2025-2026 / FIRST STAGE

COMPUTER
FUNDAMENTALS

?f? a_IS COLLEGE OF
—-o el SAIl ARTIFICIAL
\\° welibadl INTELLIGENCE

01 PROGRAMMING FUNDAMENTALS

TABLE OF CONTENTS

1. WELCOME TO THE COURSE

2. SCRATCH
2.1 COMPUTER SCIENCE AND PROBLEM SOLVING
2.2 ASCII
2.3 UNICODE
2.4 RGB

2.5 ALGORITHMS
2.6 PSEUDOCODE
2.7 SCRATCH
2.7.1 HELLO WORLD
2.7.2 ABSTRACTION
2.7.3 CONDITIONALS
2.8 TUTORIAL

2.9 Q&A
210 LAB
3. C

3.1 INTRODUCTION

3.2 VISUAL STUDIO CODE
3.3 FORM SCRATCH TO C
3.4 HEADER FILES

3.5 TYPES

3.6 CONDITIONALS

3.7 OPERATORS

3.8 VARIABLES

3.9 LOOPS

3.10 FUNCTIONS

3.11 MORE ABOUT OPERATORS
3.12 TUTORIAL

3.13 Q&A
3.14 LAB
4. ARRAY

4.1 INTRODUCTION
4.2 COMPILING
4.3 DEBUGGING
4.4 ARRAYS
4.5 STRINGS
4.5.1 STRING LENGTH
4.6 COMMAND-LINE ARGUMENTS
4.7 EXIT STATUS
4.8 CRYPTOGRAPHY
4.9 TUTORIAL

410 Q&A
411 LAB
5. PYTHON

51 INTRODUCTION

5.2 HELLO PYTHON!

5.3 SPELLER

5.4 FUNCTIONS, LIBRARIES, MODULES, AND PACKAGES

UNIVERSITY OF BAGHDAD

02

5.5
5.6
5.7
5.8
5.9
5.10
511
512
5.13
5.14

STRINGS

POSITIONAL PARAMETERS AND NAMED PARAMETERS
VARIABLES AND TYPES

CALCULATOR

CONDITIONALS

LOOPS

ABSTRACTION

TRUNCATION AND FLOATING-POINT IMPRECISION
EXCEPTIONS

LISTS

5.14.1 METHODS
5.14.2 SEARCHING

5.15
5.16
5.17
5.18
5.19
5.20
5.21

COMMAND-LINE ARGUMENTS
EXIT STATUS

MORE ABOUT STRINGS
TUPLE, SET, AND DICTIONARY
TUTORIAL

Q&A

LAB

6. WHAT’S NEXT

UNIVERSITY OF BAGHDAD

PROGRAMMING FUNDAMENTALS

03

t™Ths
elf.fi\s

"{-?1 f’l .fi‘-e-
celf.fingerps

T NHOA

ett1n95(

cht_'seEI'\(5C
el f.requs

>

UNIVERSITY OF BAGHDAD

PROGRAMMING FUNDAMENTALS

1. WELCOME T0 THE COURSE

This course is about much more than computer
programming. The practical skills you’ll gain here
will shape how you learn, think, and solve
problems — skills that extend far beyond
computer science itself.

You’ll begin with Scratch, a visual programming
language that builds your understanding of logic
and structure. Then, you’ll move to C, where you’ll
explore how computers manage data and
memory. Finally, you'll learn Python, a modern
and powerful language that makes programming
more readable and efficient — all without the
complexities of object-oriented programming.

At its core, this course is about empowered
problem-solving — developing the mindset and
confidence to approach challenges creatively,
logically, and systematically. The strategies you
learn here will serve you not only in your studies
and career, but also in everyday life.

Remember, this journey isn’t about meeting a rigid
standard — it’s about growing from where you are
today. Learning takes time, patience, and
practice. Even when challenges arise, trust that
consistent effort will lead to mastery.

And if this is your first experience with
programming, don’t worry, most of your
classmates are starting here too. You’re joining a
supportive community of instructors, teaching
assistants, and peers all committed to helping you
learn, create, and succeed.

