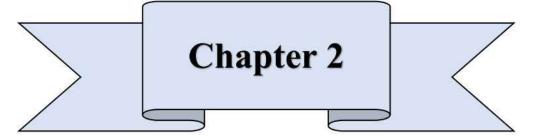


جامعة بغداد كلية التربية للعلوم الصرفة - ابن الهيثم قسم الرياضيات

المرحلة الثانية

المعادلات التفاضلية الاعتيادية

Ordinary Differential Equations



أساتذة المادة

م .د. مي محمد هلال

م. اسماء عبد عصواد

1.
$$(x^2 + 1 - 4xy - 2y^2)dx - (2x^2 + 4xy - y^3 + 2)dy = 0$$

$$2. ysec^2x dx + tan x dy = 0$$

3.
$$\cos y \, dx + (y^2 - x \sin y) \, dy = 0$$

$$4. e^x y^2 dx + 2e^x y dy = 0$$

2.5: Integral factors:

If the equation (M(x,y)dx + N(x,y)dy = 0) is not exact, then we multiply both sides by a factor I(x,y) that turns it into an exact, and this factor is called the integral factor.

(اذا كانت المعادلة غير تامة، عندها نقوم بضرب طرفي المعادلة ب I(x,y) لتحويلها الى تامة) ملاحظة: 1. يسمى I(x,y) عامل التكامل.

2. وظيفة عامل التكامل هي تحويل المعادلة غير التامة الى معادلة تامة

3. يختلف عامل التكامل من معادلة الى اخرى حسب شكل المعادلة كما مبين بالجدول الاتى:

N.	M(x,y)dx + N(x,y)dy	$\mathbf{I}(\mathbf{x},\mathbf{y})$ عامل التكامل	التعويض المناسب Z

1	اذا کان		
1			
i	$\frac{M_y - N_x}{N} = f(x) \Rightarrow$	$I(x) = e^{\int f(x)dx}$	تصبح المعادلة تامة وتحل حسب التامة
ii	$\frac{M_y - N_x}{-M} = f(y) \Rightarrow$	$I(y) = e^{\int f(y)dy}$	
2	في حال ان	$\chi^m y^n$ نضرب المعادلة ب	تصبح المعادلة تامة وتحل حسب
	$\frac{M_y - N_x}{N} \neq f(x)$	$rac{\partial M}{\partial y} = rac{\partial N}{\partial x}$ ونعوض في	التامة
	$\frac{M_y - N_x}{-M} \neq f(y)$	لايجاد قيم لمعرفة عامل التكامل المطلوب	
3	ydx - xdy	$(xy)^{-1}, x^{-2}, y^{-2}$	$ln\frac{x}{y}$ or $\frac{x}{y}$ or $\frac{y}{x}$ or:
	Or: xdy – ydx	$Or: (ax^2 + bxy + cy^2)^{-1}$	$\int \left\{ a + b \left(\frac{y}{x} \right) + c \left(\frac{y}{x} \right)^2 \right\} d \left(\frac{y}{x} \right)$
4	pydx + qxdy	$x^{p-1}y^{q-1}$	$z = x^p y^q$
5	ydx + xdy	1	z = xy
6	pxdx + qydy	1	$z = \frac{1}{2}(px^2 + qy^2)$
7	dy + P(x)ydx	$I=e^{\int p(x)dx}$	$z=y.e^{\int p(x)dx}$
	$or: dx + \propto (y)xdy$		5

ASMAA ABD AND MAY MOHAMMED 45

Chapter 2: The Ordinary differential equations of the first order and first degree

وتسمى المعادلة من هذا	$I = e^{\int \alpha(y)dy}$	$z = xe^{\int \alpha(y)dy}$
النوع بالمعادلة الخطية		

Now, we will explain each of these cases using examples

Case 1:

Multiplying the equation (M(x, y)dx + N(x, y)dy = 0) by I(x,y) we get:

(I.M(x,y)dx + I.N(x,y)dy = 0), where I,M,N are functions of x and y.

