Example: Consider the ring (Z12) to 12).
- 72 is not max. ideal glis of il view files
. [o] is not max ideal, since I ideal J= [o, o] sit.
- {o}⊊[ō, ē}⊊7,2
M- (مَ يَعْ رَبِّرَ قَوَهُ) أَعَ عَمْدِ عَلَى عَمْدِ عَلَى اللَّهُ عَلَى اللَّهُ عَلَى اللَّهُ عَلَى اللَّهُ اللَّ
Me=[0,3,6,9] is max. Ideal
M3 = {0, 4, 8} is not max, joleal.
_ since 3 M, s.t. M ₃ ⊊ M, ⊊ Z ₁₂
My = {0, 2} is not max ideal, since I M, M2 ideals of Z,
st. My & M, & Z12 and My & M2 & Z12.
problems s
1 Find all maximal ideals of (Z8, +8, 8).
3 Find all maximal ideals of (715, 715).
Theorems. In the ring Z, the id (n), (n < Z, , n >1) 14
maximal ideal > n is prime number.
proof = >>) let I = id(n) is max ideal.

To prove, n is prime number. Suppose n is not prime number. Then I m, KEZ,
st. 15mgn, 15kgn and n=mk
iden cidem c Z and iden cidek & Z
which is contradiction with definition of max ideal - which is contradiction with definition of max ideal - is yield in the contradiction with definition of max ideal
1 20 is prime number, to prove I = iden) is max total
Then I Ideal Jo
ICTCZ. But Zis P.I.R. hem I MEZI,
1 T=id(m) => id(n) \(\vec{\vec{\vec{\vec{\vec{\vec{\vec{
= ince n = ident & since n=1.n => neid(m)
$\sum_{k=1}^{\infty} n = mk \text{for some } k \in \mathbb{Z} + \text{ and } k \neq 1$
Hence n is not prime number C!
I - iden is max ideal lands
problems: let R=d.s of (Z)+10) with inter-
let I = { (2m, a) in = Z } . Is I, max ideal of R.
Iz={(2n,3m): n,me Z}. Is I, max. ideal of R.

Romark 5 let (Foto) be a field. Then for 15 the only max ideal of F.
Definition
Definition .
let (R,+++) be a comm. ring, R is called local ring (>> R
Example & O(Z4, 74, 4) is local xing, since Z4 has only one
max ideal which is {0, 9}
2 Zs, Zz axe local rings.
Theorem & let R be a comm-ring with unity 1. let M be a proper ideal of R. Then M is max-ideal (M,a) = R Va ∈ R, a & M.
Luhere (Ma) = {m+ra: mEM , rER}
proof & ->) AP Mis max ideal, To Prove (Ma)=R
$M \subseteq (M,a) = M + id(a) \longrightarrow a = c + 1 \cdot a \in (M,a) \cdot But$
a # M. Thus (Ma)=R (pécicsiam iv)
JP (M, a)=R, Ya ≠ M. To prove M is max ideal
suppose M is not max ideal >> I ideal J of R st.
MÇJÇR.

is Ja & J and a & M. But (Maa)=R
-> V X ∈ (M, a) -> X= m+xa, m∈M&J
$-x \in J \longrightarrow (M_{2}a) \subseteq J$ and $J \subseteq (M_{2}a)$
$-c(M_{i}a) = J \Rightarrow R \subseteq J$
R-J Cl. Thus Mis Max. Ideal
Theorem e
let R be a comm-ring with unity. I be a proper
ideal of Rothern I a max ideal of Rs.t. ISJ
الرهان رويق عال جرم و ترور ن (Zorn's lemma) الرهان رويق عال جرم و ترور ن (عالت بين ترور ن عالت بين ترور ن
عالمت مَعْنَ :-
رَبُن لِمَ مِعِيمِهِ عَرَى اللهِ وَلِمَانَ عَمِمَ وَعَرَى اللهِ مِنْ اللهِ مِنْ اللهِ مِنْ اللهِ مِنْ اللهِ مِن معرفان خرشه من بلا أذا كان الله بسلسة ٢٦٦ع من العقال . عناصر ع فان ٢٥١٦ را، ٢٥ متلك عنصرات اعتمال .
let I be a proper ideal of R.
See the Collection F= [J: J=I, Jis a proper ideal of R]
FFD (become I is proper ideal and IEF)
let [Ci] be a chain of [