PROGRAMMING FUNDAMENTALS

A/'fll ,UI

move Q steps '\ s
\\\\\J<

\\

A/>\
- \\\
\\

-
say m for 2 seconds =

UNIVERSITY OF BAGHDAD

05 PROGRAMMING FUNDAMENTALS

2. SCRATCH

By the end of this chapter, we will gain:
e Problem-solving is the essence of the work of computer scientists.
e This course is not simply about programming - this course will introduce you to a new way of
learning that you can apply to almost every area of life.
e How numbers, text, images, and video are understood and represented by computers.
e The fundamental programming skill of pseudocoding.
e How will abstraction play a role in your future work in this course?
e The basic building blocks of programming include functions, conditionals, loops, and variables.
e How to build a project in Scratch.

2.1 COMPUTER SCIENCE AND PROBLEM SOLVING

Essentially, computer programming is about taking some input and creating some output - thus
solving a problem. What happens in between the input and output, what we could call a black box, is
the focus of this course.

Computers today count using a system called binary. It’s from the term binary digit that we get a
familiar term called bit. A bit is a zero or one: on or off. Computers only speak in terms of zeros and
ones. Zeros represent off. Ones represent on. Computers are millions, and perhaps billions, of

transistors that are being turned on and off.

If you imagine using a light bulb, a single bulb can only count from zero to one. However, if you were
to have three light bulbs, there are more options open to you!

Inside your iPhone, there are millions of light bulbs called transistors that enable the activities this
device one may take for granted each day.

As a heuristic, we could imagine that the following values represent each possible place in our binary
digit:

421
Using three light bulbs, the following could represent zero:

421
000

Similarly, the following would represent one:

421
001

By this logic, we could propose that the following equals two:

421
010

Extending this logic further, the following represents three:

UNIVERSITY OF BAGHDAD

06 PROGRAMMING FUNDAMENTALS

421
011

Four would appear as:

421
100

We could, in fact, using only three light bulbs count as high as seven!

421
111

Computers use base-2 to count. This can be pictured as follows:

2A2 2/\1 2A0
4 2 1

Therefore, you could say that it would require three bits (the four’s place, the two’s place, and the
one’s place) to represent a number as high as seven.

Similarly, to count a number as high as eight, values would be represented as follows:

8421
1000

Computers generally use eight bits (also known as a byte) to represent a number. For example,
00000101 is the number 5 in binary. 11111111 represents the number 255. You can imagine zero as
follows:

128 64 32 16 8 4 2 1

The number 255 is the maximum value that fits in a single byte. One byte has 8 bits of data. Each bit
may only have two values: 0 or 1. With 2 bits, there are 4 possible combinations: 00, 01, 10, and 11.
With 8 bits, there would be 256 different combinations, or 2 to the 8th power. We transform this
combination to decimal numbers by interpreting them as binary numbers. Since there are 256
combinations of 8 bits, there are 256 different numbers that we can represent with 8 bits. One of these
numbers is the zero (00000000), so we subtract this 1 number from the total of combinations to obtain
the maximum value that one byte representing a non-negative integer number may have (11111111)
which would be 255, or 28 - 1.

UNIVERSITY OF BAGHDAD

07 PROGRAMMING FUNDAMENTALS

Bits as Lamps
On Off Off On On Off On On
(P g g frd b)) ! foed o))
i E (0} (0} 1 1 Q 1 1
x128 x64 x32 x16 x8 x4 x2 x1

1286 + @® + @ + 16 + B =+ @ * 2 + 1

155 binary decimal
10011011 = 155

Why do we use 255, not 256, while 28=256 ?

2.2 AGSII

Just as numbers are binary patterns of ones and zeros, letters are represented using ones and zeros,
too!

Since there is an overlap between the ones and zeros that represent numbers and letters, the ASCII
(American Standard Code for Information Interchange) standard was created to map specific letters
to specific numbers.

