

جامعة يغداد/كلية التربيه للعلوم الصرفه/ابن الهيئم قسم الرياضيات/المرحله الثالثه

الماده الحلقات

د. ما م + رنسه

الفصل السابع

Chapter Seven

= { f(x) ; f(x) = ao + a(x) + + a.x, do,a, -, an ER or - {f(x):f(x) = 2 aix', aido, yizn} Any fax ES is called polynomail over R. Define Let fix), g(x) ES; f(x)= = pixi, ai ∈ R, ai = a tizn g(x)= = bixi, bick, biso tizm id f (x) . 9(x) = J. CKX CK=0 UK>n+m Ca= aobo CI = aobi + aibo Cz= dobz+aib++aib+ C3 = 0003 + 0,62 + 0,61 + 0,360

X:- Let f(x), g(x) be two polynomailes over Zu where f(x)=3+x, 9(x)=1-x+x2 21 00=3 -, a1=1 , a2=a3==an= 9(x)=1-x+x, b=1-1==1=3 (mod 4), b2= -b3=b4= ----=bn=0 f(x)+9(x)=(a0+b0)+(a+b1)x+(a+b2)x2 = (1+3)+(1+3)7+(0+1)2 - , where Co=0,b0 = 3,1 = 3 P(x)-g(x) = ZCKX $C_1 = a_0b_1 + a_1b_0 = 3 = 3 + 1 = 2 \implies C_1 \times = 2 \times$ C2 = ab2 + a, b, +aba = 3.1 C3 = a.b3 + a,b, + a2b1+a3b0 = 3:0 + 1:1+0:3+0:b. C4 = a0b4 + a1b3 + a2b2 + a3b1 + anbo Since, C5 = G = 0 = f(x) - 3(x) = 3+2x + 2x + 2x + x which is poly. over Z Note :-9P. R is a ring, then S={f(x): f(x) is a poly over R} is denoted by R[x].

- Show that (R[x], +,.) is a ring.
1) + , ore closed on R[x].
2 9 f f(x) = Za, x', g(x) = Zb, x'
t isl
$f(x) + g(x) = \sum_{i=1}^{n} (a_i + b_i) x , t \leq max(n,m)$
$\frac{\pm}{2}(b_{i}+a_{i})\dot{x} = \frac{m}{2}b_{i}\dot{x} + \frac{n}{2}a_{i}\dot{x} = g(x) + f(x)$
i=0
3 + is asso, on R[x].
@ let h(x)=o , h(x) ER[x]
and hex + fex = fex , then hex = additive identity of REX
(5) Af $f(x) = \sum_{i=0}^{N} a_i x^i$, let $(-f)(x) = \sum_{i=0}^{N} (-a_i) x^i$
(B) f(x) + [(-f)(x)] = 0 = h(x)
= -f(x) is the additive inverse of f(x)
asso. on REXI.
: R[x] is a ring.
The state of the s

Remark
@ AP R is Comm ving, then R[x] is comm. xing.
2 gp R has unity 1, then R[x] has unity (Ocx)=1)
Definition:
let $f(x) = \sum_{i=0}^{N} a_i x^i \in R[x]_2$ $f(x) \neq Zero$ poly
an is Called the leading Cofficient
- 98 an # 00 then fix has degree n
- 2f f(x)=a (aER), f(x) is Called Constant poly.
of degree Zero where ato
-9P. f(x)=0, we shall assign no degree for f(x).
Theorem "100 do
let R be an integral domain, foxygoxy non zero poly's in RIXI then: O deg (Foxygox) = deg fox) + deg gox) = n+m
2) either fox + g(x) = 0 or deg (fox) + g(x) < max (deg fox) deg go
proof (1) let $f(x) = a_0 + a_1x + a_2x + \cdots + a_nx$ is non-zero poly.

- an +0 sie degfexin zip int will
let g(x) = bo + b, x + + b, x is a non-text poly.
bm +0, i.e. deg ga = m sip iliy
Notic a = a Vion
bi=o Yi>m
fix g(x) = \(\frac{7}{k-a} \) where C= abo , C= ab, , a, b.
$C_{m+n} = ab + a, b + \cdots + ab + ab + ab + \cdots + ab = \cdots + a$
0° 0° 0" 0"
(m+n = abn +0 (Since a, b = R , a +0, bm+0 and R) has no Zero divisor
Cn+m+1 = ab + ab + ab + ab + ab + ab + ab -
Since Community =0 4521
= deg (fixi-gix) = n+m - deg fixi, deg gixi.
_ Coxollary anii
. If Ris an integral domain, then REXT is an integral domain
Roof
Ris an integral domain -> Ris Comm. ring with unity and R
has no Zero divisor.

Since R is Comm. ring with unity -> R[X] is Comm-ring
with unity
Since R is Comm. ring with unity >> R[X] is Comm-ring with unity. JP Fexy gexx = R[X] , f(x) +0 , g(x) +0
1 38 fex) = 0, to , gex = bo to
Then fox, g(x) = gobo # o since R has no Zero divisor
(2) AP fcx, gcx) are non-zero poly of degree non.
respectively than fixe give is poly of degree (n+m)
and forgot to. Thus REXT has no zero divisor
= R[x] is an integral domain.
Theorem The Division Algorithm .
والمرد من المنسمة
let R be a commit ring with unity and for acx are
non - Tora poly's in RESI such that the leading coficient:
of g(x) is an investible element in R. Then there exists
let R be a comm. xing with unity and fixing (x) are non-zoro poly's in REXI such that the leading coficient of g(x) is an invertible element in R. Then there exists unique poly's f(x), x(x) in R[X] such that
Prvs - 9/xx grxx (xrxx) Whore was
f(x) = q(x) g(x) + x(x) where x(x)=0 or deg x(x) < deg g(x)
000