let x, y \in Uci , x \in R
is jea st xe cj and I ken st ye Ck
~ [Ci] is a chain => Cj C Ck or Ck CC.
suppose $C_K \subseteq C_j \implies x_y \in C_k \implies x_y \in U_{C_i}$
St's clear that I C UC; Y I C Ci
· Uci + R (because 1 ¢ Ci Vi , Ci is aproper ideal
-> Ucief . Then by Zorn's lemma F has maximal
element, we say M.
To prove that M is maximal ideal of R.
let k be an ideal of R sit MCk
الذي والذي والمدى و على تعالى عن كون M ويقال العظم العظم الما العظم الما على تعالى عن الما على الما العظم الم
3 K=R. Then Mis maximal ideal.
Grollary
let R be a comme ving with unity , aER. Then a is an invertible a belongs to no max. ideal of R.

sie bid es
Proof 8 ->) suppose that a is an invertible -
- (a) is the smallest ideal of R Contian a
But (a)=R => a is not belong to any max ideal.
Suppose that Mis max ideal and a # M.
see the id (a). AP R=(a) , then a is an invertible eler
either, if R + (a), then by above theorem, I max. idea
Mand Ca) ⊆M ⇒ a∈M C! (a ∉ M initial)
a gt must to be R = (a) costálary Coxollory
let R be a comm. ring with unity. Then R has at least one max. ideal.
Proof s- since R is comm ring with 1, R has at least one proper ideal say I
Invox ideal J of R st I & J & R (by above theore Theorems.
Theorem & let R be a comm. ring with unity 1. 9PR is local ring, then the only idempotent elements of R are 0 and 1.

Delitet Rise a comm. Kyng cuithanning 1 39 -I DOWN ER is evalual idempatent element of de-a. عديفر وتحارد Proof & suppose that a is an idempotent element in R and a # 0 = a # 1 $\vec{a} = \vec{a} \implies \vec{a} = \vec{a} \implies \vec{a}(\vec{a} - 1) = \vec{a}$ But a = a and a -1 = a shall This mean a and a lare Zero divisors a and a l have no invertible elements is a and all belong to maximal ideal in R But R has only one max ideal M a, a I EM -> 1=a-(a-1) EM = M=RC! (RC3, SEITI UX) Theorem 5 - let R be a Communing with unity 1. and let The a proper ideal of R. Then II is maximal ideal > R/M is a field. let a I e R/I and a I + I But I is max ideal -> R=(I,a)

= a+I has invertible element (Y+I)

·IWEJ,W∉I → W+I+I_

Removes 5.

The theorem is not true in rings without unity for example "

The ring (Zeston) has no unity.

