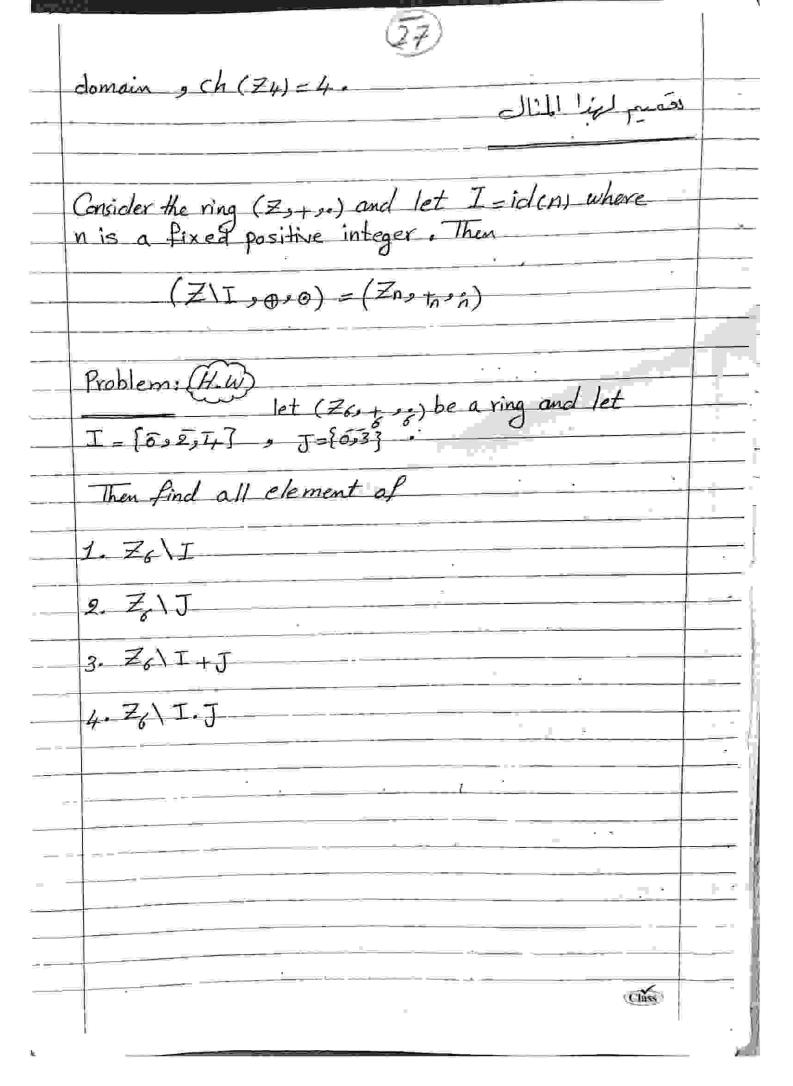