Example
let f(x)= x +2x+1 , g(x)=4x+1 ∈ Z5[x]
Divide $f(x)$ by $g(x)$. $4x-x+2$ $4x-x+2$ $4x+1$ $5x-2$ $4x+1$ $5x-2$
= f(x) = g(x) (4x-x-2)+(-1)
2 2 2 2 2
- 1/4X - 4X + 2 X + 1
* /2 x * 2 x
3**
73× 72
Coxollary (Remaindersthm)
let R be a comm ring with unity of fix ERIXI a ER. Then II g(x) ERIXI St fex = (x-a) g(x) + f(a)
The season of th
- Proof :-
f(x), (x-a) ER[x], then by Div-Alg, Fl q(x), V(x)
ER[x] S.t. f(x) = (x-a) g(x)+x(x) where x(x)=0 or
deg(x) < deg(x-a) = 1
- * (x) = 0 ox deg x(x) < 1 , then x(x) is Constant poly.
== x(x)=c for some ceR

Proverse as Quarter of the first
ins thus fext = (x - x) q (x) + fca)
Example
Pro = 9 4 5 2 1 6 7 [x7
0=4EZ ioi
$- = 2 \times +5 \times +1 = (\times -4) q(x) + f(x)$
$\frac{1}{2}$ $\frac{4}{5}$ $\frac{2}{5}$ $\frac{1}{5}$ $\frac{1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2×3+5×2+1

LAV V
= 4x ±4
ادّن الباقي مُعلاً هر 5 وهو يقل 5 في 2
Definition
ap Pare RIXI, then
DOER Afcal=0, then a is called a root of fix).
a led a root of fixi.
s. sametal .

2 9 gw = R[x]
fex divide gex (fex)/gex) means 3 Kex EREXI et.
gexi= Kexifexi.
Theorem Factorization theorem
The poly $f(x) \in R[x]$ is division by $(x-a)$ (where $a \in R$) $A = a$ is a root of $f(x)$.
Proof $(x-a)/f(x) \iff f(x)=(x-a) k(x)$ for some $k(x) \in R[X]$ $x=a \forall \delta \forall \delta (x) \in G_{g(x)}$ $\iff f(a)=0 \implies a \text{ is a root of } f(x).$
Example let $f(x) = x^3 + x^2 + 1 \in \mathbb{Z}_3[X]$
I is a root of $f(x)$, Since $f(x) = \frac{3}{1}$, $\frac{1}{3}$, $\frac{1}{3}$
$\begin{array}{c} \times \times + 2 \times + 2 \\ \times -1 \longrightarrow 3 + \times + 1 \\ \hline -1 \longrightarrow 2 \times + 2 \end{array}$
$\frac{2x+1}{-2x+2x} = \int_{(x)-(x-1)(x+2x+2)}^{2x+2}$
24+1
+/x ±2

Examples
$0 \neq (x) = x + 1 \in R[x] $ has no root.
② f(x)=x-4 ∈ Z[x] has two dictinct roots
3 for = x x x = x = x = x = x = x = x = x =
Theorem :- let (R,+,-) be an integral domain and.
f(x) ∈ R[x] be a non-Zero of deg in Then f(x) at most in dictinct roots
proof cipiells it XV is in The proof is by induction
if f(x) = ax, b, a is an invertible element, then
_ba' is a root of fow a since a (-ba'), b=0
ار و یل معامل x من الديم الدولات مكن مير
if $f(x) = ax_+b$, a is an invertible element, then ba'is a root of $f(x) = since a(-ba') + b = o$ inv. os is a value by suppose any poly of deg $(n-1)$
if a is a root of fex, then fex=(x-a)g(x)
Hence deg (g(x)) = n.
$n = \deg f(x) = \deg (x-1) + \deg g(x)$
1." EXAMP
= deg g(x)=n=1. But g(x) has at most (n-1) distinct
= f(x) has at most n distinct roots. g(x)

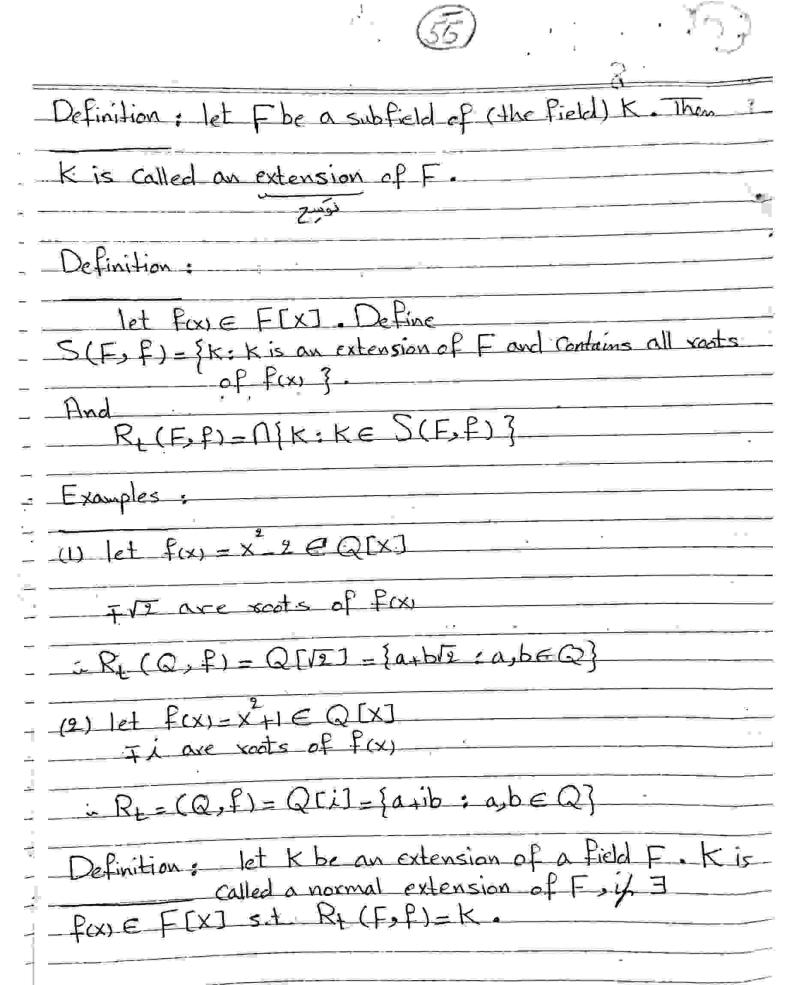
Example s let $f(x) = x + 4x + 4x + 1 \in \mathbb{Z}_5[x]$
O is not root of f(x), since f(0)=1 +0
- Is soot of fixe since fine
2 is not root of fex oise a will a pulling
3 4 4 4 5 5
4 is root of fex
- 1,4 are two root of fox x-1 x + 4x+1- - a dall rish coil - x - x - x - x - x - x - x - x - x -
= f(x) = (x - 1)(x - 4)(5) $= f(x) = (x - 1)(x - 4)(5)$ $= f(x) = (x - 1)(x - 4)(5)$ $= f(x) = (x - 1)(x - 4)(5)$
$x = \int (x) = (x-1)(x+4)$
1 is rest of kexi
$\frac{1}{x_{+}} \frac{1}{4} = K(x) = (x_{-}1)(x_{-}4) = \int_{0}^{\infty} f(x) = (x_{-}1)(x_{-}4)$
$X_{+} \mathcal{U} = K(x) = (X_{-1})(x_{-1}\mathcal{U}) = -\lambda \mathcal{U}_{+}(x_{-1}\mathcal{U}) = -\lambda \mathcal{U}_{+}(x_{-1}\mathcal{U})$
Theorem &
IPF is a field then FIXI is a PID.
Proof Fis field > Fis an integral domain
-> [[x] = =