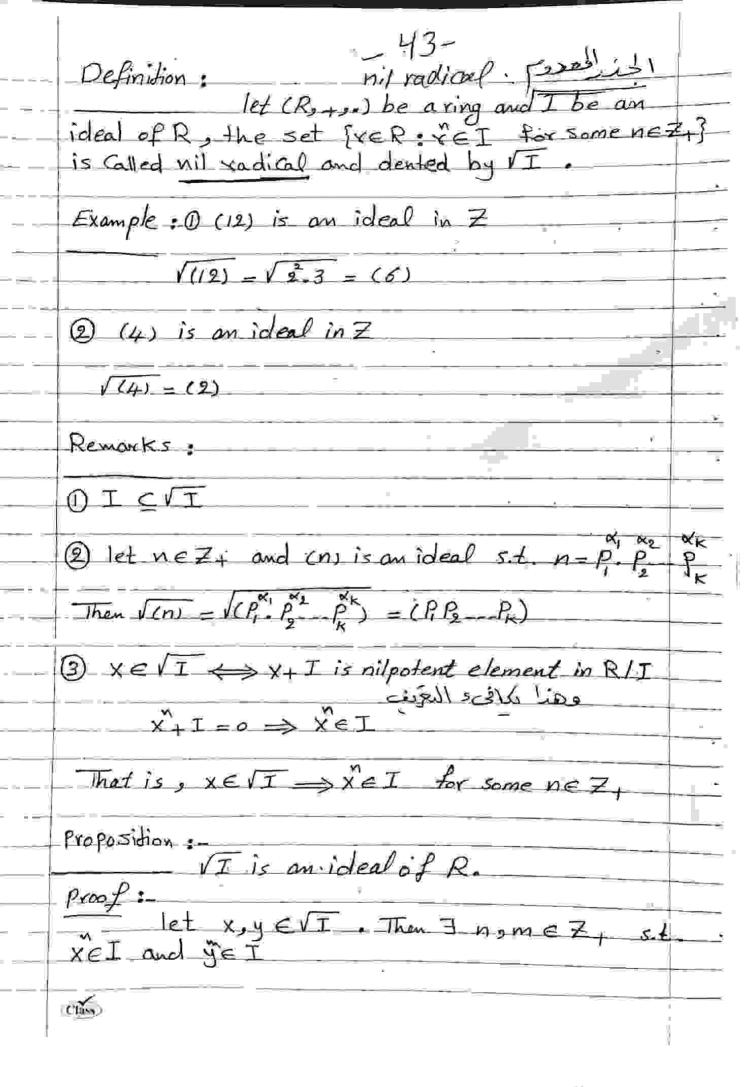
Ze/M=[0+ms2+m] is not field.

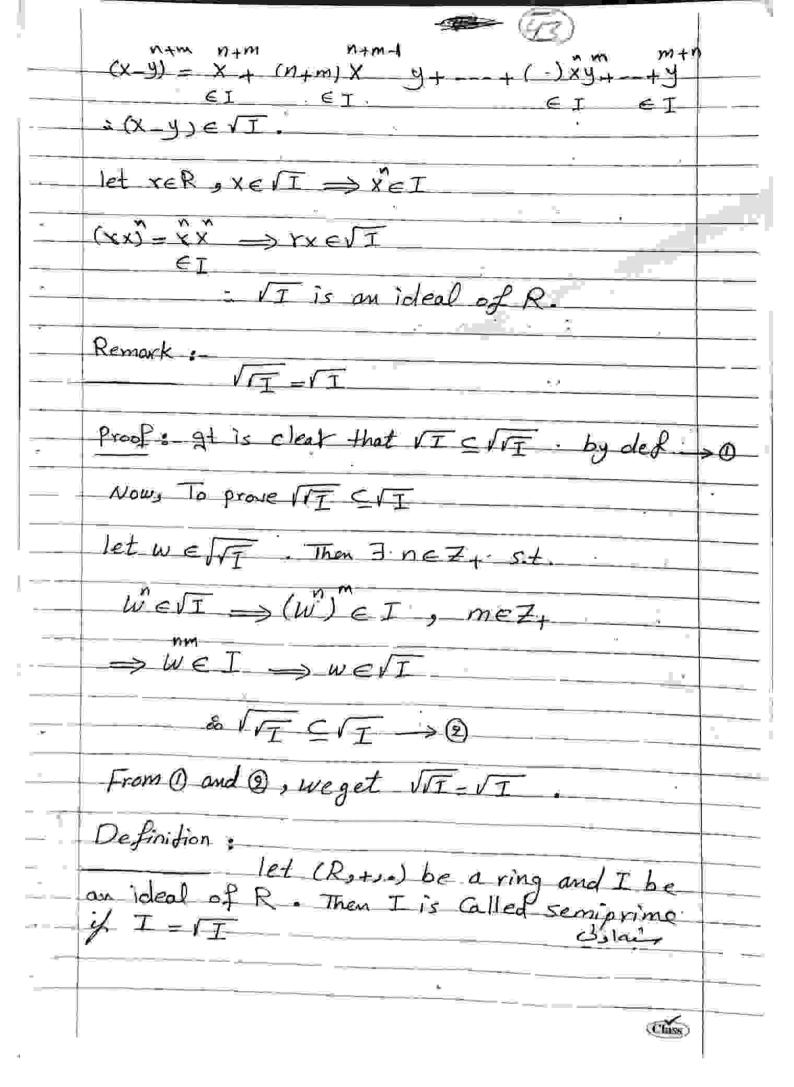
STATES TO A POSSESSION OF A DESCRIPTION OF THE PROPERTY OF THE PARTY OF THE PROPERTY OF THE PARTY OF THE PART