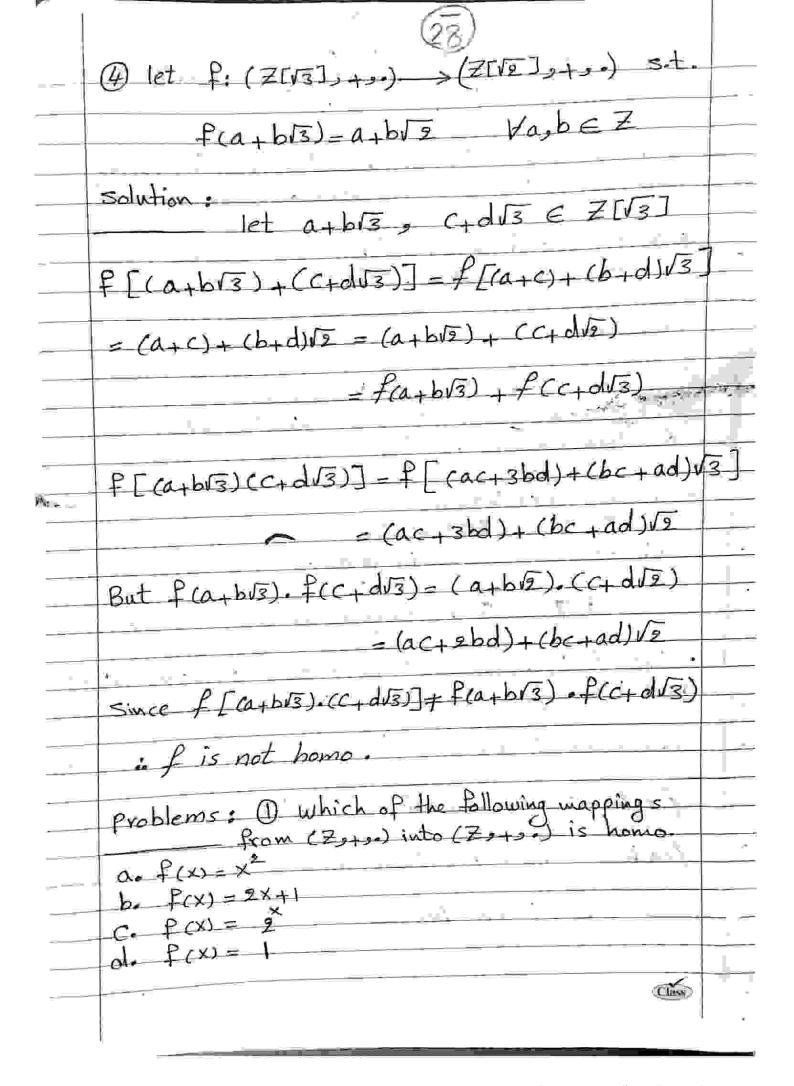
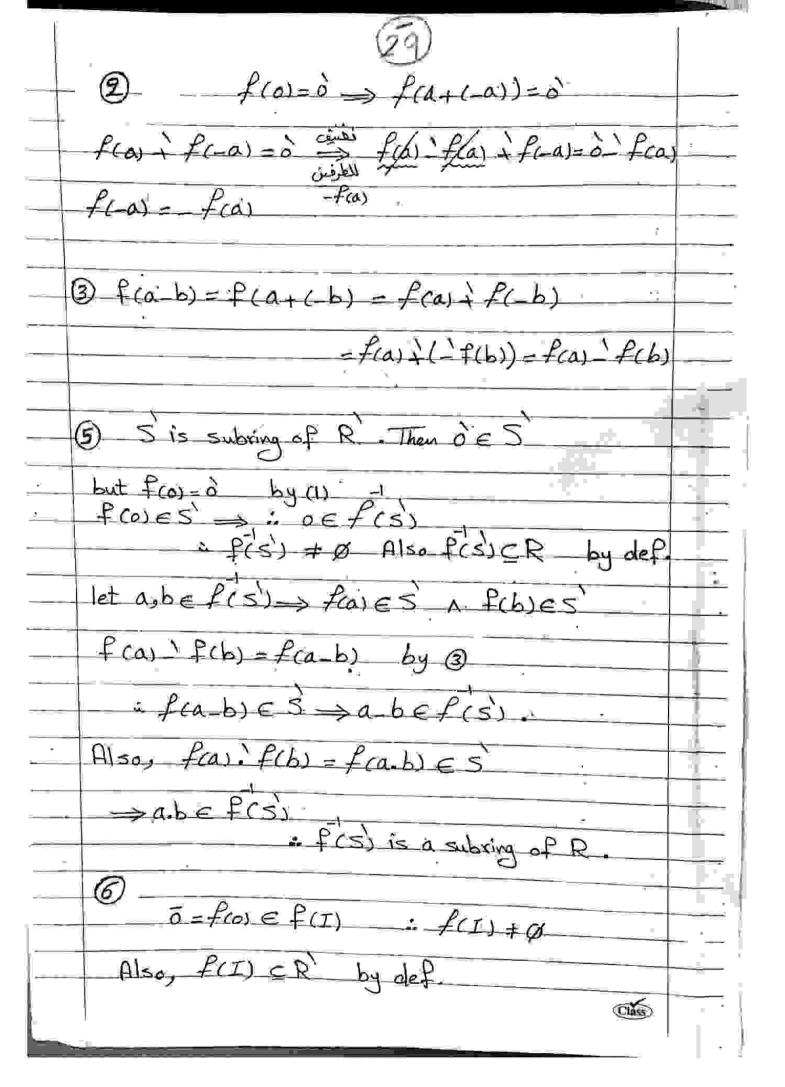
