$$= a*(x*b^{-1})$$

$$= (a*x)*b^{-1}$$

$$= (x*a)*b^{-1} (since b \in Cent (G))$$

$$= x*(a*b^{-1})$$

- \therefore (a*b⁻¹) \in Cent(G)
- \therefore (Cent(G),*) is a subgroup of (G, *).

Theorem 2.20: Let (G, *) be a group. Then

 $Cent(G) = G \Leftrightarrow G \text{ is a commutative group.}$

<u>Proof:</u> $(\Rightarrow) \forall a \in G \Rightarrow a \in Cent(G)$

$$\therefore$$
 a*x = x*a, \forall x \in G

$$\therefore$$
 a*x = x*a, \forall x, a \in G

- ∴ G is commutative group
- (\Leftarrow) Suppose that G is commutative group.

To prove, Cent(G) = G, (i.e) To prove, $Cent(G) \subseteq G \land G \subseteq Cent(G)$

By definition of Cent(G) we have Cent(G) \subseteq G.

To prove, $G \subseteq Cent(G)$

Let $x \in G$, G is commutative group $\Rightarrow x*a = a *x$, $\forall a \in G$

- $\therefore x \in Cent(G) \Rightarrow G \subseteq Cent(G)$
- \therefore Cent G = G

Cyclic Groups

الزمر الدوارة أو (الزمر الدائرية)

<u>Definition 2.21:</u> Let (G, *) be a group and $a \in G$,

(1) the **cyclic subgroup of G generated by** *a* is denoted by *<a>a>* and defined as

$$<\!\!a>=\{a^{\bf k}\!:{\bf k}\in{\bf Z}\}=\{...,\!a^{-1}$$
 , a^0 , a^1 , ...} $a\in{\bf G}$ الزمرة الجزئية الدائرية المتولدة بالعنصر

<u>Definition 2.22:</u> A group (G, *) is called **cyclic group generated by** a iff ∃ a ∈ G such that

$$G = \langle a \rangle = \{ a^k : k \in \mathbb{Z} \}$$

Examples 2.23: In $(Z_9, +_9)$ find the cyclic subgroup generated by $\overline{2}$, $\overline{3}$, $\overline{1}$ **Solution:**

$$\langle \overline{2} \rangle = \{ \alpha^k : k \in \mathbb{Z} \} = \{ \dots, (\overline{2})^{-3}, (\overline{2})^{-2}, (\overline{2})^{-1}, (\overline{2})^0, (\overline{2})^1, (\overline{2})^2, (\overline{2})^3, \dots \}$$
$$= \{ \dots, \overline{3}, \overline{5}, \overline{7}, \overline{0}, \overline{2}, \overline{4}, \overline{6}, \dots \} = \{ \overline{0}, \overline{1}, \overline{2}, \dots, \overline{8} \} = \mathbb{Z}_9$$

 \therefore Z₉ is cyclic group generated by $\bar{2}$

$$\begin{split} <\overline{3}> = & \{..., (\overline{3})^{-3}, (\overline{3})^{-2}, (\overline{3})^{-1}, (\overline{3})^{0}, (\overline{3})^{1}, (\overline{3})^{\overline{2}}, (\overline{3})^{3}, ... \} \\ = & \{..., \overline{3}, \overline{6}, \overline{0}, \overline{3}, \overline{6}, \overline{0}, ... \} = \{\overline{0}, \overline{3}, \overline{6}\} \text{ is a cyclic subgroup of } Z_{9} \\ <\overline{1}> = & \{..., (\overline{1})^{-3}, (\overline{1})^{-2}, (\overline{1})^{-1}, (\overline{1})^{0}, (\overline{1})^{1}, (\overline{1})^{2}, (\overline{1})^{3}, ... \} \\ = & \{..., \overline{6}, \overline{7}, \overline{8}, \overline{0}, \overline{1}, \overline{2}, \overline{3}, ... \} = \{\overline{0}, \overline{1}, \overline{2}, ..., \overline{8}\} = Z_{9} \end{split}$$