Deriving IM w.r.t. y and IN w.r.t. x

$$\rightarrow \frac{\partial (I M)}{\partial y} = I M_y + I_y M$$

$$\frac{\partial (I\ N)}{\partial x} = I\ N_x + I_x N$$

$$ightarrow rac{\partial (IM)}{\partial y} = rac{\partial (IN)}{\partial x}$$
, (بأعتبار ان I هو عامل التكامل)

then $I M_y + I_y M = I N_x + I_x N$

Now we have two cases

1. If I(x, y) = I(x), that is I is a function just for (x).

Then

$$I_x=rac{dI}{dx}$$
 , $I_y=0$ (عامل التكامل دالة ل x فقط)

Sub. in (*), we get

$$I[M_y - N_x] = N \frac{dI}{dx}$$

$$\rightarrow \frac{dI}{I} = \frac{M_y - N_x}{N} dx$$

Let
$$P(x) = \frac{M_y - N_x}{N}$$
 (function a lone for x)

وبتكامل الطرفين نحصل على:

$$\ln I = \int P(x)dx$$

$$ightarrow I(x) = e^{\int P(x)dx}
ightarrow I(x) = e^{\int (rac{My-N_x}{N})dx}$$
 (عامل التكامل)

2. If I(x, y) = I(y), that is I is a function just for (y). Then

$$I_y=rac{dI}{dy}$$
 , $I_x=0$ (عامل التكامل دالة ل y فقط)

Sub. in (*) we get:

$$I[M_y - N_x] = -I_y M$$

$$\frac{I_{y}}{I} = \frac{M_{y} - N_{x}}{-M}$$

$$I(y) = e^{\int P(y)dy}$$
 where $P(y) = \frac{M_y - N_x}{-M}$ (function a lone for y)

$$\rightarrow I(y) = e^{\int (\frac{My-Nx}{-M})dx}$$
 (عامل التكامل)

Ex1: Solve
$$(3x^3 + 2y)dx + (2x \ln 3x + \frac{3x}{y})dy = 0$$

Sol.:
$$M = 3x^3 + 2y$$
 , $N = 2x \ln 3x + \frac{3x}{y}$

$$M_y = 2$$
 , $N_x = 2 + 2 \ln 3x + \frac{3}{y}$

$$M_y - N_x = -\left(2\ln 3x + \frac{3}{y}\right) \neq 0$$

 \therefore The equation is not exact.

$$\frac{M_y - N_x}{N} = \frac{2\ln 3x + \frac{3}{y}}{x(2\ln 3x + \frac{3}{y})} = -\frac{1}{x} = P(x)$$

$$ightarrow I(x) = e^{\int -rac{1}{x} dx} = e^{-\ln x} = e^{\ln rac{1}{x}} = rac{1}{x}$$
 (عامل التكامل)

(بضرب طرفي المعادلة في
$$\frac{1}{x}$$
 تصبح تامة)

$$\left(3x^2 + \frac{2y}{x}\right)dx + \left(2\ln 3x + \frac{3}{y}\right)dy = 0$$

$$\therefore \quad \frac{\partial M}{\partial y} = \frac{2}{x} = \frac{\partial N}{\partial x} \quad \to \quad The \ eq. \ is \ exact$$

الان نقوم بحل المعادلة التفاضلية التامة (H.W.)

Ex 2: Solve
$$y(2x + y)dx + (3x^2 + 4xy - y)dy = 0$$

Sol.:
$$M = y (2x + y)$$
, $N = 3x^2 + 4xy - y$

$$M_{v} = 2x + 2y$$
, $N_{x} = 6x + 4y$

$$M_y - N_x = -4x - 2y = -2(2x + y) \neq 0$$

The equation is not exact.

We must find the integration factor.

$$\frac{M_y - N_x}{-M} = \frac{-2(2x + y)}{-y(2x + y)} = \frac{2}{y}$$

$$A = e^{\int \frac{2}{y} dy} = e^{2 \ln y} = e^{\ln y^2} = y^2$$
 (عامل النكامل)

(نضرب طرفى المعادلة بعامل التكامل حتى تصبح تامة)

$$y^{3}(2x + y)dx + y^{2}(3x^{2} + 4xy - y)dy = 0$$

$$M = 2xy^3 + y^4$$
, $N = 3x^2y^2 + 4xy^3 - y^3$

$$M_{\nu} = 6xy^2 + 4y^3$$
, $N_x = 6xy^2 + 4y^3$

Solution:

