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Solution of The Differential Equations of The First Order 

and Higher Degree 

   The general form of the differential equation of the first order and 

the degree n is: 

     (   )           (   )    (   )           ( ) 

Where n=2,3,4,…    and   
  

  
 

The differential equations of this type are divided into three cases: 

4.1: Equation solvable for p 

4.2: Equation solvable for y 

4.3: Equation solvable for x 

 Here we will discuss each of these three types with examples: 

4.1: Equation solvable for p: 

 In this type we can analyze the left side of equation (I), which is 

considered to be polynomial for p in the form of n linear factors, so 

we can write equation (I) as the form: 

(    )(    ) (    )                        (  ) 

Where             are functions of x and y, 

Then equivalent each factor of equation (II) by zero to obtain n of 

differential equations of order 1 and degree1 

ها من الرتبة في هذه الحالة نقوم بتحليل المعادلة الى حاصل ضرب عدد من العوامل جميع  

 ثم ناخذ كل عامل على حدة الاولى والدرجة الاولى باستخدام طرق التحليل المعروفة 

ونكامل
  

  
  ونرجع   الى المشتقة

.الناتجة فنحصل على الحل العامثم نضرب الحدود نكرر العملية نفسها لبقية الحدود     

Ex1:  Solve                 

Sol: (     )(     )                 ………………….           (1) 



Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree 
 

  

ASMAA ABD                      AND          MAY MOHAMMED 3 

 

                  
   

 
 

  

  
 

   

 
 

  

 
 

    

 
 

Integrating both sides, we get: 

  | |      | |       

  | |    | |                                ( ) 

Now take (     )         

        
  

  
    

  

 
 

   

 
 

Integrating both sides, we get: 

                                                              ( )  

From (2) and (3), we get: 

(       )(     )                                             ( ) 

And this is the general solution. 

Ex2: Solve the following equation                

Sol: rearrange the equation  

                                                                    (1) 

                 

 (   )(   )   (   )    

 (   )(     )                                                    ( ) 

Take the first factor, 

(   )         
  

  
          

Integrating both sides to get: 

  
  

 
     

  

 
                                                 ( ) 

Take the second factor,              
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    ∫       

Substitute in : 

    ∫                                                                       

                                                                                             

                

                                                                   ( )  

From (3)&(4), we get: 

(  
  

 
  ) (            )                          ( ) 

So eq. (5) is the general sol. 

4.2: Equation solvable for y 

 This type of equations can be written as: 

   (   )                                                                  (   ) 

Differentiating for x we get : 

 
  

  
 

  

  
 

  

  
 
  

  
  (    

  

  
) 

      (    
  

  
)                                                              (  ) 

And this equation is of the first order and the first degree to solve 

it, we analyze the equation into a several factors, one of which 

contains 
  

  
 and we get from it the general solution Ø(     )                

 the rest contains p and we get from it the singular solution. 

Ex3: Solve              

Sol: rearrange the equation 



Chapter 4: Solution of The Differential Equations of The First Order and Higher Degree 
 

  

ASMAA ABD                      AND          MAY MOHAMMED 5 

 

     
 

 
                                                                            (1) 

Differentiating both sides: 

  
  

  
  

   
  

  

    
  

  
                                                       ( ) 

    
 

 
 

  

   
  

  
  

  

  
    

 [     
 

 
 

  

   
  

  
  

  

  
   ]           

            

  
   

  

  
   

  (    )   
  

  
(    )    

 (    )(   
  

  
)                                                            ( ) 

Either (   
  

  
)             

  

 
 

  

 
              

                                                                                                     ( ) 

Substituting (4)in the original equation, we get: 

               

    
   

 
 

 

  
                                                                                       ( ) 

Equation (5) is the general solution 

Or                    √                                        (6) 

Sub. In the original equation, we get: 

   √          

   √                                                                                     ( ) 

We note that equation (7) does not contain arbitrary constants, so it 

does not represent a general solution , but rather a singular solution.  