let I be any ideal in FIXJ. To prove I is P.I. # I= [0] => I is P-I I = 103, we choose apoly PCXI in I, PCXI with lowest deg. We claim that I = id (Pex). To prove that id(P(x)) ⊆ I . For any fix ∈ id (P(x)) ÷ f(x)= k(x)p(x) ∈ I ⇒ id (P(x)) ⊆ I for any gexi∈I. To prove I⊆id (PCX)) then by division Alg. 3 Sixi, rixie FIX] & gixi=Sixi pixi+rixi Where YCX) =0 ox deg YCX) < deg PCX) LYCK) = g(x) - S(x) P(x) => Y(x) & I So, of deg rix < deg Pix , we get rix =0 => g(x) = S(x)p(x) & id(p(x)) I = id (P(x)). Therefore I = id (P(x)) Corollary: R[x], Q[x], Z[x], I [x] are PID. Corollary: tet F be any field. Then any non-trivial ideal in FEXJis prime > 4 is max. proof F is field => FIXI is PID, so a non-trivial ideal in PID is prime = gt is max

-
: Example show that Z[x] is not PID.
let I={a,x,a,x, a,x, a; ∈ Z}
I is not max (problem)
Z[x] is not PID.
Definition Let f(x) be a non-leve and non-constant poly RIXI, f(x) is called reducible, if \(\frac{1}{2}\) g(x), h(x) (non Constant polys) s.t. f(x) = h(x)g(x).
for is called irreducible of it is not reducible.
Example
- O let fex) = x + 4 E R [x] At is irreducible claws
2) let f(x) = x+4 = 75[x] = (x+1)(x+4)
fix) is reducible that
Remark = let F be any field, fix & Fix deg fix =1 Af fix = ax+b, then fix has root (-ba)
Remark. let foxe FIXJ, deg fox, 21-21
f(x) has a root - f(x) is reducible
proof: 9f a is a root of fex
is on fix) median voot chapteliers
2-125 (170)

	(x-a)/f(x) => = g(x) E F[x] s-t. f(x)=g(x)(x-a)
	$= (X-\alpha)/f(\alpha) = 0$
	and deg $g(x) \ge 1 \implies f(x)$ is reducible
art	e Remark.
	fix) has a root, then fix is reducible
	fex) is irrducible => fex) has is a sixter
	Example 5 = $f(x) = x^2 + 1 \in R[x]$ $f(x)$ is irreducible $\implies f(x)$ has no roots
	of a coducible poly- then all
	1 0 1
	Mecessary That Fell 4 2 RIXI Will will a
	Necessary that $f(x)$ has soots distributed as $f(x) = x + 5x + 4 \in \mathbb{R}[x]$ distributed $f(x) = x + 5x + 4 \in \mathbb{R}[x]$ distributed $f(x) = x + 5x + 4 \in \mathbb{R}[x]$ distributed $f(x) = x + 5x + 4 \in \mathbb{R}[x]$ is reducible, since $f(x) = (x + 1)(x + 4)$.
	Par is reducible, since f(x) = (x+1)(x+4).
	But fox) has no root in R because txcR, fox) >4
	$t \in \mathbb{R}$ ct. $f(x) = 0$
	Pold PixiE F[x] deg Pixi- 2;
	Remark, let F be any field, fix E F[x], deg (x)-2;
	or 3. Then for has voot => fox) is reducible.
	oxml
	10000

: () AF deg fox = 3, fox is reducible
= 3 g(x), h(x) of poly's st fex)=g(x)h(x)
3 = deg fox = deg g cx + deg h cx
ideg g(x)=1, deg h(x)=2 or deg g(x)=2, deg h(x)=1
- Case D deg g(x)=1 and deg h(x) = 2
g (x) = ax +b , a +0 Gistal a g (x) has a root, C = ba that is g (c) = 8
Hence Pace = gachace = o. hace = o
is a root of f(x) deplic in Similarly Case (2) o deg f(x)=2 -> deg g(x)=1,
Similarly Case 2 = deg f(x)=2 -> deg g(x)=1 -
deg h(x)=1
Theorem: let F be a field. Then the following are equivalent:
. O Lexi is inducible poly. in FEXI
2) id (fixe) is max. (prime) ideal in F[x]
3) F[x]/id (fox) is a field.
proof (1) => 2) Fis a field => F[x] is a PID