1. Integrating M(x,y) for x:

$$x$$
 نكامل بالنسبة ل

$$M = \frac{\partial F}{\partial x} = 2xy^3 + y^4$$

$$F(x,y) = 2 \frac{x^2}{2} y^3 + xy^4 + h(y)$$
 ... (*)

$$= x^2y^3 + xy^4 + h(y)$$

2. Deriving for y:

$$\frac{\partial F}{\partial y} = 3x^2y^2 + 4xy^3 + h'(y)$$

3. Set
$$\frac{\partial F}{\partial y} = N$$

$$N$$
 نساوي. $rac{\partial F}{\partial y}$ الى

$$3x^2y^2 + 4xy^3 + h'(y) = 3x^2y^2 + 4xy^3 - y^3$$

$$\rightarrow h'(y) = -y^3$$

$$\rightarrow h(y) = \frac{-y^4}{4} = -\frac{1}{4}y^4$$

$$\to F = x^2 y^3 + x y^4 - \frac{1}{4} y^4$$

The solution is:
$$x^2y^3 + xy^4 - \frac{1}{4}y^4 = c$$

Case (2): If the above two integration factors state are not exist.

بمعنى انه عامل التكامل (I) ليس دالة الى x ولا دالة الى y بشكل منفصل فعلينا هنا استخراج عامل التكامل.

Suppose that the integrating factor $I(x, y) = x^m y^n$, and we find the value of m and that maxes the differential equation exact.

اذن الهدف هو الوصول الى قيمة سرم حتى نحصل على عامل التكامل.

وسوف نوضح ذلك بأستخدام المثال الاتي:

Ex3: solve the diff. eq.

$$(x^2 + xy^2)\frac{dy}{dx} - 3xy + 2y^3 = 0$$

Sol:

(يتم بالبداية ترتيب المعادلة).

$$(2y^3 - 3xy)dx + (x^2 + xy^2)dy = 0$$
 ... (*)

$$\frac{\partial M}{\partial y} = 6y^2 - 3x \neq \frac{\partial N}{\partial x} = 2x + y^2$$
 \rightarrow The diff. eq. is not exact.

الان نبحث عن عامل التكامل

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{M} = \frac{6y^2 - 3x - 2x - y^2}{-(2y^3 - 3xy)} \neq I(y)$$

And so

$$\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{6y^2 - 3x - 2x - y^2}{x^2 + xy^2} \neq I(x)$$

Let $I(x, y) = x^m y^n$ is integrating factor

$$(2x^{m}y^{n+3} - 3x^{m+1}y^{n+1})dx + (x^{m+2}y^{n} + x^{m+1}y^{n+2})dy = 0$$

$$\frac{\partial M}{\partial y} = 2(n+3)x^{m}y^{n+2} - 3(n+1)x^{m+1}y^{n}$$

$$= x^m y^n [(2n+6)y^2 - (3n+3)x]$$

$$\frac{\partial N}{\partial x} = (m+2)x^{m+1}y^n + (m+1)x^my^{n+2}$$

$$= x^m y^n [(m+2)x + (m+1)y^2]$$

Since it is exact
$$\rightarrow \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

$$\to x^m y^n [(2n+6)y^2 - (3n+3)x] = x^m y^n [(m+2)x + (m+1)y^2]$$

$$\rightarrow (2n+6)y^2 - (3n+3)x = (m+2)x + (m+1)y^2$$

(نقوم الان بتساوي المعاملات)

$$m+2 = -3n-3$$
 $\rightarrow m+1 = -3n-4$ (1)

$$m+1 = 2n+6$$
 $\rightarrow m+1 = 2n+6$ (2)

بمساواة المعادلتين (1) و(2) نحصل على:

$$\rightarrow 2n + 6 = -3n - 4$$

$$\rightarrow 5n = -10$$

$$\rightarrow n = -2$$

From (1)
$$\rightarrow m + 1 = -3(-2) - 4 \rightarrow m = 1$$

$$\therefore I(x,y) = xy^{-2}$$

$$(2xy - 3x^2y^{-1})dx + (x^3y^{-2} + x^2)dy = 0$$

$$\frac{\partial M}{\partial y} = 2x + 3x^2y^{-2}$$

$$\frac{\partial N}{\partial x} = 2x + 3x^2y^{-2}$$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \rightarrow The \ eq. \ become \ exact.$$
 (حل المعادلة التامة يترك للطالب)

<u>Remark:</u> Some integral factors can be deduced for certain amounts of differential rule like cases 3-6 in the table.