 حلا منفرداتيارية وعليه هي لا تمثل حلا عاما وانما تمثل لا تحوي ثوابت اخ ( المعادلة )نلاحظ ان 
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Ex4: Solve                                                              (1) 

Sol: Dividing on   we get: 

              16
  

   

       Deriving for   we get: 

       
  

  
    

  

  
   

 

     
  

  

  

  
            

     [       
  

  
   

 

     
  

  

  

  
  ˟  [          

                   

  
       

  
   

       (      )   (      )
  

  
   

      (      ) (   
  

  
)    

     Either (   
  

  
)       

  

  
 

  

 
 

  

 
  

                                                                                                      ( ) 

Substituting eq. (2) in (1) we get: 

16                                                                         (3) 

Equation (3) is the general solution, 

or                    √     
 

                   (4) 

Substituting eq. (4) in (1) we get: 

 16    (   )
 
          

   
     

 (   )
 
 

 

   
    

 
 

√ 
                                                                                     (5) 

And this is the singular solution. 
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In this type (equation solvable for y) we have two special cases, 

4.2.1.          s equation 

4.2.2.          s equation 

And we will discuss them in the following: 

4.2.1.                    : عادلة كليروت                                                  م  

 It is a differential equation of the form: 

      ( )                                                                  ( ) 

we can solve it by differentiating it for x. 

 
  

  
    

  

  
   ( )

  

  
  

      
  

  
   ( )

  

   
  

  
  

  
   ( )

  

   
    

 (    ( ))
  

   
   

Either 
  

   
                        ( )         

      ( )                                                                          (  )    

And this is the general solution. 

Or (    ( ))      ( )        

Taking (  )  for both sides to get: 

   (  )  (  )   

Sub. In (V), we get: 

    (  )  (  )    (  )  (  )                          …………….(VII) 

And this is the singular solution. 

Ex1: Solve             

Sol:                                                                         (1) 
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Deriving eq. (1): 

 
  

  
    

  

  
      

  

  
                                                    ( ) 

     
  

  
      

  

  
                                             

  
  

  
      

  

  
   (      )  

  

  
   

Either (      )                    

Sub. in (1), we get: 

             (      )                                                    ( ) 

And this is the singular sol. 

Or 
  

  
       

Sub. in (1), we get: 

                                                                        ……………(3) 

And this is the general sol. 

Ex 2: Find the general solution of       √     

Sol:      √                                                                      (1) 

Deriving for  , we get: 

 
  

  
    

  

  
 

 

 √    
(  

  

  
)  

     
  

  
 

 

√    
( 

  

  
)  

 
  

  
 

 

√    
( 

  

  
)=0  

(  
 

√    
 )

  

  
=0 

To get the general sol., we take
  

  
=0     
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Sub. in (1), we get: 

     √                                                                       ( ) 

Eq. (2) represent the general sol.  

عادلة لاكرانج                                     م                            

It is a differential equation of the form: 

    ( )   ( )           ( )         
  

  
                         (    ) 

To find the general solution , we differentiate equation (VIII): 

 
  

  
  ( )     ( )

  

  
   ( )

  

  
  

   ( )     ( )
  

  
   ( )

  

  
  

    ( )  (   ( )    ( ))
  

  
  

 (   ( )    ( ))
  

  
    ( )  

 
  

  
 

  ( )

   ( )
  

  ( )

   ( )
 

Where   ( )  
 ( ( ))

  
      ( )  

 ( ( ))

  
 ,  

This equation is a linear differential equation of order 1 with two 

variables x , p. and I= 
∫ 

  ( )

   ( )
  

 , Q=
  ( )

   ( )
 

Ex1: find the general solution of the differential equation  

                                                                           ………  (1) 

Sol:  Equation (1) in Lagrange form where  ( )        ( )    , 

deriving both sides: 
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      (      )
  

  
  

    (      )
  

  
  

 
  

  
 

(      )

