=A VAEM	
	is (Meto) is a ring with unity , but (Meto)	=
	is not Comm. ingeneral.	
	3. (Zes +) is Comm. ring without identity	
*	4. let X be a non-empty set. Then (P(x), D, N)	_
	4. let X be a non-empty set. Then (P(x), D, N) is a ring, where ADB = (AVB)-(ANB) = (A-B) U(B-A).	_
	This xing is Comm. with identity X. For example:	
	let x={1,2}. Then P(x)={0,{1], {2}, x}	
*	Ø = identity with respect to A and every element	
`	O = identity with respect to D and every element in P(x) has inverse also D is associative, then (P(x), D) is Comm. gp.	
06	Now, A is a soon and A distributed over A.	*** *** **
	Therefore (P(x), D, N) is a Comm. ring with identity	
	X. [since, XN[1]=[1], XN[2]=[2], XNQ=0	<u>,}</u>
	and X1)X = X	
	5. let Z[13] = [a+b\s : a,b ∈ Z]. Define + , on Z[13] by	
	$(a+b\sqrt{3})+(c+d\sqrt{3})=(a+c)+(b+d)\sqrt{3}$	
	(a+b13)-(c+d13)-(ac+3bd)+(bc+ad)/3	
The same		

1	-4 -	
	Then (C[0,1],,) is a Common ring with whity I (x) [identity function].	
-		
	8. let Zn= {ō, T, 2, , , n-i}. Then (Zn, m-n) is Comm. ring with identity 1	
3		
	special Case: (Z4, 4, 4) is Comm. ring with identity 1.	
		·
-	Properties of Rings milable chalan	·
	let (Ross.) be a xing. Then for all above	
	1. a.o = 0 = 0.a	
:« .:	2. $(-a)-b = -(a-b) = a - (-b)$	
	$3 \cdot -(-a) = a$	
	4. (-a). (-b) = a.b	
	$6. a_{1}(b-c) = a_{1}b - b_{1}c$	
	7. (a.b). C = a.c - b.c	
	8. APR has unity 1, then	 *
	$(i) (-1) \alpha = -\alpha$	
	$\frac{(\lambda\lambda)^{2}(-1)(-1)}{(-1)} = 1$	
	Para Par	
	11007-3	
	1. To prove aid = 0	
	$a_{0} = a_{0} (0+0) = a_{0} + a_{0}$	
4! Ex	a.o. a.o = a.o	
	0 = Q.O.	

I	- 5	
	unity (1,1)	_
		_
	3. AP rings (Roto) (Roto) have unities 1,1	-
*	and a ER's b ER' such that a is an invertible in RxR' and (a', b') = (a, b) -1.	-
		=
-	Example:	
		-
	let Z2 x Z3 = {(0,0), (0,1), (0,2), (1,0), (1,1), (1,2)}	_
	and $(\bar{a}, \bar{b}) \oplus (\bar{c}, \bar{d}) = (\bar{a}, \bar{c}, \bar{b}, \bar{d})$	
	and $(\bar{a}, \bar{b}) \oplus (\bar{c}, \bar{d}) = (\bar{a}_{\downarrow}\bar{c}, \bar{b}_{\downarrow}\bar{d})$ $(\bar{a}, \bar{b}) \otimes (\bar{c}, \bar{d}) = (\bar{a}_{\downarrow}\bar{c}, \bar{b}_{\downarrow}\bar{d})$	_
<u> </u>		_
v	Then (Z2 x Z3) 0 00) 15 a xing.	_
TE.		_
	(1,1) (1,1) (1,0) (1,0) (1,0) (1,0)	=
	(قَوقَ) (قَرقَ) (قَرقَ) (قَرقَ) (قَرقَ) (قَرقَ) (قَرقَ)	=
	اً وقولًا (قولًا) (قولًا) (قولًا) (قولًا) (قولًا) (قولًا) (قولًا) (ا وقا)	=
	(آوآ) (قَوآ) (قَوآ) (آوه) (قوق) (قَوق) (قَوق) (قَوق)	-
:	(((((((((((((((((((
	(((((((((((((((((((_
	(1,2) (1,0) (1,1) (1,1) (0,2) (0,1)	_
	المنظائل المحمد و و و و و المنظائل المحمد و و و و و و و و و و و و و و و و و و و	-
	_(0,0) = (0,0)	_
	_(0,0) = (0,0)	_
	$-(\overline{0},\overline{1}) = (\overline{0},\overline{2}) - (\overline{1},\overline{0}) = (\overline{1},\overline{2}) - (\overline{1},\overline{2}) - (\overline{1},\overline{2}) - (\overline{1},\overline{2})$	_
		-
	$-(\overline{l}_{0}\overline{l}) = (\overline{l}_{0}\overline{l}) - (\overline{l}_{0}\overline{l}) = (\overline{l}_{0}\overline{l}) = (\overline{l}_{0}\overline{l})$	=
	- (آوآ) = (آوآ)	_
		_
	· ·	
1		