(يمكن استنتاج بعض عوامل التكامل لبعض المقادير من قواعد التفاضل مثل مشتقة حاصل قسمة دالتين ومشتقة حاصل ضرب دالتين وغير هما والتي ستظهر في الحالات من 3-6 في الجدول

For example:

 $d\left(\frac{y}{x}\right) = \frac{xdy - ydx}{x^2}$, this means $\left(\frac{1}{x^2}\right)$ is an integral factor of xdy - ydx.

Case 3: When the left side of the equation is in the form xdy - ydx or ydx - xdy:

Ex 4: Prove that the integral factor of xdy - ydx + f(x)dx = 0 is x^{-2}

Proof:

$$\therefore [x dy - y dx + f(x)dx = 0] * \frac{1}{x^2}$$

$$\frac{xdy - ydx}{x^2} + \frac{f(x)}{x^2} dx = 0$$

$$\frac{1}{x}dy - \frac{y}{x^2}dx + \frac{1}{x^2}f(x)dx = 0$$

$$(\frac{1}{x^2} f(x) - \frac{y}{x^2}) dx + \frac{1}{x} dy = 0$$

$$\because \frac{\partial M}{\partial y} = -\frac{1}{x^2} = \frac{\partial N}{\partial x} \rightarrow Exact$$

Then x^{-2} is an integral factor of the equation above

And the general solution is:

$$\int d(\frac{y}{x}) + \int \frac{1}{x^2} f(x) \ dx = 0$$

$$\rightarrow \frac{y}{x} + \int \frac{1}{x^2} f(x) \ dx = c$$

And by the same way one can prove that $(\frac{1}{y^2})$ is an integral factor of

$$xdy - ydx + f(y)dy = 0.$$

In general, we can convert xdy - ydx or ydx - xdy to exact diff. eq. by dividing on one of the following:

$$x^2$$
 , y^2 , xy , $x^2 + y^2$, $x^2 - y^2$, ...

And the general solution of this amounts is $ax^2 + bxy + cy^2$

Ex 5: Prove that $\frac{1}{ax^2+bxy+cy^2}$ is an integral factor of (xdy-ydx), set $a \neq 0, b \neq 0, c \neq 0$ at the same time.

$$xdy - y dx \cdot \frac{1}{ax^2 + bxy + cy^2} = \frac{xdy - y dx}{ax^2 + bxy + cy^2}$$

$$= \frac{\frac{xdy - y dx}{x^2}}{a + b\frac{y}{x} + c\left(\frac{y}{x}\right)^2} = \frac{d(\frac{y}{x})}{a + b\frac{y}{x} + c\left(\frac{y}{x}\right)^2}$$

Let
$$\frac{y}{x} = z$$

$$\frac{dz}{a+bz+cz^2} = d f(z)$$
 (تفاضل تام)

Ex 6: Find the general solution of

$$xdy - ydx = x^4y^2dx$$

Sol:
$$\left(\underbrace{-y-x^4y^2}_{M}\right)dx+\underbrace{x}_{N}dy=0$$

$$\frac{\partial M}{\partial y} = -1 - 2x^4y, \quad \frac{\partial N}{\partial x} = 1$$

$$\because \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \rightarrow The \ Diff. \ Eq. \ is \ not \ exact.$$

$$(\frac{1}{x^2})$$
 لذلك نحتاج الى عامل التكامل: لإيجاد الحل العام نضر ب الطرفين ب

$$\frac{xdy - ydx}{x^2} = x^4 \frac{y^2}{x^2} dx$$

$$d(\frac{y}{x}) = x^4 \left(\frac{y}{x}\right)^2 dx$$

57

Let
$$z = \frac{y}{x} \rightarrow dz = x^4 z^2 dx$$

$$\to \int z^{-2} dz = \int x^4 dx$$

$$\rightarrow \frac{-1}{z} = \frac{x^5}{5} + c$$

$$\rightarrow \frac{-x}{y} = \frac{x^5}{5} + c \qquad \text{(الحل العام)}$$

 y^2 طريقة حل أخرى: يمكن أيضا" ان نقسم على

$$\frac{xdy - ydx}{y^2} = x^4 dx$$

$$\to \int d(\frac{-x}{y}) = \int x^4 dx$$

$$\rightarrow \frac{-x}{v} = \frac{x^5}{5} + c \qquad \text{(الحل العام)}$$

Ex 7: Find the general solution of

$$xdy - ydx = y^3(x^2 + y^2)dy$$

Sol:

