نظرية النرمر **Groups Theory**

University of Baghdad – College of Education for Pure Sciences - Ibn Al-Haitham - Department of Mathematic 2th Stage Year 2024 – 2025

> أ. د. فباطهه فيبصبل كبريب أ. د. پـوسـف يـعكـوب پـوســة

CONTENTS

Chapter One	Groups Theory	1 - 23
Chapter Two	Subgroups and Cyclic Groups	24 - 43
Chapter Three	Normal Subgroups and Quotient Groups	44 - 57
Chapter Four	Isomorphic Groups	58 – 76
Chapter Five	Some Applications of Groups	77 – 91

المصادر العربية:

[1] مقدمة في الجبر المجرد الحديث. تاليف ديفيد بيرتون وترجمه عبد العالي

English References

- [1] Introduction to modern abstract algebra. By David M. Burton.
- A first course in abstract algebra. By J.B. Fraleigh.
- [3] Group theory. By M. Suzuki

Chapter One : Groups Theory الفصل الاول : نظرية الزمر

Definition 1.1: Binary Operations

Let A be a non empty set. A binary operation on a set A is a function from $A \times A$ into A. (i.e.)

 $*: A \times A \rightarrow A$ is a binary operation iff

- (1) $a * b \in A, \forall a, b \in A$ (Closure)
- (2) If $a, b, c, d \in A$ such that a = c and b = d, then a * b = c * d (well-define).

Remark 1.2: Some time we used the symbols *, $_{0}$, #, \bigcirc , ... to denote a binary operation.

Example 1. 3:

- (1) The operations $\{+, \times\}$ are binary operations on R, Z, Q, C.
- (2) The operation "-" is not binary operation on N.
- (3) The operations $\{+, -\}$ are not binary operations on 0 (odd number).
- (4) The operation \div is abinary operation on $R\setminus\{0\}$, $Q\setminus\{0\}$, $C\setminus\{0\}$.

Example 1.4:

Let a * b = a + b + 2, $\forall a, b \in Z^+$. Is * a binary operation on Z^+ ?

Solution:

- (1) Closure: Let $a, b \in Z^+$, then $a * b = \overbrace{a+b}^{\in Z^+} + 2 \in Z^+$.
- (2) well-define: Let $a, b, c, d \in A$ such that a = c and b = d, then a * b = a + b + 2 = c + d + 2 = c * d \Rightarrow * is a binary operation on Z^+ .

Example 1.5:

Let $a * b = a^b, a, b \in Z$. Is * is a binary operation on Z.

Solution:

(1) Closure : if a = 3 and b = -1. Then $a * b = 3^{-1} = \frac{1}{3} \notin \mathbb{Z}$ \Rightarrow * is not a binary operation on \mathbb{Z} . Exercises (1): which of the following are binary operations?

[1]
$$a * b = a + b, \forall a, b \in R \setminus \{0\}.$$

[2]
$$a \odot b = \frac{a}{b}, \forall a, b \in Z.$$

[3]
$$a \# b = a + b - 3, \forall a, b \in N.$$
 (Home Work 1).

[4]
$$a_0 b = a + 2b - 5, \forall a, b \in R.$$

[5]
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}, \forall \frac{a}{b}, \frac{c}{d} \in Q \setminus \{0\}.$$

<u>Definition 1.6:</u> (Commutative)

A binary operation * on a set A is called a commutative if and only if $a*b=b*a \ \forall \ a,b\in A$.

<u>Definition 1.7:</u> (Associative)

A binary operation * on a set A is called an associative if

$$(a * b) * c = a * (b * c) \forall a, b, c \in A.$$

Example 1.8: Let R be a set of real numbers and * be a binary operation on R defined as a*b=a+b-ab. Is * commutative and associative.

Solution:

Let $a, b \in R$, then

$$a * b = a + b - ab = b + a - ba = b * a$$

Which implies that * is commutative.

Let $a, b, c \in R$, then

$$(a * b) * c = (a + b - ab) * c$$

= $(a + b - ab) + c - (a + b - ab)c$
= $a + b + c - ab - ac - bc + abc \dots (1)$

$$a * (b * c) = a * (b + c - bc)$$

= $a + (b + c - bc) - a(b + c - bc)$
= $a + b + c - bc - ab - ac + abc \dots (2)$

 \Rightarrow (1) = (2) \Rightarrow * is associative.

Exercises (2): Which of the following binary operations is a comm., asso.?

$$[1] \quad a*b=a-b, \quad \forall a,b\in Z.$$

[2]
$$a \odot b = 2ab$$
, $\forall a, b \in E$. (Home Work 2).

[3]
$$a \# b = a^3 + b^3$$
, $\forall a, b \in R$.