For example, the letter A was decided to map to the number 65. 01000001 represents the number 65
in binary. You can visualize this as follows:

128 64 32 16 8 4 2 1

If you received a text message, the binary under that message might represent the numbers 72, 73,
and 33. Mapping these out to ASCII, your message would look as follows:

H I !
72 73 33

Here is an expanded map of ASCII values:

UNIVERSITY OF BAGHDAD

08 PROGRAMMING FUNDAMENTALS

0 NUL 16 DLE 32 5P 48 0 64 @ 80 P 96) 112 p

1 SOH 17/ DC1 33 | 49 1 65 A 81

o

97 a 113 g
2 STX 18 DC2 34 ~ 50 2 66 B 8 R 98 b 114 r
3 ETX 19 DC3 35 # 50 3 67 C 83 S 99 C 115 s
4 EOT 20 DC4 36 $ 52 4 68 D 84 T 100 d 116 t
5 ENO 21 NAK 37 % 55 5 69 E 8 U 101 e 117 u
6 ACK 22 SYN 38 & 54 6 70 F 86 V102 118 v
7 BEL 23 ETB 39 ° 5 7 71 G 8 W 103 g 119 w

8 BS 24 CAN 40 (56 8 72 H 88 X 104 h 120 x

9 HT 25 EM 41) 57 9 73 | 89 Y 105 i 121y
10 LF 26 SUB 42 * 58 74) 90 Z 106 122z
11 VT 27 ESC 45 + 59 /5 K 91 | 107k 125 {

12 FF 28 FS 44 60 < 76 L 92 A\ 108 L 124

13 CR 29 G5 45 - 61 = 77 M 93] 109 m 125 | }
14 SO 30 RS 46 . 62 > 78 N 94 ~ 110 n 126 -~
15 SI 31 US 47 / 65 ? /9 O 95 111 o 127 DEL

Q: Now, what exactly does ASCII represent?

A: ASCII is an acronym for American Standard Code for Information Interchange. This character
encoding standard assigns a unique numerical value to letters, numbers, punctuation, and
control characters for digital communication. The original 7-bit ASCII system represents 128

characters, including the English alphabet (both cases), digits, and common symbols, serving as

the basis for modern character sets like Unicode.

Using one byte (8 bits) limits a single value to 0-255; computers can use more than 8 bits.

UNIVERSITY OF BAGHDAD

09 PROGRAMMING FUNDAMENTALS

2.3 UNICODE

As time has rolled on, there are more and more ways to communicate via text.

Since there were not enough digits in binary to represent all the various characters that could be
represented by humans, the Unicode standard expanded the number of bits that can be transmitted
and understood by computers. Unicode includes not only special characters but also emojis.

While the pattern of zeros and ones is standardized within Unicode, each device manufacturer may
display each emoji slightly differently from another manufacturer. More and more features are being
added to the Unicode standard to represent further characters and emoji.

Q: Do you know what emojis are?

A: There are emoji that you probably use every day. The following may look familiar to you:

00603650

2.4RGB

Zeros and ones can be used to represent color. Red, green, and blue (called RGB) are a combination

of three numbers.

72 B35 33

Taking our previously used 72, 73, and 33, which said HI! via text, would be interpreted
by image readers as a light shade of yellow. The red value would be 72, the green value
would be 73, and the blue would be 33.

The three bytes required to represent various colors of red, blue, and green (or RGB) make up each
pixel (or dot) of color in any digital image. Images are simply collections of RGB values.

Zeros and ones can be used to represent images, videos, and music! Videos are sequences of many
images that are stored together, just like a flipbook.

Music can be represented similarly using various combinations of bytes.

2.5 ALGORITHMS

Problem-solving is central to computer science and computer programming. An algorithm is a step-
by-step set of instructions to solve a problem. Imagine the basic problem of trying to locate a single
name in a phone book.

UNIVERSITY OF BAGHDAD

10 PROGRAMMING FUNDAMENTALS

Q: How might one go about this?

A: One approach could be to simply read from page one to the next to the next until reaching

the last page.
Another approach could be to search two pages at a time.

A final and perhaps better approach could be to go to the middle of the phone book and ask,
“Is the name | am looking for to the left or to the right?” Then, repeat this process, cutting the
problem in half and half and half.