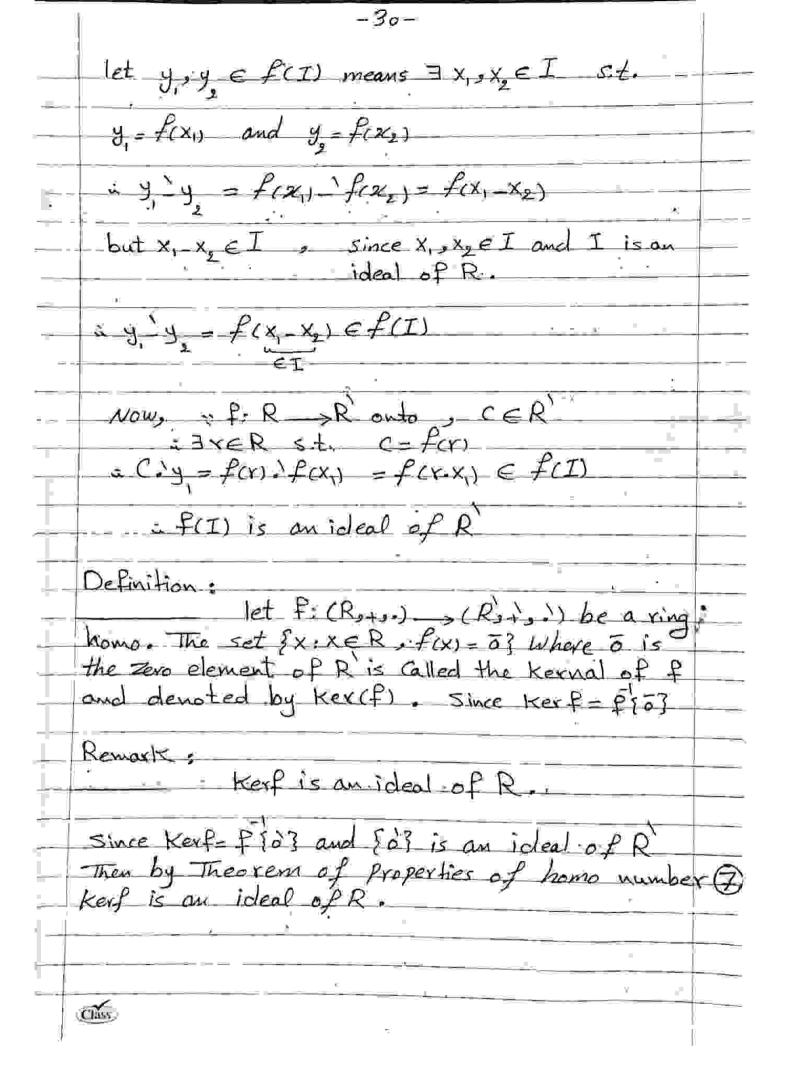


