Definition 1.44:

The set of all congruence classes modulo n is denoted by Z_n (which is read $Z \mod n$). Thus

$$Z_n = \{ [0], [1], [2], \dots, [n-1] \}, \text{ or }$$

$$Z_n = {\overline{0}, \overline{1}, \overline{2}, \dots, \overline{n-1}}$$

 Z_n has n elements.

Example 1.45:

$$Z_1 = {\overline{0}}, \qquad Z_2 = {\overline{0}, \overline{1}}, \qquad Z_3 = {\overline{0}, \overline{1}, \overline{2}}.$$

Now, we define addition on \mathbb{Z}_n (write $+_n$) by the following

$$[a] +_n [b] = [a +_n b], \forall [a], [b] \in \mathbb{Z}_n$$

Similarly, we define multiplication on \mathbb{Z}_n (write "." by the following:

[a]
$$._n$$
 [b] = [a $._n$ b], \forall [a], [b] \in Z_n

It is easy to see that:

- [1] $(Z_n, +_n)$ is an abelian group with identity [0] and for every $[a] \in Z_n$, $[a]^{-1} = [n-a]$. This group is called the Additive Group of Integers Modulo n.
- [2] Also, $(Z_n, ...)$ is abelian semi group with identity [1]. It is called the Multiplicative Semi Group of Integers modulo n.

Example 1.46:
$$(Z_4, +_4), Z_4 = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3} \}$$

- (1) Closure is true
- (2) Asso. is true
- (3) $\overline{0}$ is an identity element
- (4) Inverse:

$$\bar{1}^{-1} = \bar{4} - \bar{1} = \bar{3}$$
 $\bar{2}^{-1} = \bar{4} - \bar{2} = \bar{2}$
 $\bar{3}^{-1} = \bar{4} - \bar{3} = \bar{1}$

(5) Comm :

$$\overline{1} + \overline{2} = \overline{3} = \overline{2} + \overline{1}$$

 $\overline{1} + \overline{3} = \overline{0} = \overline{3} + \overline{1}$

 $:. (Z_4, +_4)$ is a Comm.group.

+4	Ō	1	2	3
Ō	Ō	1	2	3
1	1	2	3	$\bar{0}$
2	2	3	Ō	1
3	3	Ō	1	2

Example 1.47: $(Z_4, ._4), Z_4 = \{ \overline{0}, \overline{1}, \overline{2}, \overline{3} \}$

It is clear that we cannot have a group. Since the number $\overline{1}$ is identity, but the numbers $\overline{0}$ and $\overline{2}$ have no inverse. It follows that $(Z_4, ._4)$ is not a group, but it is semi group.

•4	Ō	1	2	3
Ō	Ō	Ō	Ō	Ō
1	Ō	1	2	3
2	Ō	2	Ō	2
3	Ō	3	2	Ī

Example 1.48: Find the order of G and the order of each element of (G, *), such that $(G, *) = (Z_8, +_8)$.

Solution:

$$Z_8 = \{ \ \overline{0} \ , \ \overline{1} \ , \ \overline{2} \ , \ \overline{3} \ , \ \overline{4} \ , \ \overline{5} \ , \ \overline{6} \ , \ \overline{7} \ \} \ , \ e = \overline{0}$$

 $o(Z_8) = 8$ since (The number of elements of a group $Z_8 = 8$)

The order of an element $a, a \in Z_8$ is the least positive integer n such that $a^n = \overline{0}$, where $\overline{0}$ is the identity element of Z_8 .

$$o(\overline{0}) = 1$$
 since $(\overline{0})^1 = \overline{0} = e$

$$o(\bar{1}) = 8$$
 since $(\bar{1})^8 = \bar{1} + \bar{1} = \bar{8} = \bar{0} = e$

$$o(\overline{2}) = 4$$
 since $(\overline{2})^2 = \overline{2} + \overline{2} + \overline{2} + \overline{2} = \overline{8} = \overline{0} = e$

o(
$$\bar{3}$$
) = 8 since ($\bar{3}$)⁸ = $\bar{3}$ + $\bar{3}$ = $\bar{2}4$
= $\bar{8}$ + $\bar{8}$ + $\bar{8}$ = $\bar{0}$ + $\bar{0}$ + $\bar{0}$ = $\bar{0}$ = e

$$o(\bar{4}) = 2$$
 since $(\bar{4})^2 = \bar{4} + \bar{4} = \bar{8} = \bar{0} = e$

$$o(\overline{5}) = 8$$
 since $(\overline{5})^8 = \overline{5} + \overline{5} = \overline{40}$
= $(\overline{8})^5 = \overline{(0)}^5 = \overline{0} = e$

$$o(\overline{6}) = 4$$
 since $(\overline{6})^8 = \overline{6} + \overline{6} + \overline{6} + \overline{6} = \overline{24} = \overline{0} = e$

$$o(\overline{7}) = 8$$
 since $(\overline{7})^8 = \overline{56} = \overline{0} = e$

Exercises (4):

(Home Work 4).

- 1. Find the order of Z_6 and the order of each element of $(Z_6, +_6)$.
- 2. Find the order of \mathbb{Z}_9 and the order of each element of $(\mathbb{Z}_8, +_8)$.
- 3. Find the order of Z_6 and the order of each element of $(Z_9, +_9)$.

The Permutations:

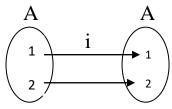
(التباديل)

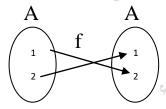
Definition 1.49: A Permutation or symmetric of a set A is a function from A in to A that is both one to one and on to.

$$f: A \xrightarrow{1-1,onto} A$$

Symm $(A) = \{f \mid f: A \xrightarrow{1-1,onto} A\}$ the set of all permutation on A. If A is the finite set $\{1, 2, ..., n\}$, then the set of all permutation of A is denoted by S_n or P_n and $o(S_n) = n!$, where n! = n (n-1) ... (3)(2) (1)

Example 1.50: Let $A = \{1, 2\}$. Write all permutation on A.





Symm(A) = {i, f} = {
$$\begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} }.$$

Example 1.51: Let
$$A = \{1, 2, 3\}$$
. Write all permutation on A .
$$f_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, f_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, f_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$f_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, f_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, f_6 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}.$$

$$P_3 = Symm(A) = \{f_1, f_2, f_3, f_4, f_5, f_6\}$$

o $(P_3) = 3! = (3)(2) = 6$

Theorem 1.52: If $A \neq \varphi$, then the set of all permutation on A Forms agroup with composition of Mapps.

(i.e.) Let $A \neq \varphi$, then (Symm(A), o) is a group.

Proof:

 $\overline{\text{Symm}}(A) = \{ f | f: A \xrightarrow{1-1,onto} A \text{ is a mapp.} \},$

To prove, (Symm(A), 0) is a group.

since $\exists i_A: A \xrightarrow{1-1,onto} A$ a perm. on A

 $i_A \in \text{Symm}(A) \implies \text{Symm}(A) \neq \varphi.$