Each of these approaches could be called algorithms. The speed of each of these algorithms can be
pictured as follows in what is called big-O notation:

Notice that the first algorithm, highlighted in
red, has a big-0 of n because if there are 100
names in the phone book, it could take up to
100 tries to find the correct name. The second
algorithm, where two pages were searched at
a time, has a big-O of n/2 because we

[
=
]
w
o
=
)]
E
=

searched twice as fast through the pages. The
final algorithm has a big-O of log2n, as
doubling the problem would only result in one

more step to solve the problem. size of problem

Programmers translate text-based, human instructions into code.

2.6 PSEUDOCODE

This process of converting instructions into code is called pseudocode. The ability to create
pseudocode is central to one’s success in both this class and in computer programming.

Pseudocode is a human-readable version of your code. For example, considering the algorithm
example in 2.5, we could compose pseudocode as follows:

Pick up phone book
Open to middle of phone book
Look at page
If person is on page
Call person
Else if person is earlier in book
Open to middle of left half of book
Go back to line 3
Else if person is later in book
10 Open to middle of right half of book
11 Go back to line 3
12 Else
13 Quit

0N W N

UNIVERSITY OF BAGHDAD

11 PROGRAMMING FUNDAMENTALS

Pseudocoding is such an important skill for at least two reasons. First, when your pseudocode before
you create formal code, it allows you to think through the logic of your problem in advance. Second,
when your pseudocode, you can later provide this information to others that are seeking to understand
your coding decisions and how your code works.

Notice that the language within our pseudocode has some unique features. First, some of these lines
begin with verbs like pick up, open, look at. Later, we will call these Functions.

Second, notice that some lines include statements like if or else if. These are called Conditionals.

Third, notice how there are expressions that can be stated as true or false, such as “person is earlier
in the book.” We call these Boolean expressions.

Finally, notice how there are statements like “go back to line 3.” We call these Loops.
These building blocks are the fundamentals of programming.

In the context of Scratch, which is discussed later, we will use each of the above basic building blocks
of programming.

2.7 SCRATCH

Scratch is a visual programming language developed by MIT. Scratch utilizes the same essential
coding building blocks that we covered earlier in this lecture.

Scratch is a great way to get into computer programming because it allows you to play with these
building blocks visually, not having to be concerned about the syntax of curly braces, semicolons,
parentheses, and the like. Scratch IDE (integrated development environment) looks like the following:

- Qsettings ([Priev 4 Edn~ W Tutorisls Join Seratch Signin
&= Cod & Cost %1 Souncs = B R
@ oion
. -..c-ou-u-

RECED <

&

, goto random position ~
AN ...0 0
»
“_.H_ Sprte Spritet —] Ir o fae
A o in airection ()

ottt oo - | b B ’

arance xor ()

UNIVERSITY OF BAGHDAD

12 PROGRAMMING FUNDAMENTALS

Notice that on the left, there is a palette of building blocks you can use in your programming.
Immediately to the right of the building blocks, there is an area where you can drag blocks to construct
a program. To the right of that, you see the stage where a cat stands. The stage is where your
programming comes to life.

Scratch operates on a coordinate system, notice that the center of the stage is at coordinate (0,0).
Right now, the cat’s position is at that same position, as follows:

v |(,Y:180)

.0) (,¥:0)

(,¥:-180)

2.7.1HELLO WORLD

To begin, drag the “when green flag clicked”
building block to the programming area. Then,
drag the say building block to the programming
area and attach it to the previous block.

Notice that the input hello, world is passed to
the function say, and the side effect of that

function running is the cat saying hello, world.

Now, we can make your program more interactive by having the cat say hello to someone specific.
Modify your program as below:

What's your name?

4 - 5 lf".- -.“'\-I
C L hello, B)‘
- . l"-\.__ __.-"-'

UNIVERSITY OF BAGHDAD

13 PROGRAMMING FUNDAMENTALS

Notice that when the green flag is clicked, the function ask is run. The program prompts you, the
user, What's your name? It then stores that name in the variable called answer. The program then
passes answer to a special function called join, which combines two strings of text hello, and
whatever name was provided. Quite literally, answer returns a value to join. These collectively are
passed to the say function. The cat says, Hello, and a name. Your program is now interactive.