- I ₊ I = {1,3}	
$\overline{Z}_{+}\overline{I}_{-}\overline{I}$ and $\overline{Z}_{+}\overline{I}_{-}\overline{I}_{+}(\overline{Z}_{+}\overline{I})=\overline{I}_{+}\overline{I}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
7+I 0+I T+I 0+I 0+I 0+I	
Notice	
1. Zy has zero divisor 2, but Zyl I has no zero divisor.	
2. Zy is not integral clomain (not field), but Zyl I is a field (and so it is integral clomain) 3. Ch(Zy) = 4	#I
3. $Ch(Z_4) = 4$ 4. $Ch(Z_4 \setminus I) = 2$ (since $(\overline{I} + I) \oplus (\overline{I} + I) = \overline{2} + \overline{I} = \overline{0} + \overline{I}$	<u> </u>
Examples :	<u> </u>
1. $Z_n \setminus \{\bar{o}\} = \{\bar{o}\} - \forall n > 1$ 2. $Z_n \setminus Z_n = Z_n + \forall n > 1$	
3. Consider the ring (Zs+s.) , I = id(4).	
$Z \setminus id(4) = \{a + id(4) : a \in Z\}$	



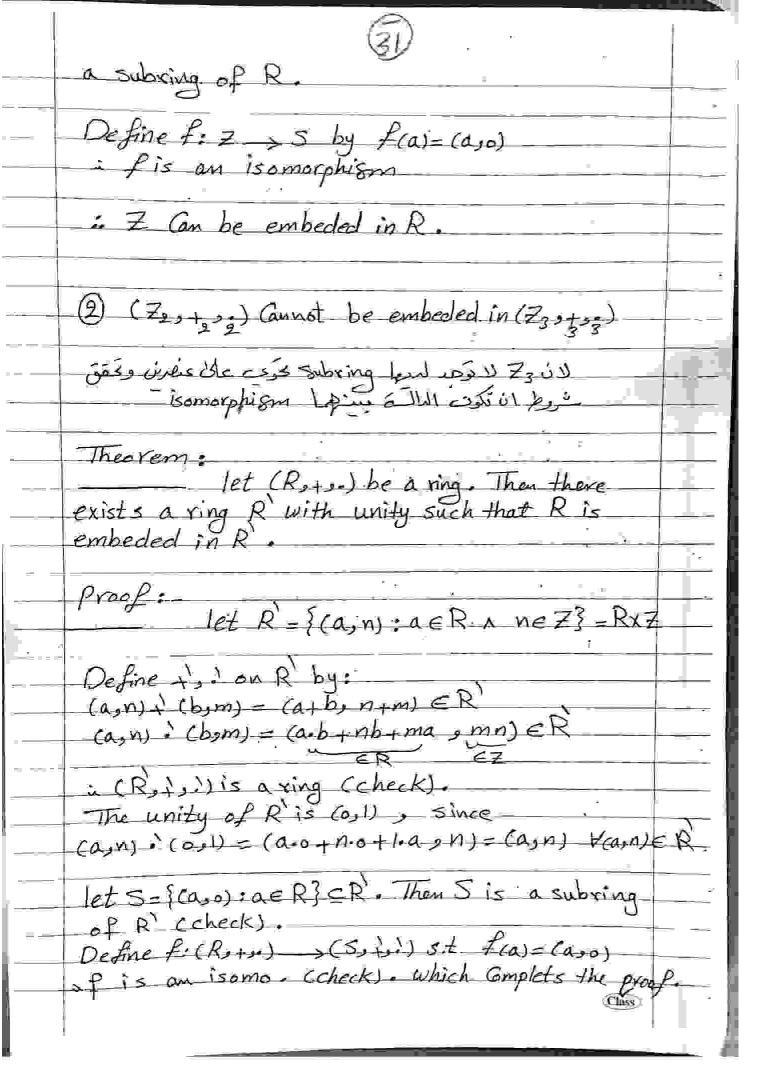






let $f: (R_{2+30}) \rightarrow (R_{2+3})$ be a ring once. Then $Kexf = \{0\} \iff f$ is (1-1). Proof: ->) Suppose that Kerf={0} Now, let $x,y \in R$ and $f(x) = f(y) \Longrightarrow f(x) - f(y) = 0$ $f(x-y)=\delta$ (since f is homo.) $\Rightarrow x-y \in \text{Ker} f=\{0\}$ > x-y. Therefore f is (1-1) let x < Kerf >> f(x)=0 >> f(x)=f(o) $x=0 \implies \ker f = \{0\}$ let f. R. R be homo. and f(x,y)= (x,o) , where R = (7)+,) X (7)+,). Kerf= { (x,4): f(x,y)=(0,0)}= { (x,y): (x,0)=(0,0)} = {(x,y): x=0} = {(0,y): y ∈ Z} Definition: let f: R -> R be a ring homo. (1) f is Called monomorphism (f is (1-1) @ fis Called epimorphism > fis onto