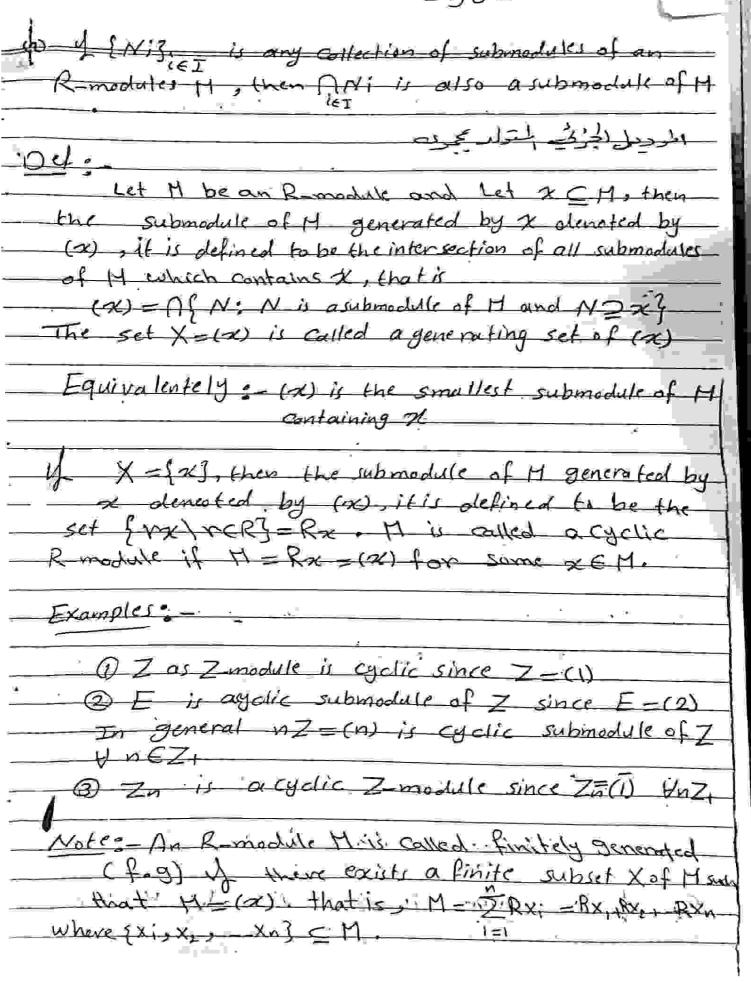

Then any non-trivial ideal in FIXI is max this Prime To prove that I = id (fix) is max. suppose Fideal Jin FIXIST. IS J SFIXI Since F[x] is PID, = 3 g(x) E F[x] s.t. id (gen) = I in id (fix) & id(gin) & FEXI , since fix) & id (fix) : fore id (g(x)) => f(x) = h(x)g(x) h(x)=C +o (Constant) gas=cfas Eid (fax) J=id(g(x)) = id(f(x)) C! Thus has is a poly of deg >1 P(x) = h (x) q(x) Ciolo ale vier line (3) id (fix) is max ideal => F[x]/id(fix) is fix x7/id (P(x)) field => P(x) is irreducible in F[x] suppose fix, is reducible 3 gow, how & FEXT of positive degree st. for= gowho id (fu) & id (g(x)) & F[x] - id (fu) is not max FEX3/id (fax) is not field C!

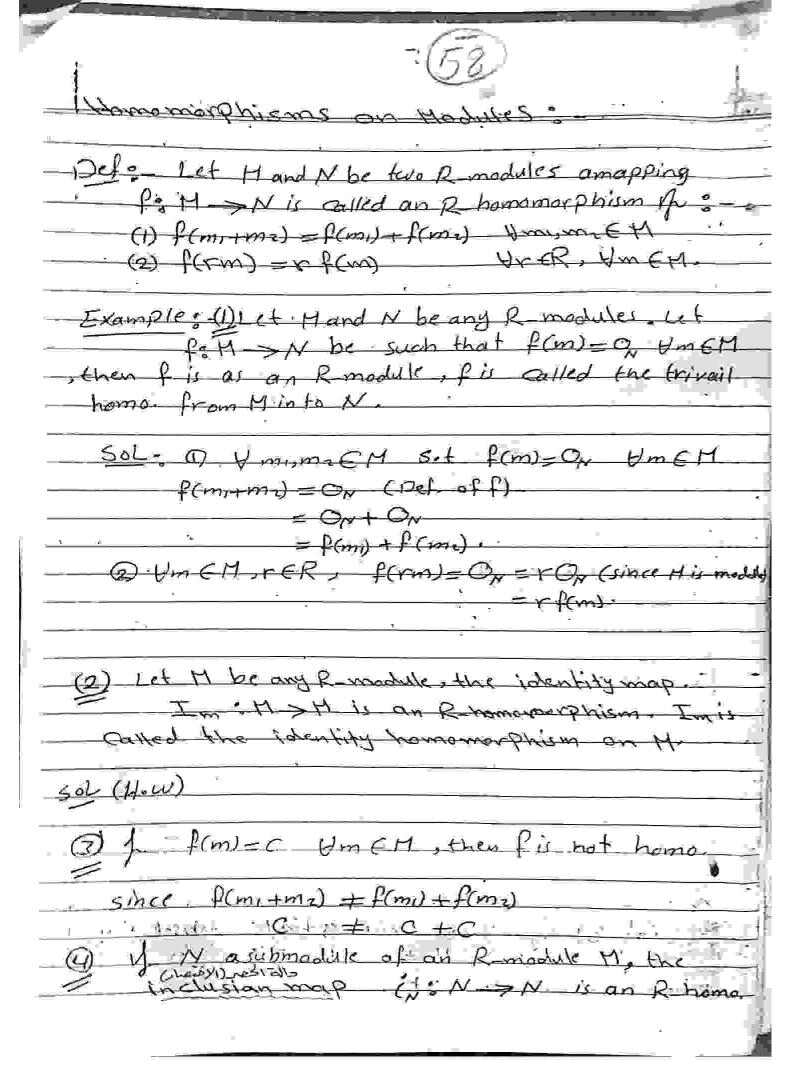
جامعة بغداد/كلية التربيه للعلوم الصرفه/ابن الهيثم قسم الرياضيات/المرحله الثالثه الماده/حلقات