Definition & let R be a corpor ving, I be an ideal of R. I is called prine deal if F YarbeR.
aber seither a E I Soldin
Example: In the ring (Z)
- let_id(2) = {e, T2, T4, T6, }
let a,b c Z s.t. a.b Eider
is ab=2.c for some CEZ
= 2/ab But 2 is prime number => cither 2/a
cx 2/b => a is multiply of 2 cx b is multiply of 2
prosis In the ring (Z; +, -) - If Pisaprime numbers
Theosem :- Ict R bc a comm. ring with unity L. Then R is an integral clomain >> ? is a prime ideal.
Pract => suppose R is an integral domain
To prove for its prime ideal. Let up ex set up exp ob = c

a=0 or b=0 (since R has no zon divisor) be [c]. Thus [o] is prime ideal. abe for . But [0] is prime ideal $s \in \{c\} \text{ or } b \in \{c\} \implies \alpha = c \Rightarrow$ R has no zero divisor -> Rison integral obmain Problems (H-W) In (Z), ,,) : Anon fricial ideal I of Z, I = ideal Example & (Z/ 1/2) Example— In the ring (25, 5, 5, 202) - 2026A in { of is the only proper prime idea! يحية الساحم المثاكي الأولحي الوحسيد هو آه ؟

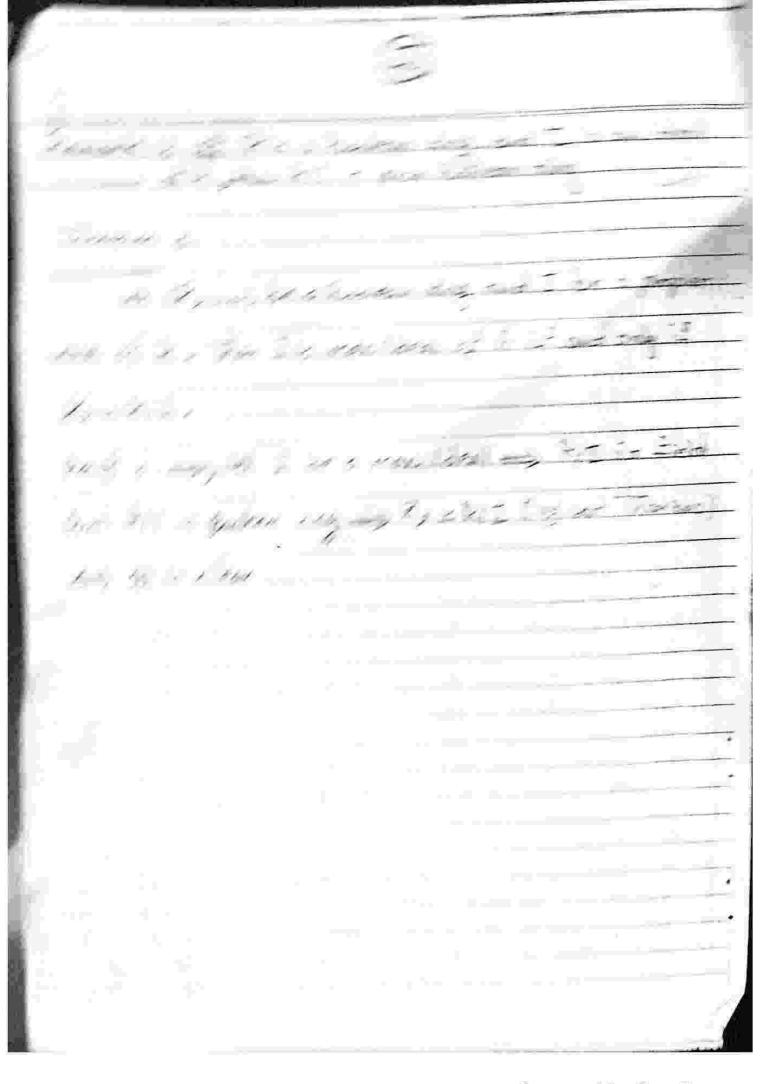
Theorem - let R be a commis ving with unity 1. Then every maximal ideal of R is prime ideal.
Freet ; let M be a max irleal of R
To prove It is prime ideal.
Let a, b ∈ R stabell and a ∉ M
\rightarrow (tha)= $\hat{R} \rightarrow 1$ \in (tha) \rightarrow 1 =14+10 for some
merl, reR => b=mb, rab EM
= bett . Thus this prime ideal.
عكس المبرهنة اعلاه غير صحيح والمثال المالي موهم ذلك
[e] in (Z,+,-) is prime ideal. But [o] is not max. ideal
Problem 5-(H-16)
let $R = cl. s$ of (Z_{g+g}) with (Z_{g+g}) and let $I = \{(a,c) : a \in Z\}$. Show that I is a prime ideal, but I is not maximal ideal.
Remark .
The theorem is not time in sings without unity
Example: I=10,74,78,712,) is more in Ze