Class

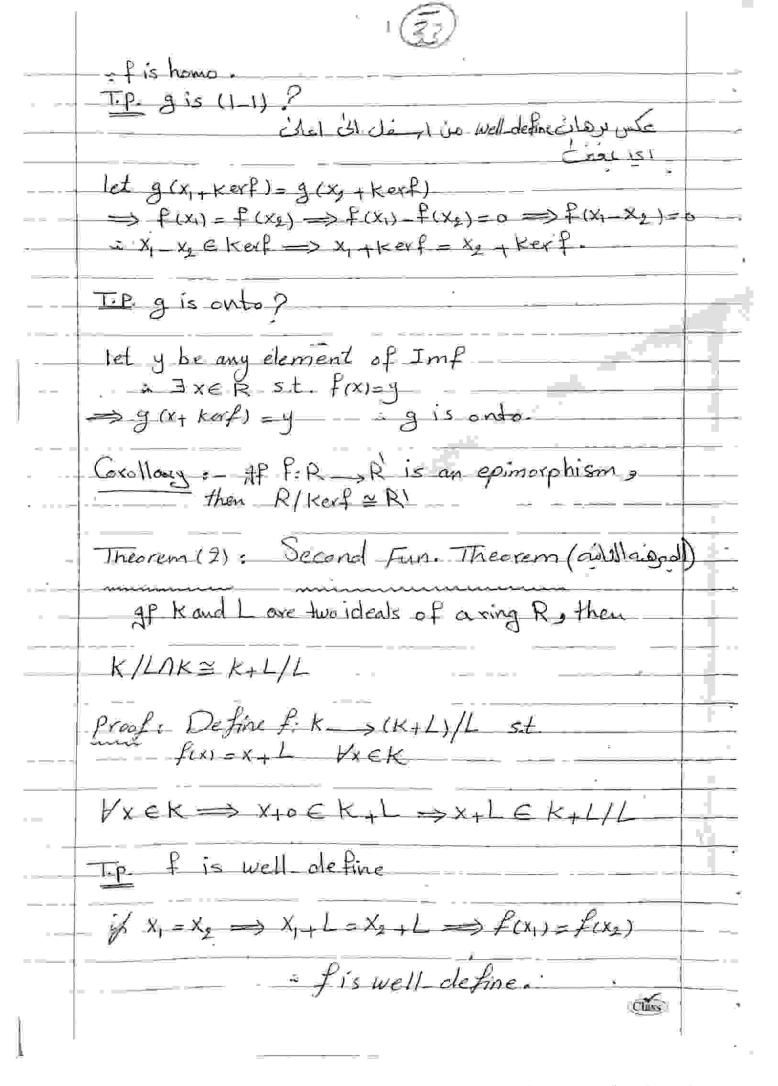


Definition: let (Roya) be a ring , I is an ideal of R, the map, f (Roto) -> (R/Ister) St. fexi=x+I is called the natural mapping. (denoted by Nati) VXER. nat is ring homo , onto. Theorem: let f: (Ro+o) > (Ro+o) be ring homo , onto . gf R is principle ideal ring , then R'is a P.I.R Proof: f: (R,+s.) -> (Ret) be a ring home. onto, and let I be any ideal of R.

To prove that R is a p.I.R, we must prove that

I is a principle ideal of R. I'is an ideal of R' > P(I) is an ideal of R let P(I) = I . But Ris PIR. them I is a P.I. means Back st. I = id(a). we claim that I = id (fca) let ye idefcas) => y=x'. fcas for some reR but f is onto, x'ER', so 3 xER st. x'=f(x) $y = f(x) \cdot f(a) = f(xa) \in f(I)$ " y ∈ f(I) => y ∈ I' => id (f(a)) c Now, To prove I = id(fca) let y ∈ I => y ∈ f(I) since f(I)=I', f is outo and I'ideal of R' -> y=x' f(a) = f(xa) = y cid(F(w). (hiss

-53-
The Fundamental theorems of ring homo.
(للعبوهات الاساسية للنشاكل الخلقي)
Theorem(1): First Rund. theorem (30x1 aio mil)
Af fir > R' is an R-homa. , then R/Kerf = Imf
Proof: Define g: R/kerf > Imf s.t.
$g(x_{+} \ker f) = f(x) \forall x \in \mathbb{R}$
T.P. g is well define?
let X1+ Kerf = X2+ Kerf where X1+ kerf and X2+ kerf ER/kerf X2+ kerf ER/kerf
$\frac{1}{1-\lambda_2} = \frac{1}{1-\lambda_2} = \frac{1}{1-\lambda_2} = 0$
$F(x_1) - f(x_2) = 0 \Rightarrow f(x_1) = F(x_2) \Rightarrow g(x_1 + kerf) + g(x_2 + kerf)$ $= g \text{ is well define}$
T.P. g is homo. ?
let X, { Kerf > X2 + Kerf ∈ R/Kerf
0 g[(x,+kerf) @ (xz+kerf)] = g[(x,+xz) + kerf]
$f(x_1) \oplus f(x_2) = g(x_1 + kerf) \oplus g(x_2 + kerf)$
2 x2-+ Kerf CR/Kerf
g[(x,+ kexf) 0 (x,+ kexf)] = g(x,x,+ kexf) = f(x,x,e) = f(x,y) f(x,e) = g(x,+ kexf) 0 g(x,e+ kexf)



(34)	
T.P. f is home?	
- Xi+k > Xi+k ∈ R/k	
Of[(x,+K)@(x2+K)]=f[(x,+x2)+K]	
$= (x_1 + x_2) + L = (x_1 + L) + (x_2 + L) = f(x_1 + K) + f(x_2 + K)$	
@ F[(x,+k)@(x2+k)]= F[(x,x2)+K]	
= x,x2+L=(x,+L)@(x2+L)=P(x,+K)@P(x2+K).	
Te fis onto?	1
Imf= { f(x+k): xeR3={x+L 1xeR}= R/L	
By theorem (1) => R/K/Kerp= R/L.	 T,
Tp. $\ker f = L/k$ $\ker f = i(x+k) \in R/k : f(x+k) = L$	1,
={(x+k) ∈ R/k x+1 = L}	
={x+k \in R/k : x \in L} = L/K	•
" R/K/1/K = R/L.	
	= ~
Chase	