الفصل الثامن و التاسع

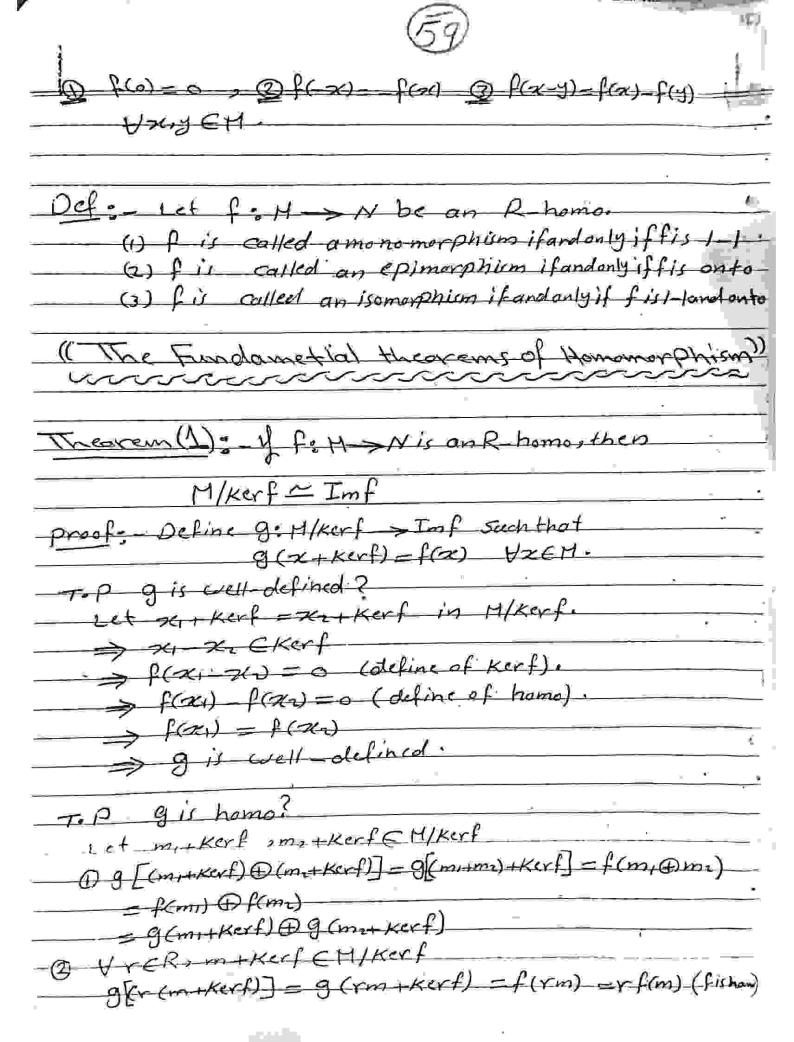
Chapter Eight and Nine

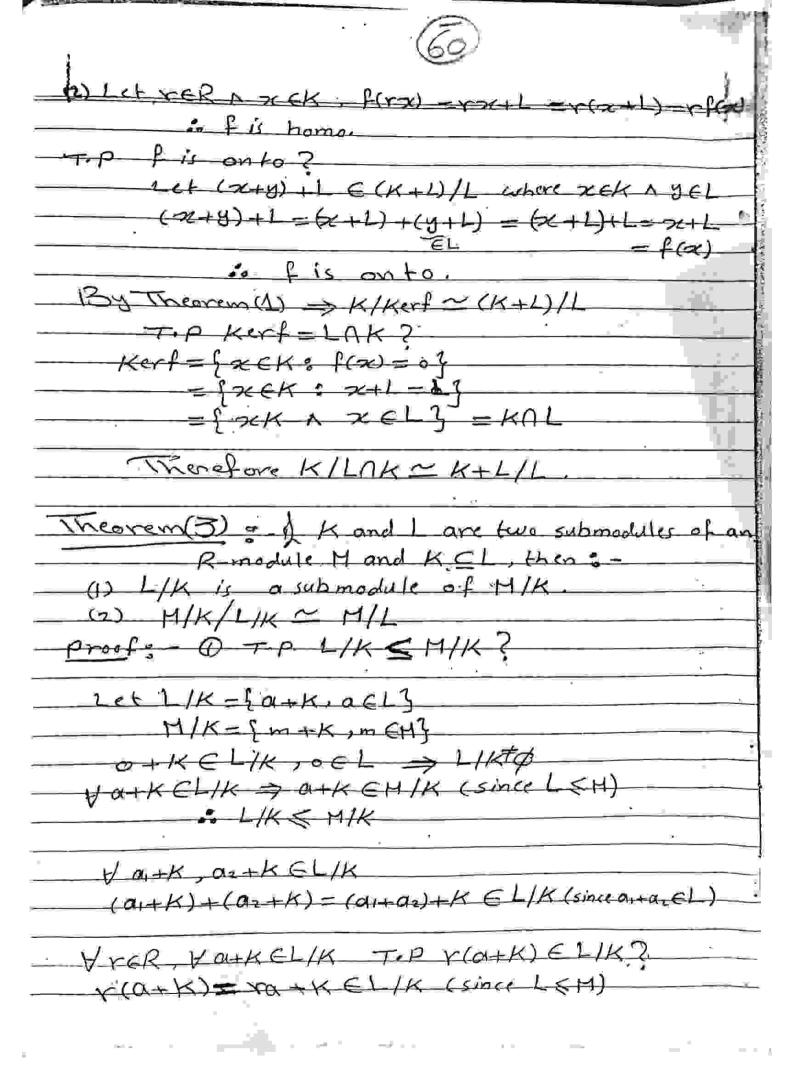
Chapter eight -55-
Introduction to Galois theory while
Introduction to Galois theory wills
في البراب مسوف تستذكر بعَريق الحقل Definition :
let F+Ø. Then (F,+,,) is Called field if every element a EF, a is an invertible element.
Examples: (I)+,,), (R,+,,), (Q,+,,)
(Q[V2],+,.), where Q[V2]={a+bV2 i a,b ∈Q}
Definition:
Then Fis Called a subfield of K.
Remark: Tet (F,+,-) be a field and let Ø+8 C.F. Then (S,+,-) is a subfield of F (>>)
(1) $a-b \in S$ } $Va,b \in S$.
_Example:
Q[$\sqrt{2}$] is a subfield of \mathbb{R} . Let $a_1b\sqrt{2}$, $c_1d\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ $(a+b\sqrt{2}) - (c_4d\sqrt{2}) = (a-c) + (b-d)\sqrt{2} \in \mathbb{Q}[\sqrt{2}]$ $= (a+b\sqrt{2}) \cdot (c_4d\sqrt{2}) = \mathbb{Q}[\sqrt{2}]$