$$\underbrace{-y}_{M} dx + \left[\underbrace{x - y^{3}(x^{2} + y^{2})}_{N}\right] dy = 0$$

$$\frac{\partial M}{\partial y} = -1, \quad \frac{\partial N}{\partial x} = 1 - 2y^3x$$

$$\because \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \to \quad The \ diff. \ eq. \ is \ not \ exact.$$

$$(\frac{1}{x^2+v^2})$$
 لذلك نحتاج الى عامل التكامل: لإيجاد الحل العام نضر ب الطرفين ب

$$\frac{xdy - ydx}{x^2 + y^2} = y^3 dy$$

$$\frac{xdy - ydx}{x^2} = y^3 dy$$
$$1 + \frac{y^2}{x^2}$$

$$\frac{d(\frac{y}{x})}{1 + \left(\frac{y}{x}\right)^2} = y^3 dy$$

Let
$$z = \frac{y}{x} \rightarrow \int \frac{dz}{1+z^2} = \int y^3 dy$$

$$\rightarrow \tan^{-1} z = \frac{1}{4} y^4 + c$$

$$\to \tan^{-1}(\frac{y}{x}) = \frac{1}{4}y^4 + c$$
 (الحل العام)

Case 4: When the equation contains the term (pydx + qxdy)

first we know that

$$d(x^{p}y^{q}) = qx^{p}y^{q-1}dy + p y^{q}x^{p-1}dx$$
 (حاصل ضرب دالتین)
$$= x^{p-1}y^{q-1}(qxdy + pydx)$$

$$= x^{p-1}y^{q-1}(pydx + qxdy)$$

$$(x^{p-1}y^{q-1})$$
 هو $(pydx + qxdy)$ لذلك يكون عامل تكامل المقدار $(pydx + qxdy)$ هو $(z = x^{p}y^{q})$

Ex8: Find the general solution of

$$xdy - 3ydx = x^4y^{-1}dx$$

Sol:

$$xdy - 3ydx = x^4y^{-1}dx$$
نقارن $pydx + qxdy$

$$\therefore \quad p = -3, \quad q = 1$$

$$\therefore$$
 Integrate factor is $x^{-3-1}y^{1-1} = x^{-4}$

$$z = x^{-3}y \rightarrow z = \frac{y}{x^3} \rightarrow y = z \cdot x^3$$

$$\rightarrow dz = x^{-3}dy - 3yx^{-4}dx$$

By multiplying the end of equation by $\frac{1}{x^4}$

(نضرب طرفي المعادلة بعامل التكامل)

$$\underbrace{x^{-3}dy - 3x^{-4}ydx}_{dz} = y^{-1}dx$$

$$\rightarrow \qquad dz = \frac{dx}{y} \qquad \rightarrow \qquad dz = \frac{dx}{z \cdot x^3}$$

$$zdz = x^{-3}dx \quad \rightarrow \quad \frac{z^2}{2} = \frac{x^{-2}}{-2} + c$$

$$\rightarrow \frac{(x^{-3}y)^2}{2} = \frac{x^{-2}}{-2} + c, \quad (The general solution)$$

Ex9: Find the general solution of

$$xdy - ydx = x^2y^3dx$$

Sol:

$$xdy - ydx = x^2y^3dx$$
نقارن $pydx + qxdy$

$$p = -1, \quad q = 1$$

$$\therefore \quad Integrate \ factor \ is \quad x^{-1-1}y^{1-1} = \frac{1}{x^2}$$

$$z = x^{-1}y \rightarrow z = \frac{y}{x}$$

By multiplying the end of equation by $\frac{1}{x^2}$

$$\frac{xdy - ydx}{x^2} = y^3 dx$$

$$d\left(\frac{y}{x}\right) = \frac{x^3}{x^3}y^3dx$$
 (x^3 فقسم على)

