<u>Definition 1.9:</u> (Mathematical System)

A Mathematical System or (Mathematical Structure) is a non-empty set of elements with one or more binary operations defined on this set.

Example 1.10:

 $(R, +), (R, .), (R, -), (R \setminus \{0\}, \div), (R, +, .), (N, +), (E, +, \times)$ are Math. System. But $(N, -), (R, \div), (0, +, -)$ are not Math. System.

Definition 1.11: (Semi group)

A semi group is a pair (S, *) in which S is an empty set and * is a binary operation on S with associative law.

- (i.e.) (S,*) is semi group \Leftrightarrow (1) $S \neq \emptyset$,
 - (2) * is a binary operation,
 - (3) $\forall a, b, c \in S$, (a *b) *c = a *(b *c).

Example 1.12:

- (1) $(Z, +), (Z, \times), (N, +), (N, \times), (E, +), (E, \times)$ are semi groups.
- (2) $(0, +), (Z, -), (E, -), (R \setminus \{0\}, \div)$ are not semi groups.

Definition 1.13: (The identity element)

Let (S,*) be a Mathematical System and $e \in S$. Then e is called an identity element if $a*e=e*a=a, \forall a \in S$.

Definition 1.14: (The inverse element)

Let (S,*) be a Mathematical System and $a, b \in S$. Then b is called an inverse of a if a*b=b*a=e and dented by $b=a^{-1}$.

Definition 1.15: (The Group)

The pair (G,*) is a group iff (G,*) is a semi group with identity in which each element of G has an inverse.

<u>Definition 1.16:</u> (The Group)

A group (G,*) is a non-empty set G and a binary operation * , such that the following axioms are satisfied:

(1) The binary operation * is associative.

(i.e.)
$$(a * b) * c = a * (b * c), \forall a, b, c \in G$$

(2) There is an element e in G such that

$$a * e = e * a = a, \forall a \in G.$$

This element e is an identity element for * on G.

(3) For each a in G, there is an element b in G such that

$$a*b=b*a=e$$
.

The element b is an inverse of a and denoted by a^{-1} .

Remark 1.17:

Every group is a semi group but the converse is not true as in the following example shows.

(N, +) is a semigroup but not group because $\nexists a^{-1} \in N, \forall a \in N$.

<u>Definition 1.18:</u> (Commutative group)

A group (G,*) is called a Commutative group iff a*b=b*a, $\forall a,b \in G$.

Example 1.19:

- (1) (Z, +), (E, +), (Q, +), (C, +) are commutative groups.
- (2) $(Z^+, +)$ is not a group because there is no identity element for + in Z^+ .
- (3) (Z^+, \times) is not a group because there is an identity element 1 but no inverse of 5.
- (4) $(G = \{1, 0, -1, 2\}, +)$ is not group since + is not a binary operation on G, $1+2=3 \notin G$.
- (5) $(G = \{1, -1\}, \times)$ is comm. Group.
- (6) $(R\setminus\{0\},\times)$, $(Q\setminus\{0\},\times)$, $(C\setminus\{0\},\times)$ are comm. Groups.

Example 1.20: Let $G = \{a, b, c, d\}$ be a set. Define operation * on G by the following table. (**Klein 4-group**)

1 /				
*	а	b	С	d
а	а	b	С	d
b	b	С	d	а
С	С	d	а	b
d	d	а	b	С

Is (G,*) a commutative group?

Solution:

- (1) Closure is true.
- (2) Asso. ?

$$(a * b) * c = a * (b * c) ?$$

 $b * c = a * d$
 $d = d$
 $b * (a * c) = b * c = d = (b * a) * c$
 $c * (a * b) = c * b = d = (c * a) * b$
 $d * (a * c) = d * c = b = (d * a) * c$

 \Rightarrow * is asso.

- (3) The identity: To prove $\exists e \in G \ s.t. \ a * e = e * a = a, \forall a \in G.$ a * a = a, b * a = b, c * a = c, d * a = d. $\Rightarrow e = a$ is an identity element of G.
- (4) The inverse: $a * a = a \Rightarrow a^{-1} = a$ $b * d = a \Rightarrow b^{-1} = d$ $c * c = a \Rightarrow c^{-1} = c$ $a * a = a \Rightarrow a^{-1} = a$ $d * b = a \Rightarrow d^{-1} = b$
- (5) Comm. ? a*b=b*a ? b=b a*c=c*a=c a*d=d*a=d b*c=c*b=d b*d=d*b=ac*d=d*c=b

 \Rightarrow * is a comm.

Therefore (G,*) is a comm. group and called **Klein 4-group**.