Ex s-
Q[VI] is a normal extension of Q
A .
Since 3 fox)=x2 e Q [X] > R(Q.f) = Q[V2]
Definition: pup liad poly reid a bulg this poly causing
let f(x) \in F[X], K=R_1 (Fof) f(x) is Called solvable by radical if I a finite sequence islabulardhable F=LoCLICEC CLn=K cosisionia initial O(1) Pinite sequence
fix) is Called solvable by radical of I a finite sequence
اصغر المادواسه والحذر
F=1, C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C
-where $L_i = R_L(L_{i-1}, f_i)$, $f_i(x) = x - \alpha_i$
-WACKE C1 = NL(L1-1) +1) > 71 (X) = X - C4
Example: let fix = ax +b & F[x] , a +0
$\frac{x-b}{a}$ all $\frac{b}{a}$
: fex is solvable by radical
= +(x) 15 Solvable by Cacaca
Frample: let fix = ax + bx + c \in Q [X]
Example:
V = -b = Vb-4ac
20
Q=LoCL = Ry (Q.f.) where f=x"a,
= x²-b
■ 4 T



	1
Definition: let fix & F[x], K = Rt (F.P). Then gp (G(K/F), 0) is called Galoies gp.	7
gp (G (K/F), 0) is called Galores gp-	·
Theorem Fundamental theorem of Galois	9
المرهن الدرام من الكالطام ن	
Let F be any field , k be the normal Extension of	
	<i>†</i>
let S-{E: E is subfield of K, FCE},	
3-{H: H subgrap G(K) and H= G(K/E)	
let X:5 > 5 define by X(E)=G(K/E). Then	1
(1) X is (1-1) and onto	
(9) $E \subseteq E' \Longrightarrow \chi(E') \subseteq \chi(E)$ (3) E is normal Extension of $F \Longleftrightarrow \chi(E)$ is norma	
subgraf G(k)	
(4) gf E, E are normal extension of F, than ECE'	Ving.
$\Rightarrow \chi(E)/\chi(E) = G(E/E')$	سنند.
ملامة لم مف نعن النفرية عمم	F
E. T.	


-57-	*O*
Madules: - Di	Chapter nine
. Det :- Let R be aring w	ith identity. An abelain
Left R-module over R) i	f there exists a mapping
and Ym EH such th	ne following constitions:
- X(m++ms) = Xm++xx	nz V v CR V m,mz E M.
	m YrorieR. VmEM.
3) X(Y,Y2,m) = X(Y), X() V Y,Y2 ER, V m E M	a,m) or (vir) m=vi(rim)
9 if in ordelition I m=n aunital R-module.	HMEH, then His called
Examples : (1) Every abelais	group with + is a Z module
@ Zn is a Z module 6	InEN
G Let R be aring the	en every telt ideal Topp
B Every ring R can be a	UneN .
(a module over itself)	
	Ty.


الموديولات المزيئه 5ubmodules. Def :- A non-empty subset Nofan R-model M Called a submodule of H if and only if: (N,+) is a subgroup of (14,+) and @ YNCN YrER. Remark . Let M be an R-module and D+NCH. The N is a submodule of M if and only if: Q x+y CN Vx,y CN @ YXEN YYER, HXEN Example 5%. a) If H is an R-modelle, then for and Mare submo of there is any submodule. Nof H which is different from 603 and M, then Ni Called aproper submodule Def: An R-module H is called simple if M has no For any prim number p, Zp is asimple Z-malule (2) of R is any ring, then R is an R-module and the submodules of R are just the ideals of R for example : n7 is asubmodule of 7 Un=0,1,2,00 (3) Z is a Z-module of Q over Z Remark : - (1) of N and K are two submodules of an Remodule Hother MAK is also asubmodule

is called the inclusion homo, on N. 0 2(m1+m2) = m1+m2 = 2(m) + 2(m2) Vm1,m2(H 6) 2(rm) = rm = r2(m) VreR, Vm ∈ H. Defor Let Nbe asibmodule of an Remodule Mand Let M/N = Gx+N, x EM3 where x+N-Gx+a: a EN is the coset of N determined by X MN is an R-module wort (+) & (a) defined by: (1) (x+N)+(y+N)=(x+y)+N $yx,y\in M$ (2) Y(X+N) = YX+N YYCR. YXEM. Show that MIN is on R module HIN is Called the quotient module of H determined by M Example: IN is a submodule of an R-module M. H natural map TT: H-> M/N Such that II(m) = m+N Um EM, IT is an R-homo. It is called SOL =- 4) Tt (m,+m,2) = (m,+m,2) + (M,+M)+ (m,+M) V mi, mc EM (a) TT(rm) = rm + N = r (m+ N) = r TT(m) Defortet f: H. > N be an R home. (1) Kernal of f denoted by Kerf, it is the set Kerf [x CH: f(x) = 0] CH (2) The image of f denoted by Infritis the set Imf = ff(x): x EH3 CN Remark: (Simophi) Titlet for I > N be an R-homo than