But I is not prime ideal (Since 4-22 € I, but 2 & I)
& Theorem & let R be a comm ring with unity 1.
be an ideal of R. Then I is a prime ideal (R/Isose)
Proof & ->) Ris Comm. ring with unity 1 -> R/I is
If (a+I) e(b+I) = I - Zeva element
= ab, I = I => ab ∈ I , but I is a prime ideal
of R -> either as I or be I.
of ac I, then a, I = I and if be I, then b, I - I
in R/I has no Zerio divisor and so R/I is an integral clomain. EDITO To prove I is prime ideal
let a, b $\in R$ stabe $I \Rightarrow ab + T = I$
(a+I) @ (b+I) = I
Cither and I = I cs: b+ I = I (since R/I has no). Zero clivison
I is prime ideal.


Theorem & let R be a P. J. D. Then a nontrival ideal
· I of R is maximal ideal () At is prime ideal.
Proof 5 - () let I be a prime ideal of R and I + {o}.
let J be an ideal of B st. I & J.
- Ris P.I.D., that means I a, b c R si. - Cas lib I = (a), J= (b).
$\Rightarrow \alpha \in (\alpha) \subseteq (b)$
$0 a = tb \text{for some } t \in \mathbb{R} \implies tb \in \mathbb{I}.$
But I is prime ideal -> either te I or be I
$gf b \in I \longrightarrow (b) \subseteq I = (a) \longrightarrow I = J C!$
Then $t \in I \implies t \in I_{-(a)}$
Q t=sa, seR
From @ and @ , we get a = sba
Ris an integral clamain , a = c
$ab=1 \Rightarrow 1 \in J \Rightarrow R=J$
I is maximal ideal of R.

Theorem = let R be a comm. ring with unity 1 st. b2=1	ф
for all be R. Than a non-trivail ideal I is maximal ideal == I is prime ideal	
Proof 6 let I be a prime ideal of R st	
I = {0} and let I be an ideal of R st. I & J.	
Then I be I, b & I	
since $b = b$ (by hypothesis) $b^2 - b = c \implies b(b-1) = c \in I$	
* I is prime ideal , b& I	
~ (b-1) € I -> b-1 € J.	
But be J >> b (b-1) & J (by def. of ideal)	
1∈J ⇒ J=R	-
in I is maximal ideal.	
	=