.-~ Why can we say that the previous program is interactive?

Notice that the inputs hello, and answer are provided to join, resulting in the side effect of hello,
Mohammed.

Quite similarly, we can modify our program as follows:

Notice that this program, when the green flag is clicked, passes the same variable, joined with hello,
to a function called speak.

2.1.2 ABSTRACTION

Along with pseudocoding, abstraction is an essential skill and concept within computer programming.
Abstraction is the act of simplifying a problem into smaller and smaller problems.

In programming, and even within Scratch, we can see abstraction in action. In your programming area,
program as follows:

Notice that you are doing the same thing repeatedly. Indeed, if you
see yourself repeatedly coding the same statements, it’s likely the
case that you could program more artfully — abstracting away this play sound. Meow ~ | il dane
repetitive code.

We can modify your code as follows:

play sound Meow « until done

play sound Meow « until done

UNIVERSITY OF BAGHDAD

14 PROGRAMMING FUNDAMENTALS

play sound Meow +» until done

Notice that the loop does exactly as the previous program did. However, the problem is simplified by
abstracting away the repetition to a block that repeats the code for us.

We can even advance this further by using the define block, where you can create your own block (your
own function)! Write code as follows:

define . meow

play sound Meow + until done

Notice that we are defining our own block called meow. The function plays the sound meow, and then
waits one second. Besides that, we can see that when the green flag is clicked, our meow function is
repeated three times.

We can even provide a way by which the function can take an

input n and repeat several times: define. meaw n Himes

Notice how n is taken from “meow n times.” n is passed to
the meow function through the define block.

Overall, notice how this process of refinement led to better

meow »+ until done

and better-designed code. Further, notice how we created our
own algorithm to solve a problem. You will be exercising both
skills throughout this course.

2.1.3 CONDITIONALS

Conditionals are an essential building block of programming, where the program looks to see if a
specific condition has been met. If a condition is met, the program does something.

UNIVERSITY OF BAGHDAD

15 PROGRAMMING FUNDAMENTALS

To illustrate a conditional, write code on the right:

&

Notice that the forever block is utilized such that the

if block is triggered repeatedly, such that it can check
continuously if the cat is touching the mouse pointer.

. . . 4 mouse-pointer = >
Remember, programming is often a process of trial
play sound Meow = until done

specific problem that you are working on right now? .

and error. If you get frustrated, take time to talk

yourself through the problem at hand. What is the

What is working? What is not working?

2.8 TUTORIAL

Now we are familiar with the basics of Scratch, let’s begin our first hands-on tutorial where we will
apply these concepts to build and test our own interactive program.

2.8.1 Catch me if you can.

Visit: https://scratch.mit.edu/projects/565479840/editor/

Notice that when the green flag is clicked, our sprite moves to the center of the stage at coordinates
(0,0) and then listens for the keyboard and checks for walls forever. we have created a custom listen
for keyboard script. For each of our arrow keys on the keyboard, it will move the sprite around the
screen, and have another custom feel for walls script. When a sprite touches a wall, it moves it back
to a safe position — preventing it from walking off the screen. We can even make a sprite follow
another sprite.

2.8.2 Pong Game

Visit: https://scratch.mit.edu/projects/1191014517/editor/

We have three sprites: the ball, paddle, and ground line. The instructions are to move the paddle with
your finger to prevent the ball from touching the ground line. When the green flag is clicked, the ball
moves in a 45° direction. If it touches the paddle, it reflects its direction to 180 minus the current
direction, and the score variable increases by 1. The paddle changes its x value according to the mouse x-
axis.