* x(a+K) 61/K = L/K is a submodule of M/K. (2) Define fo M/K -> H/L sot: f(m+K)=m+L - Vm CH. - VM+KEHIK > m+LEMIL > f(m+K) EHIL - J mi+K=mi+K > mi-mi EK > mi-mi EL $\Rightarrow f(m_1+K) = f(m_1+K)$ > m,+ L = mz+L T.P fis homo? -O Vm,+K,mz+K CM/K -> f[(m,+K) (mz+K)]=f[(m,+m)+k] = (m,+m)+1=(m,+1)+(m+1) = f(m+k) + f(m+k) @ f[v(m+K)]=f[rm+K] (since H is an R-module) = +m+L = ~ (m+L) = ~ f (m+K) fis homo. T.P fis on to? Inf= f(m+K): m < M3 = { m + L : m ∈ H3 = M/L. f is on to By Theorem 1 > M/Kerf ~ M/L Top Kerf = L/K Kerf={(m+K) CH/K: f(m+K)=L} = { (m+K) EM/K : m+L=L] = {m+K EM/K: m = 1] = L/K : M/K/L/K~H/L

- Entered Level of 12 top of 12 to the less of 1 top of 12 to the less of 1 top of 12 to the less of 1 to the less of 1 top of 12 to the less of 1 top of 12 to the less of 1 top of 12 to the less of 12 top of 12 top

Edward Ta grade

The second control of the position of the first of the control of

(x(x=x)= xm+xm Bx2 = 6x m = 14

(3) $\chi(Y_{2}m) = Y_{1}\chi(Y_{2}m) \circ Y_{2}$
(1/2) w = 1/(1/2 w) A 1/2 E B M W E H. (3) \(\langle (1/2 \cdots) = \langle (1/2 \cdots) \cdot \vec{\vec{\vec{\vec{\vec{\vec{\vec{
4) If in addition 1.m=m Im EM. Then M is called a unital R-module.
- Note:-
One can be define right R-module
similarly. That is An additive abelian group 14 is
called aright R-module, if there exists amapping
MXR->H with (m,r)->mr YmEHn YrER
satisfying:-
(1) m (2+12) = 111/2 + 11/2
(s) Cartury K= MIK+ MAK A KK' LE EKV
(1) $w_1 = w_2$ (2) $u(x/x^2) = (uux)_{x^2}$ $Au^1u^1w^2 \in M$ (3) $(w_1 + uu_2)_{x} = u(x + uu_2)$ $A x x' x' \in S v$ (1) $u(x/x^2) = u(x + uux)$
(4) $m \cdot l = m$
Remark: If R is a comm. Ting, then every left
Def: Let R be airing with identity and let M be a left R-module. M is called a unital (or.
(i.e (1,m) > m AmEM)
Examples: - (1) Every golditive abelian group is a Z-module.
Solution: Let (H,+) be an a belian gp. Define a mapping \$:ZXH \rightarrow H &.t \$\Phi(n,a) = na \text{ where} \$\na = \int \text{ and continues} if n > 0 \$\int (-a) + (-a) + (-a) \text{ (n-times)} if n < 0
((-a)+(-a)++(-a) (N-+imes), if N <0

Now, we satisfying the anditions: - $(i) - \varphi(n, \alpha_1 + \alpha_2) = n(\alpha_1 + \alpha_2)$ - (a,+a)+---- (a,+a) (n-himes) (-a)+(-a)+-+(-a)+(-a)---+(-a) = \$ (N, ON) + \$ (N, OR) ---وهدا تطبق نفية كرع سي كعريق (2) Every ring Risan R-module. (since every viry is an abelian of (R,+) is abelian op and it self ring. Thus is an R-module) . -(3) Every tideal of R is an R-module. Sol: Since (I,+) is a belian of and LOEI YALEK VAGEI-ا ي مقصدها ال محلية المصنري معرف الرصانه لعملية الحم وهي معمله . (i) (Y, a1+02) = Y(01+02) = You + Yaz pisolinaisis = X(V,a) + X(V,az). Yre Ray on, are I (8) (Y1+Y2,Q) = (Y1+Y2) Q1 = Y1 Q1 +Y2 Q1 = x((1,a) +x((2,a)

 $(\mathbf{H}) \quad \mathbf{J} \cdot \mathbf{\alpha} = \mathbf{\alpha} \in \mathbf{I} - \mathbf{H}$ (4) nZ is a Z-module YnE/V. For examples; -_____ n Z = id(n)2Z = id(z) is a Z-module. 3Z = id(3)(5) Let R be aving and I be a left ideal in R and RII = {a+I,a CR} = Then (RII, 1) is obelian gp where (a+I) \oplus (b+I) = (a+b) + I &a,b \in R. Octine: a: RXRII -> RII s.t X(Y, a+I) = YOU+I AVER and YOUTERII. other RII is an R-module. $50!'-(i) \times (Y_{1}(a+I) \oplus (b+I)) = Y(a+b) + I$ = \(\sigma + \sigma \sigma + \sigma \) =(ra+I)@(rb+I)-= x (v, a+I) @ x(v, b+I) where I+I=I- $(i) \quad \alpha(Y_1 + Y_2, \alpha + I) = (Y_1 + Y_2)\alpha + I$ $= Y_1 a + I \oplus Y_2 a + I - \dots$ $= (V_1 a + I) \oplus (V_2, a + I)$ - 50 (V, 10+ I) (V, 10+ I) = X(Y, a+I) (V, a+I) -

	j		×
ſ	1	5	٦)
١.	٤	_	e

For example: - Take R=Z, I=nZ => R\I=Z/nZ~Zn __is_ Q Z-module._ 6) Let R be aving. Then M(R) is an abelian gp with vespect to addition of matrices. Define: d: M(R) X M(R) > M(R) s.t a (A,B) - AB (multiplication of matrices). YABEM(R) Then M(R) is a left M(R)-module. Similarly, M(R) is a right M(R) - module. عالةً خاصة من هنا كمثال فصلطيحا عنما يكون إ=m وهي .. M(R) = The set of all IX n matrices (or set of all IXn namely, R= {(a1,..., an); ai ER, i=1,...,n} and $R \times R^{n} \rightarrow R^{n}$ such that $v(\alpha_{1},...,\alpha_{n}) = (v\alpha_{1},...,v\alpha_{n})$ $\forall r \in R, \forall (\alpha_1, \dots, \alpha_m) \in R.$ R'is an R-module. 2) Let Rand S betwo rings and let fir > s be any ring homo. Let M be an S-module. Then M is also an R-modul PF Since Mis an S-module then (M) is M - MXE:X gama E long 98 valley M S.t. K(S,m) -> Em USES NO MEH satisfying -- 1,2,3,4 in the def-Define B:RXM -> M 5.t B(VIM) = YM OV B(rim)=f(r)m, Amely