Definition: Net (R,+,.) be a ring and I be an ideal of R, the set [xeR: xeI for some neis Called will xadical and dented by VI.	7+}
Example: 0 (12) is an ideal in Z $\sqrt{(12)} = \sqrt{2.3} = (6)$	
 2 (4) is an ideal in Z $\sqrt{(4)} = (2)$	
Remarks:	
① I CVI. ② let neZ; and cns is an ideal s.t. $n=P_1^{\kappa_1}$ $P_2^{\kappa_2}$	ork Pr
Then $\sqrt{(n)} = \sqrt{(P_1^{\kappa_1} P_2^{\kappa_2} P_K)} = (P_1 P_2 - P_K)$ $3 \times \in \sqrt{I} \iff x + I \text{ is nilpotent element in R/I}$	
وهنا نکافیء العَرَف $X^*+I=0 \Rightarrow X^*\in I$ That is, $X\in VI \Rightarrow X^*\in I$ for some $n\in Z_+$	
Proposition: VI is an ideal of R. Proof:	+-
Then I nome Z, st XEI and YEI	**************************************
Class	


-44_
Example:
Then 67 is a semiprime ideal of Z. Since 167 = 62 = (6)
Then 6Z is a semiprime ideal of Z.
Since 67 = 67 = (6)
Remark: Every prime ideal is semiprime.
But the Goverse is not true ingeneral for
example: 67 is semiprime îcleal in 7, but
It is not prime in Z.
Theorem:
let I be an ideal of R. Then
I is Semiprime (=> RII has not Gorlain nilpotent elements only Zero element.
elements only Zero element.
Proof: - >) let a+I be nilpotent element in
$RII \Rightarrow (a+I)=I$, $n \in \mathbb{Z}_+$
$\hat{a}_{+}I = I \Rightarrow \hat{a} \in I \implies a \in \sqrt{I} = I (since I is)$
$\tilde{a} + I = I$
←) at is clear that I CVI
Now, let $X \in \sqrt{I} \longrightarrow X \in I$ for some $n \in Z_{+}$
$\Leftrightarrow \times^{\uparrow} \bot = \bot$
$- = (x+I)^n = x+I = I$ $- = x+I \text{ is nilpotent element in RII}$
IT = I . X+I = I -> X & I

 $(b+I)^n - o+I - I \longrightarrow b^n \in I \longrightarrow b^n, I$ This I is primary ideal. Bodean Rings July ThatA let (R,+,.) be a ring with unity. Then R is called Boolean ring if a = a for all a ∈ R. is Boolean ring Ta + 3) is not Boolean ring

Remark: Every Boolean ring is Comm-ring and ch(R)=9 et (Report) be a Boolean ring and I be a proper ideal of R. The following statements are equivalent (1) I is max ideal (2) I is prime ideal (3) FOTAER either aEI Proof (1) > (2) is proved. (2) → (3) let a∈R, a+0 or (1 a) & I because I is prime ideal let M be an ideal of R st. I & M , then 3 x & M X&I, Therefore by (3) 1-XEICH X , - / X EM, M is an ideal of R -> ICM -> M=R C! field

(R,+,,) is a Boolean if and only if R = Z2 Proof: =>) let a ∈ R, a + o = a = a · | = a (a ā') = (a · a) ā' = à·ā' () gt is clear

جامعة يغداد/كلية التربيه للعلوم الصرفه/ابن الهيئم قسم الرياضيات/المرحله الثالثه

الماده الحاقات

د. ما م + رنسه

الفصل السابع

Chapter Seven

= { f(x) ; f(x) = ao + a(x) + + a.x, do,a, -, an ER or - {f(x):f(x) = 2 aix', aido, yizn} Any fax ES is called polynomail over R. Define Let fix), g(x) ES; f(x)= = pixi, ai ∈ R, ai = a tizn g(x)= = bixi, bick, biso tizm id f (x) . 9(x) = J. CKX CK=0 UK>n+m Ca= aobo CI = aobi + aibo Cz= dobz+aib++aib+ C3 = 0003 + 0,62 + 0,61 + 0,360

