Chapter Two: Subgroups and Cyclic Groups الفصل الثاني: الزمر الجزئية والزمر الدائرية

Definition 2.1:

Let (G, *) be a group and $H \subseteq G$, H is a non-empty subset of G. Then (H, *) is a subgroup of (G, *) if (H, *) is itself a group.

Definition 2.2:

Let (G, *) be a group and $H \subseteq G$, Then (H, *) is subgroup of G if:

- (1) $\forall a, b \in H \Rightarrow a * b \in H$
- (2) The identity element of G is an identity element of H. $e \in G \Rightarrow e \in H$
- (3) $\forall a \in H \Rightarrow a^{-1} \in H$

Remark 2.3:

Each group (G, *) has at least two subgroup ({e}, *) and (G, *), these subgroups are known **trivial subgroups** or **improper**, any subgroup different from these subgroups known a **proper subgroup**.

Examples 2.4:

- (1) (Z, +) is a proper subgroup of (R, +)
- (2) $H = \{1, -1\} \subseteq \{1, -1, i, -i\}$, then (H, .) is a subgroup of $(\{1, -1, i, -i\}, .)$
- (3) $H = {\bar{0}, \bar{2}} \subseteq Z_4$

(H, +4) is a proper subgroup of $(Z_4, +4)$.

But $\{\overline{0}, \overline{3}\}$ is not subgroup of $(Z_4, +_4)$.

Since $\overline{3} +_4 \overline{3} = \overline{6} \pmod{4} = \overline{2} \notin {\overline{0}, \overline{3}},$

it follows that closure is not true in $\{\overline{0}, \overline{3}\}$.

(4) $(Q\setminus\{0\}, \times)$ is a subgroup of $(R\setminus\{0\}, \times)$.

Theorem 2.5: Let (G, *) be a group and $\phi \neq H \subseteq G$. Then (H, *) is a subgroup of (G, *) iff $a * b^{-1} \in H$, $\forall a, b \in H$

Proof:

- (⇒) let (H, *) be a subgroup and a, b ∈ H, then a, b^{-1} ∈ H ⇒ a * b^{-1} ∈ H (since * closure)
- (\Leftarrow) Let a * b^{-1} ∈ H To prove, (H, *) is subgroup
- (1) Since $H \neq \phi \Longrightarrow \exists b \in H \text{ s.t. } b * b^{-1} \in H \Longrightarrow e \in H$.
- (2) Since $b \in H$ and $e \in H \implies e * b^{-1} \in H \implies b^{-1} \in H$
- (3) Let $a \in H$ and $b^{-1} \in H$ [by (2)] $\Rightarrow a * (b^{-1})^{-1} \in H \Rightarrow a * b \in H$
- \therefore By definition (2.2) \Rightarrow (H, *) is a subgroup of (G, *)

Example 2.6: Let (Z, +) be a group and $H = \{5a: a \in Z\}$.

Show that (H, +) is a subgroup of (Z, +)

Solution: By Theorem (2.5) above, let $x, y \in H$, To prove, $x + y^{-1} \in H$

$$x \in H \Longrightarrow x = 5a$$
, $a \in Z$, $y \in H \Longrightarrow y = 5b$, $b \in Z$

$$x + y^{-1} = 5a + (5b)^{-1} = 5a + 5(-b)$$

= $5\underbrace{(a - b)}_{\in Z} \in H$

 \Rightarrow (H, +) is a subgroup of (Z, +)

Theorem 2.7: If $(H_i, *)$ is the collection of subgroups of (G, *), then $(\cap H_i, *)$ is also subgroup of (G, *)

Proof:

- (1) Since $\exists e \in H_i, \forall i \Longrightarrow e \in \cap H_i \Longrightarrow \cap H_i \neq \emptyset$
- (2) Let $x, y \in \cap H_i$ To prove, $x * y^{-1} \in \cap H_i$ Since $x, y \in \cap H_i \implies x, y \in H_i \ \forall i$ $\implies x * y^{-1} \in H_i$, $\forall i$ (since H_i subgroups) $\implies x * y^{-1} \in \cap H_i$
- \therefore (\cap H_i, *) is subgroup of (G, *)

Theorem 2.8: Let $(H_i, *)$ is the collection of subgroups of (G, *) and let H_k , $H_j \in \{H_i\}$ such that $\exists H_\ell \in \{H_i\}$, $H_k \subseteq H_\ell$ and $H_j \subseteq H_\ell$, then $(\cup H_i, *)$ is also subgroup.

Proof:

- (1) Since $\exists e \in H_i$ for some $i \Longrightarrow e \in \bigcup H_i \Longrightarrow \bigcup H_i \neq \emptyset$
- (2) Let $x, y \in \bigcup H_i$, then $x, y \in H_k$ or $x, y \in H_j$, so $x, y \in H_\ell$ $\Rightarrow x * y^{-1} \in H_\ell$, (since H_ℓ subgroup) $\Rightarrow x * y^{-1} \in \bigcup H_i$
- \therefore (UH_i, *) is subgroup of (G, *)

Theorem 2.9: Let $(H_1, *)$ and $(H_2, *)$ are two subgroups of (G, *) then $(H_1 \cup H_2, *)$, is a subgroup of (G, *) iff $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.

<u>Proof:</u> (\Rightarrow) Let ($H_1 \cup H_2$, *) is a subgroup, To prove, $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$

Suppose that $H_1 \not\subset H_2$ and $H_2 \not\subset H_1$

 $\therefore \exists \ a \in H_1, a \notin H_2 \text{ and } \exists \ b \in H_2, b \notin H_1$

 $\therefore a * b \in H_1 \cup H_2 \implies a * b^{-1} \in H_1 \cup H_2$

 \Rightarrow a * b⁻¹ \in H₁ or a * b⁻¹ \in H₂

 \Rightarrow a, b \in H₁or a, b \in H₂ C!!!! (تناقض)

 $\therefore H_1 \subseteq H_2 \text{ or } H_2 \subseteq H_1$

 (\Leftarrow) Let $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$ To prove, $(H_1 \cup H_2, *)$ is a subgroup

If $H_1 \subseteq H_2 \implies H_1 \cup H_2 = H_2$ is a subgroup.

If $H_2 \subseteq H_1 \Longrightarrow H_1 \cup H_2 = H_1$ is a subgroup

 \therefore H₁ U H₂ is a subgroup in two cases.

Remark 2.10: $(H_1 \cup H_2, *)$ need not be a subgroup of (G, *).

For example:

 $H_1 = \{r_1, r_3\}$ is a subgroup of G_s , and $H_2 = \{r_1, v\}$ is a subgroup of G_s . But $H_1 \cup H_2 = \{r_1, r_3, v\}$ is not a subgroup of G_s , since $r_3 \circ v = h \notin H_1 \cup H_2$