 $f(r) \in S, r \in R, m_1, m_2 \in M.$ (ii) Let ri, rz ER n m E M (r1+r2,m) = f(r1+r2).m = [f(r1) + f(r2)] m (how cos)- $= f(r_i)m + f(r_i)m$ = (r,m) + (r,m) . ____ (1) Since R is aring with unity => 31 is an identity But f is home -> f(1)-1 the identity element of Now, \tag me M \Rightarrow (1,m) = f(1).m = 1.m = m.
That M is an R-module. (B) Let M be an additive abelain group and Let End (M) = The set of all group homomorphisms on M. i.e End(M) = {f/f: M > M, f is a group, homo.}
Define: + and o on End(M) as follows: (f+g)(m)=f(m)+g(m) $\forall f,g \in End(M)$, $\forall m \in M$. $(f\circ g)(m)=f(g(m))$ $\forall f,g \in End(M)$, $\forall m \in M$. Then: - (1) (End(M),+,0) is a ving with identity (2) Mis an End(M)-module?

Pf; (1) T.P (End(M),+) is a belain 9P? (i) Let $f,g \in End(M)$ = $f(m) + g(m) = f+g(m) \quad \forall f,g \in End(M)$ YMEM. . Thus + is closed. (ii) Let f, g, h ∈ End (M): ((f+9)+h)(m) = (f+9)(4) h(m). = (fem) + g(m))+ h(m)-= f(m) + ((g(m) + h(m)) =(f+(0+h))(m) Therefore + is ass. الخواص كأخرك واجت " (End(M),+) is abelian 9p. (2) Define: Ø: End(M) X M -> M s.t Ø (f,m)=f(m) Y FE End (M), YmEM. Pf:- (i) Let f E End (M), 1 min mz EM (f, m,+mz) = f(m+mz) = f(mi) + f(mz) = (f,mi)+(f,mi) Coince f is homo.

 $\begin{array}{ll} (ii) & (f+g)_{f,m} = (f+g)_{(m)} - i \forall f,g \in End(M), \forall m \in M \\ &= f(m) + g(m) \\ &= (f,m) + (g,m) \\ &= (f,g)_{(m)} + (g)_{(m)} = (f,g)_{(m)} \\ &= (f,g)_{(m)} = (f,g)_{(m)} \end{array}$

Given (I,m) = I(m) = m where I is the identity map. M is End(M) -moduly. Oct :- Let Rand 5 be two vings and Let Mbe anadditive abelain 99. Mis called an R-S-bimodule - if Mis a Left R-module and a right S-module, and V(ms)=(rm)s for all rER 1 45 Es 1 Ym EM EX!- M(R) is an M(R)-Mnxy(R)-bimodule.

wxn

You = cluom objections Let M be an R-module. The left annihilator of M over R denoted by ann (M) (or ann M), and, it is defined by: ann(M)={rERI rm=0, VmEM} Note: - If ann (M) = 0, then M is called

a faithful R-module. Remark :- Let M be an R-module. Then: 1- r. OM = OM YrER 2- Op. m = OM YMEM 3- (-r) m = - (rm) = r(-m) YrER, YmEM

Pf:- (1) 0, m = (0 to). m = 0.m + 0.m (200) 2 × × (-(0.m)) = 0.m + (-(0.m)) - 0.m + (2) V. OM = V. (0+0) = \$0+ V. O V. O+(-(V.O)) # V. O+(V.O+(-(V.O)) (r)m +rm = (-r+r)m Thus -(vm) is the inverse of (v)m -(rm) = - (r)m Remark: - If M is a R-module, then (1) ann M is a left ideal of R.
(2) M is a faithful R/annM-module. PfI FKersile Remark: - Let M be an R-module and I bean Ideal of R. If I Sann M, then Mis an RII-module. of: Define Ø:R/IXM -> M s.t:. Ø(r+I,m)=rm. Vr+IER/I, VmEM 9 is an mapping? Let (r+I)m1)=(b+I,m2) in R/IXM. $\Rightarrow r+I=b+I$ $\wedge m_1=m_1$ $\Rightarrow r+J=b+I$ r+b EI

$\Rightarrow b-a \in ann M \Rightarrow (a-b)m=0 \forall m \in M$
$\phi(\alpha+I,m)-\beta(b+I,m)$
& is well-defined.
مرصم ليشرط للا فريك واقت
Exi. Z6 is a Z3-module. since
ann $Z_6 = 6Z \subseteq 3Z = I$
: Ze is a Z/2 = Z3 - module.
26 13 01 2/02 - 28
SUDmodules
Od - Let M be an R-module. A non-empty subset
IN of M is called a submodule of M (or an
R- submodule of M) if and only if:
$(1) a-b \in N A a+b \in N$
Q) VAEN YAEN, YYER.
تلاعظ من خلال المعرِّب الت
ر بدط بادل : معنى دن (+, N) زرة جريف من لزمرة (+, M))
RXN delation of firem ->H det in the : in the
ان ان بارد بول الجريد من بارد يول M عونت مود يول عن من كالمات .
ان ان بخوديول الخريق من بخوديول الم معومية موديوك ل مسي طعم .
Remark . Let M be an R-module and \$+10 5 M.
Then IV is a submodule of M if and only if
$-ra+sb\in N$ $\forall a,b\in N, \forall r,s\in R$