For more projects, visit: https://scratch.mit.edu/explore/projects/all

UNIVERSITY OF BAGHDAD

https://scratch.mit.edu/projects/565479840/editor/
https://scratch.mit.edu/projects/1191014517/editor/
https://scratch.mit.edu/explore/projects/all

16 PROGRAMMING FUNDAMENTALS

2.9 0&A

1. Why do computers use binary instead of the decimal system?

2. What does one byte represent, and what is its maximum value?
3. What is the advantage of representing data in binary?

4. What is ASCII used for in computer systems?

5. How does Unicode improve upon ASCII?

6. What color does the RGB combination (255, 0, 0) produce?

7. If all RGB values are equal (e.g., 128, 128, 128), what color do we get?
8. What is an algorithm?

9. Why is pseudocode important before writing a program?

10. What is the role of the “forever” block?

11. What does abstraction mean in programming?

12. What is the benefit of using loops?

13. What is a conditional statement?

14. What happens inside a “forever if” loop?

Answers

"aNJ] S8WO023(
1l JBABUSYM UOIIO0D 3yl S81NI3Xd PUD UOIIPUOD 3yl Ssy28yd Ajsnonuinuod wpoiboud ayl &1
‘dNJ1 SI UOIIPUOD D JI
AJUO SUOI10D UIP1J8D BUIINISXd — SUOISIDBP 3YPW 01 WNIBoId D SMO||D 1Yl JUBWSIDIS V €T
"9|PPPaJ PUD UV dJow swpiboid axpw pup uolliladal 8pod adnpal sdoo] "ZT
‘S|1019p AIpssadsuun Buiply
pup supd s|qoaboubw aJ0W ‘Id||PWS OjuUl 31 Bupjpaiq Ag walsAs xa|dwod b BulAyjdwis "TT
‘Buiuuni s1 wpiboud ayi 41 A|SNONUIIUOD SPUDWIWIOD PASO|dUd 3y} sipadal 1| ‘0T
‘Buipod
910Jaq wJo} 3|qppbal-upbwny ul woiboid syl jo 2160] ayl azijpnsiA pup up|d sdjay 3
‘wa|qold o14199ds b aA|0s 01 ainpadold days-Ag-dals
‘ApJb Jo sppys vy

6 N 0 O

‘paJ aind
‘sifowa 91| SJoqWAS pub d1qpJy Bulpn|oul
‘seabpnbup| [|O wol} SI9100IDYD spioddns 1pyl PJOPUDIS |PSISAIUN D SaplAold Spodlun G
(59 = .V, “b'9) pupisispun upd
sJ91ndwod 1Dyl S9POD dBWNU OlUl S|oquAS pub ‘s1BIp ‘si9119| ysi|bug sapodud ||JSY ¥
*$$9204d UDD SIDMPIDY 1DY] 10WIOS |PYBIP D Ul — PUNOS PUD
‘sabpul ©1xa1 — p1PP Jo sadA] ||p BulipodUS J0J poyldw [pPsISAIUN ‘Bjdwis b sapliAold Aupulg €
"(§52—-0) suonpulquod 96z 1uasaidal upd pup s1iq g s|pnbs a1Ag suQ 'z
"WIa1SAs 9|gpI|a] PUD JUSIDIHS 1SOW ay] uollpluasasdal Aiouiq Buppw — (0) 440 pup (T)
UO — S91D1S 3|gDIS OM] SADY 1DY] SJ01SISUDI] UO Pasb(g S| aiomploy Jaindwod asnpdag T

UNIVERSITY OF BAGHDAD

17 PROGRAMMING FUNDAMENTALS

2.10 LAB

1. Let’s try to make some changes to modify the previous example (Pong game) by adding a
paddle, one on the right and the other on the left. To control their movement, they should use
the keyboard. The player who fails to block the ball three times will lose the game, as shown
below. Keep in mind that the game should not fall into the redundancy issue (direction).

score p1 score p2

2. One of the most popular games is Maze, as shown below. Use the arrow keys to move your
character through the maze and reach the bowl. If you reach it, the bowl! will say “You win!”
Avoid touching the maze walls—any contact sends you back to the starting point. Watch out

for the horizontally moving enemy; if it touches you, the game is over.

¢
®

+ In Pong-game, add score to 10 (instead of 3 rounds) and increase speed after score number 5.
+ In Pong-game, instead of two-players, try to challenge simple Al paddle (follows ball with delay).
+ In Maze game, increase enemy speed after n second.

Extra jobs:

UNIVERSITY OF BAGHDAD