  
      

  

  
 

  

 
           (                        ) 

I= 
∫

 

 
  

=   , Q(p)=-3p 

Hence, we get: 

     ∫(   )        

    
  

 
                                                                      ( ) 

  p( ثم نستخدم اكمال المربع لايجاد قيمة 2)نرتب المعادلة 

     
 

 
    

 

 
      

     
 

 
    

 

 
   

 

 
   

 

 
                                               

(   
 

 
 )  

 

 
   

 

 
    نجذرالطرفين                                                        

    √
 

 
   

 

 
     

 

 
   

   ( √
 

 
   

 

 
     

 

 
 )

 

                                         …………  (3) 

Sub. (3) in (1), we get: 

     ( √
 

 
   

 

 
     

 

 
 )

 

  ( √
 

 
   

 

 
     

 

 
 )

 

  ……..(4)  

And this is the general solution. 

 4.3: Equation solvable for x 

    This equation can be written as  
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   (   )                                                                                  (  )  

Deriving for y, we get: 

  

  
 

  

  
 

  

  

  

  
  (    

  

  
)            

 

 
   (    

  

  
)                                                          …………….. (X)   

Eq. (X) is a diff. eq. of order 1 and degree 1 whose solution is : 

 (     )                                                                               (  )   

From eqs. (IX) &(XI) we get the general solution. 

عن طريق تعويض احداهما نحصل على الحل العام     (XI)& (IX)   نمن المعادلتي

 pوحذف المتغير  بالاخرى

Ex1: Solve                                                      ( ) 

Sol: Rearrange equation(1) as: 

    
  

 
  

 

 
                                                                ………….(2) 

Deriving for y, we get: 

  
  

  
 

   
  

  
   

    
   

  

  

     

   
 

 
 

  

 
 
  

  
 

  

   
 

 
 

  

   
  

  
                         

          
  

  
              

  
 

           (      )
  

  
      

  (      )    (      )
  

  
    

 (    
  

  
)(      )    

Taking the first term (    
  

  
)    
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Integrating both sides, we get: 

                               

           √                                                      ( )   

Sub (3) in (2): 

    
  

 
  

 

√  
    

      
 

√  
   (    )  

   

 
   

                                    
 (    ) 

  
                                               ( ) 

Eq. (4)is the general sol. 

Now taking the second term (      )   , we get: 

           √    
 

Sub in eq. (2) 

   
(   )  ⁄

 
  

 

√                                                                      ( ) 

And this is the singular solution. 

Ex 2: Solve the following diff. eq. 

                                                                                           (1) 

Sol: Dividing on    

           
  

 
 

 

                                                                                 (2) 

Deriving for y 

 
  

  
 

 

 
        

  
 6     

  
    

[ 
 

 
 

 

 
 (       6   )

  

  
                 ]              

        (6     )
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    (6     )
  

  
             

      6            

[              6     ]              

 
          

   
  

            

  (
 

  )  
  

     

Integrating both sides: 

 
 

          

                                                                                ( ) 

Sub. In eq. (1) 

      (        )      

          1                                                                   ( ) 

 ( كل لذا سنستفيد من معادلة )صعب جدا بهذا الش pهنا ايجاد 

From eq. (3): 

          

Sub. In (4): 

                                              بالدستور                                                   

   
  √     

 
 

Sub. In (3), we get: 

   
  

  √     
  (

  √     

 
)                                               (5) 

Eq. (5) represent the general sol. 
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∎Question: Can you solve example (2) using the second case? Is 

the result you will get equal to the output you have? 

Exercises: 

Solve the following equations: 

1.       6     

2.     (  1    )   (  1)    

3.   (1    )  1 

4.      √     

5.                 

6.      6    

7.        1      

8.               

9.            

10.              

11.            

12. Find the general solution of:  

a. (    )     (    )     

b.       (    )     

Hint: derive for x 

13.         

14.         

15.         | |       

16.             

17.           | | 