 \therefore Z₉ is a cyclic group generated by $\bar{1}$

Examples 2.24: In (Z, +) fined a cyclic group generated by 1, 2, -1. **Solution:**

$$<1> = \{1^k : k \in Z\} = \{...,1^{-3},1^{-2},1^{-1},1^0,1^1,1^2,1^3,...\}$$

$$= \{...,-3,-2,-1,0,1,2,3,...\} = Z$$

$$<2> = \{2^k : k \in Z\} = \{...,2^{-3},2^{-2},2^{-1},2^0,2^1,2^2,2^3,...\}$$

$$= \{...,-6,-4,-2,0,2,4,6,...\} \neq Z$$

$$<-1> = \{(-1)^k : k \in Z\}$$

$$= \{...,(-1)^{-3},(-1)^{-2},(-1)^{-1},(-1)^0,(-1)^1,(-1)^2,(-1)^3,...\}$$

$$= \{...,2,1,0,-1,-2,...\} = Z$$

 \therefore (Z, +) is cyclic group generated by 1 and – 1.

Examples 2.25: Is (S_3, \circ) cyclic group?

Solution:
$$\langle f_1 \rangle = \{f_1\} \neq S_3$$

 $\langle f_2 \rangle = \{f_2^k : k \in Z\} = \{\dots, f_2^{-2}, f_2^{-1}, f_2^0, f_2^1, f_2^2, \dots\}$
 $= \{\dots, f_2, f_3, f_1, f_2, f_3, \dots\} = \{f_1, f_2, f_3\} \neq S_3$
 $\langle f_3 \rangle = \{f_1, f_2, f_3\} \neq S_3$
 $\langle f_4 \rangle = \{f_1, f_4\} \neq S_3$
 $\langle f_5 \rangle = \{f_1, f_5\} \neq S_3$
 $\langle f_6 \rangle = \{f_1, f_6\} \neq S_3$
 \vdots (Solving not cyclic group)

 \therefore (S_3 , \circ) is not cyclic group.

Examples 2.26: Is (G, \cdot) cyclic group, such that $G = \{1, -1, i, -i\}$? **Solution:**

$$<1> = \{1^k : k \in Z\} = \{...,1^{-3},1^{-2},1^{-1},1^0,1^1,1^2,1^3,...\}$$

$$= \{...,-1,1,-1,1,1,1,1,...\} = \{1,-1\} \neq G$$

$$<-1> = \{(-1)^k : k \in Z\}$$

$$= \{...,(-1)^{-3},(-1)^{-2},(-1)^{-1},(-1)^0,(-1)^1,(-1)^2,(-1)^3,...\}$$

$$= \{...,1,1,1,-1,1,-1,...\} = \{1,-1\} \neq G$$

$$= \{i^k : k \in Z\} = \{...,i^{-2},i^{-1},i^0,i^1,i^2,i^3,...\}$$

$$= \{...,-1,i,1,i,-1,-i,...\} = \{1,-1,i,-i\} = G$$

$$<-i> = \{(-i)^k : k \in Z\} = \{...,(-i)^{-2},(-i)^{-1},(-i)^0,(-i)^1,(-i)^2,(-i)^3,...\}$$

$$= \{...,-1,i,1,-i,-1,i,...\} = \{1,-1,i,-i\} = G$$

 \therefore (G,·) is a cyclic group generated by i and – i.

Examples 2.27: In $(Z_6, +_6)$ find cyclic group generated by $\bar{1}, \bar{2}, \bar{5}$ (Home Work)

Theorem 2.28: Every cyclic group is commutative.

Proof: Let (G, *) be acyclic group

 $\exists a \in G \text{ s.t. } G = \langle a \rangle = \{a^k : k \in Z\}. \text{ To prove, } G \text{ is commutative group}$ Let $x, y \in G$. To prove, $x*y = y*x, \forall x, y \in G$

$$x \in G = \langle a \rangle \Rightarrow x = a^m \ni m \in Z \text{ and } y \in G = \langle a \rangle \Rightarrow y = a^n \ni n \in Z$$

 $x * y = a^m * a^n = a^{m+n} = a^{n+m} = a^n * a^m = y * x$

: G is commutative group.