X:- Let f(x), g(x) be two polynomailes over Zu where f(x)=3+x, 9(x)=1-x+x2 21 00=3 -, a1=1 , a2=a3==an= 9(x)=1-x+x, b=1-1==1=3 (mod 4), b2= -b3=b4= ----=bn=0 f(x)+9(x)=(a0+b0)+(a+b1)x+(a+b2)x2 = (1+3)+(1+3)7+(0+1)2 - , where Co=0, bo = 3,1=3 P(x)-g(x) = ZCKX $C_1 = a_0b_1 + a_1b_0 = 3 = 3 + 1 = 2 \implies C_1 \times = 2 \times$ C2 = ab2 + a, b, +aba = 3.1 C3 = a.b3 + a,b, + a2b1+a3b0 = 3,0 + 1,1+0,3+0,b. C4 = a0b4 + a1b3 + a2b2 + a3b1 + anbo Since, C5 = G = 0 = f(x) - 3(x) = 3+2x + 2x + 2x + x which is poly. over Z Note :-9P.R is a ring, then S={f(x):f(x) is a poly over R} is denoted by R[x].

- Show that (R[x], +,.) is a ring.
1) + , ore closed on R[x].
2 9 f f(x) = Za, x', g(x) = Zb, x'
t isl
$f(x) + g(x) = \sum_{i=1}^{n} (a_i + b_i) x , t \leq max(n,m)$
$\frac{\pm}{2}(b_{i}+a_{i})\dot{x} = \frac{m}{2}b_{i}\dot{x} + \frac{n}{2}a_{i}\dot{x} = g(x) + f(x)$
i=0
3 + is asso, on R[x].
@ let h(x)=o , h(x) ER[x]
and hex + fex = fex , then hex = additive identity of REX
(3) Af $f(x) = \sum_{i=0}^{N} a_i x^i$, let $(-f)(x) = \sum_{i=0}^{N} (-a_i) x^i$
(B) f(x) + [(-f)(x)] = 0 = h(x)
= -f(x) is the additive inverse of f(x)
asso. on R[X]. dist. over + on R[X].
: R[x] is a ring.
The state of the s

Remark
@ AP R is Comm ving, then R[x] is comm. xing.
2 gp R has unity 1, then R[x] has unity (Ocx)=1)
Definition:
let $f(x) = \sum_{i=0}^{N} a_i x^i \in R[x]_2$ $f(x) \neq Zero$ poly
an is Called the leading Cofficient
- 98 an # 00 then fix has degree n
- 2f f(x)=a (aER), f(x) is Called Constant poly.
of degree Zero where ato
-9P. f(x)=0, we shall assign no degree for f(x).
Theorem "100 do
let R be an integral domain, foxygoxy non zero poly's in RIXI then: O deg (Foxygox) = deg fox) + deg gox) = n+m
2) either fox+g(x)=0 or deg (fox)+g(x) < max (deg fox) deg go
proof (1) let $f(x) = a_0 + a_1x + a_2x + \cdots + a_nx$ is non-zero poly.

- an +0 sie degfexin zip int will
let g(x) = bo + b, x + + b, x is a non-text poly.
bm +0, i.e. deg ga = m sip iliy
Notic a = a Vion
bi=o Yi>m
fix g(x) = \(\frac{7}{k-a} \) where C= abo , C= ab, , a, b.
$C_{m+n} = ab + a, b + \cdots + ab + ab + ab + \cdots + ab = \cdots + a$
0° 0° 0" 0"
(m+n = abn +0 (Since a, b = R , a +0, bm+0 and R) has no Zero divisor
Cn+m+1 = ab + ab + ab + ab + ab + ab + ab -
Since Community =0 4521
= deg (fixi-gix) = n+m - deg fixi, deg gixi.
_ Coxollary anii
. If Ris an integral domain, then REXT is an integral domain
Roof
Ris an integral domain -> Ris Comm. ring with unity and R
has no Zero divisor.