Let
$$z = \frac{y}{x} \rightarrow dz = x^3 z^3 dx$$

$$\rightarrow \int z^{-3} dz = \int x^3 dx$$

$$\rightarrow \quad \frac{z^{-2}}{-2} = \frac{x^4}{4} + c$$

$$\rightarrow \frac{-1}{2z^2} = \frac{x^4}{4} + c$$

$$\rightarrow \frac{-1}{2(\frac{y}{x})^2} = \frac{x^4}{4} + c, \quad (The general solution)$$

Ex 10: Find the general solution of

$$xdy + 2ydx = e^x dx$$

Sol: p=2, q=1

$$I=x^{p-1}y^{q-1}$$
 حسب الحالة 4 من الجدول $z=x^{2-1}y^{1-1}=x$ $z=x^py^q=x^2y$ هو التعويض المناسب هو

Multiplying both sides by I=x, we get:

$$x^{2}dy + 2xydx = xe^{x}dx$$
$$d(x^{2}y) = xe^{x}dx \Rightarrow dz = xe^{x}dx$$

Integrating both sides, we get:

$$z = \int xe^{x}dx + c$$

$$= xe^{x} - \int e^{x}dx + c$$

$$= xe^{x} - e^{x} + c$$

Replacing z to get the following general solution:

$$x^2v = xe^x - e^x + c$$

Case 5: When the equation contains the term (xdy + ydx)

The integral factor in this case equal 1 this means that we just need some math operations here.

Ex11: Solve
$$xdy + ydx = (5x - 2x^2y)dx$$

Sol: Let
$$z = xy \rightarrow dz = xdy + ydx$$

$$\rightarrow y = \frac{z}{x}$$

substituting in the original equation

بالتعويض بالمعادلة التفاضلية:

$$\to dz = \left(5x - 2x^2\left(\frac{z}{x}\right)\right)dx$$

$$\rightarrow \qquad dz = (5 - 2z)xdx$$

$$\rightarrow \int \frac{dz}{(5-2z)} = \int x dx$$

$$\to -\frac{1}{2}\ln|5 - 2z| = \frac{1}{2}x^2 + c$$

$$\rightarrow$$
 $-\frac{1}{2}\ln|5 - 2xy| = \frac{1}{2}x^2 + c$, (The general solution)

Ex12: Solve
$$x^2 \frac{dy}{dx} + xy + \sqrt{1 - x^2 y^2} = 0$$

Sol:
$$x^2 dy + xy dx + \sqrt{1 - x^2 y^2} dx = 0$$

$$x(xdy + ydx) + \sqrt{1 - x^2y^2}dx = 0$$

$$\frac{(xdy+ydx)}{\sqrt{1-x^2y^2}} + \frac{dx}{x} = 0$$

$$\sin^{-1}(xy) + \ln|x| = c$$
, (The general solution)

Case 6: When the equation contains the term (xdx+ydy)

The integral factor in this case equal 1 this means that we just need some math operations here.

Ex13: Solve
$$xdx + ydy = 3\sqrt{x^2 + y^2} y^2 dy$$

Sol:
$$\frac{xdx+ydy}{\sqrt{x^2+y^2}} = 3y^2dy$$

$$\frac{1}{2} \frac{2xdx + 2ydy}{\sqrt{x^2 + y^2}} = 3y^2 dy$$

$$\frac{1}{2}\int (x^2+y^2)^{-1/2}(2xdx+2ydy) = \int 3y^2dy$$

$$\sqrt{x^2 + y^2} = y^3 + c$$
 and this is the general solution

Homework: Solve the following diff. equations

14) Solve
$$xdx + ydy = y^2(x^2 + y^2)dy$$

15)
$$xdx + ydy = (x^2 + y^2)^3(xdy - ydx)$$

Case 7: Linear Differential Equation:

We have defined the general form of linear differential equation of order n to be:

$$a_n(x)\frac{d^ny}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

We remind you, that linearity means that all coefficients are functions of x only, and that y and its derivatives are raised to the first power.

Def: (Linear Differential Equation of First Order and First Degree)

A differential eq. of the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x), a_1(x) \neq 0 (1)$$

is said to be a linear first order differential equation.