Définition: let (Ro+or) be a ring and
a,b \in R, a \to b \to . qf a.b = 0, then a is Called left zero divisor and b is Called right zero divisor.
In Comm. ring, every left Zero divisor is right Zero divisor and Conversely.
Examples :
1. In (Z3, +3 +3) , 0, T, 2 are not Zero divisors
9. In (Z4+++++), 0, To 3 are not zero divisors,
but 2 is Zero divisor, (since 2.9 = 0).
3. In (76, +, s), 0, T, 5 are not Zero divisors.
But 2,3,4 ave Zero divisors.
Remark: - let (R++++) be a Comm. ring with
unity 1. 98 a \(\alpha \) a \(\alpha \) a is an invertible element, then a is not Zero divisor.
That is, a is invertible element a is not Zero divisor
Proof: gf a ER, a to and a is on invertible element.
$\exists \vec{a} \in R \vec{s}.t. \vec{a}.\vec{a} = \vec{a}.\vec{a} = 1$
Class

1	
11	-7-
	Suppose a is a Zero divisor.
-	Then I beR, b+0 s.t. a.b=0
*	$\bar{a} \cdot (a.b) = \bar{a} \cdot o \implies (\bar{a} \cdot a) \cdot b = o$
	$\Rightarrow 1.b = 0 \Rightarrow b = 0$ C! (since $b \neq 0$).
	Thus a is not Zero divisor.
	_ والعلادِّة اعلاه ما افته الأع
	a is zero divisor -> a is not invertible.
	Now, we have the following example:
	Example :
	Consider the direct sum of (R, 100) with
	(a,0) 0 (0,b) = (0,0) Vato, Vb+
	Then all element of the firm (a,0), (o,b) where a +0, b +0 ove Zero divisors.
-	Theorem
	- let R be a Commer vina. There
	K has no Zero divisor +> VacRsato,
	o.b = a.c which implies b = C. The Gancellation
	proof: - ap R has no Zein divisor respect to
·	- let a.b = a.c and a +0 multiplication -
*	a.b+ (-ac) = ac+(-ac) operation
-	$a \cdot b - ac = a \Rightarrow a(b - c) - a$

Theorem: (Zn, thom) is an integral domain (>) Proof : Af (Zno 100) is an integral domain To prove n is a prime number suppose n is not prime number $n \in \mathbb{Z}_+$ $n \in \mathbb{Z}_+$ $n \in \mathbb{Z}_+$ 1 < m<n ⇒ 0 = m. K and m. K are no Zero element. Then m, K are Zero divisors in Zn.

which is Contradiction Since Zn is an integral domain.

Thus n is prime number. To prove (Zn, +n, n) is an integral domain,

We must prove that Zn has no zero divisor

suppose Zn has Zero divisor

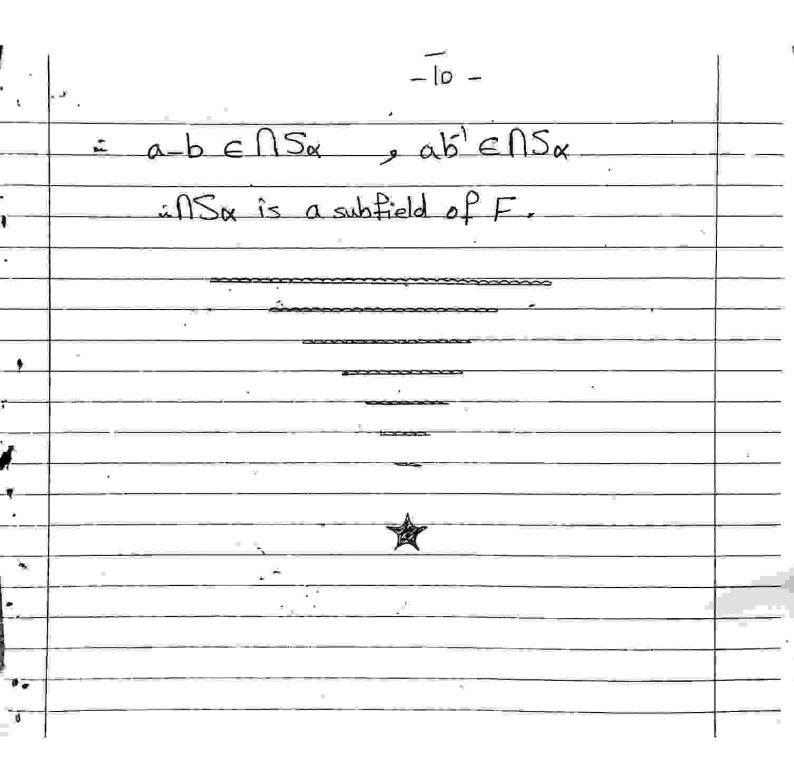
Im, K & Zn St. m + 5 and K + 5, m.K = 0 = sivel garel > mik=nir for some r∈Z+ => n/mk. Then n/m or n/k (since n is) Af n/m => m = multiply of n => m = o c! Af n/k => K = multiply of n => K = o c! Thus In has no Zero divisor. Definition:

let (R,+,+) be a comm. ring with unity 1

Then (R,+,+) is called field > VacR, a+o, a

Q[12]={a+b12: a,b < Q}

Class



المرحله الثالثه/قسم الرياضيات الماده الحلقات

الفصل الثاني

Chapter Two