Definition (Complete Property);

The ordered field $(F, +, ., \le)$ is said to be complete if every nonempty subset A of F which is bounded above has least upper bound.

Examples:

- The real numbers system (R, +,.,≤) is complete order field.
- The order field of rational numbers (Q, +,.,≤) is not complete. Since

Let
$$S = \{x \in \mathbb{Q}^+ \text{ such that } x^2 < 2\} \subseteq \mathbb{Q} \text{ and } 1 \in S \neq \emptyset$$

S is bounded above but has no least upper bound in Q because $\sqrt{2} \notin Q$

i.e. 3 a nonempty subset in Q which is bounded from above but has no least upper bound.

Theorem:

The equation $x^2 = 2$ has no root in $\mathbb{Q}(\sqrt{2} \notin \mathbb{Q})$.

Proof:

Assume that $x^2 = 2$ has a root in \mathbb{Q} , so there is $x = \frac{a}{b} \in \mathbb{Q}$ such that $x^2 = \left(\frac{a}{b}\right)^2 = 2$

$$\left(\frac{a}{b}\right)^2 = \frac{a^2}{b^2} = 2 \Longrightarrow a^2 = 2b^2$$

 $vb \neq 0 \Rightarrow a \neq 0$

Suppose a, b are positive numbers such that g.c.d (a, b) = 1

- 1. If a, b are odd numbers $\Rightarrow a^2$ is odd $\Rightarrow 2b^2$ is odd C! $(2b^2$ is even)
- 2. If a is odd number and b is even number

$$\Rightarrow b = 2d \Rightarrow a^2 = 8d^2 \Rightarrow a^2 \text{ is even C! } (a \text{ is odd})$$

3. If a is even number and b is odd number

$$\Rightarrow a = 2c \Rightarrow 4c^2 = 2b^2 \Rightarrow 2c^2 = b^2 \Rightarrow b^2 \text{ is even}$$
 C! (b is odd)

- 4. If a,b are even numbers impossible since g.c.d (a,b) = 1
- ∴ there is no rational number satisfy $x^2 = 2$. i.e. $\sqrt{2} \notin \mathbb{Q}$.

5

Theorem: (Archimedean Property):

For all $x, y \in \mathbb{R}$ and x > 0, then $\exists n \in \mathbb{N}$ such that nx > y.

Proof:

Assume that $\forall n \in \mathbb{N}, \exists x, y \in \mathbb{R} (x > 0) s.t. nx \leq y$

Let
$$S = \{nx : n \in \mathbb{N}\} \subseteq \mathbb{R}$$
 and $x \in S \neq \emptyset$

y is an upper bound of S

Since \mathbb{R} is complete $\Longrightarrow S$ has least upper bound say α

$$\alpha = \ell. u. b. (S)$$

$$x > 0 \Rightarrow -x < 0 \Rightarrow \alpha - x < \alpha$$

i.e. $\alpha - x$ can not be upper bound of S

$$\therefore \exists mx \in S \ s.t. \ \alpha - x < mx \implies \alpha < x(m+1)$$

But $x(m+1) \in S$ and this is contradiction that $\alpha = \ell$. u. b(S)

 $.. \forall x, y \in \mathbb{R} \text{ and } x > 0, \exists n \in \mathbb{N} \text{ s.t } nx > y.$

Corollary:

 $\forall \epsilon > 0, \exists n \in \mathbb{N} \text{ such that } 0 < \frac{1}{n} < \epsilon.$

Proof:

Given $\varepsilon > 0$, by using A.P. (Archimedean Property), $\forall x, y \in \mathbb{R}$ and x > 0, $\exists n \in \mathbb{N}$ s.t. nx > yLet $x = \varepsilon > 0$ and $y = 1 \Rightarrow n\varepsilon > 1 \Rightarrow 0 < \frac{1}{n} < \varepsilon$.

Theorem: (Density of Rational Numbers in R):

If $x, y \in \mathbb{R}$ and x < y, then $\exists r \in \mathbb{Q}$ such that x < r < y.

Proof:

Let $x, y \in \mathbb{R}$ and x < y

If $x < 0 < y \implies 0 \in \mathbb{Q}$ result holds.

If x > 0 (y > 0) we have y - x > 0 (x < y)

By A.P. $\exists n \in \mathbb{N}$ such that $0 < \frac{1}{n} < y - x$.

$$\Rightarrow 1 < n(y - x) = ny - nx$$

$$1 < ny - nx \Rightarrow 1 + nx < ny \cdots (1)$$

 $nx > 0 \implies \exists m \in \mathbb{N} \text{ such that } m - 1 \le nx < m \cdots (2)$

From (1) and (2) we get $nx < m \le nx + 1 < ny$

$$\Rightarrow nx < m < ny$$

$$\therefore x < \frac{m}{n} < y \qquad (n \neq 0 \text{ since } n \in \mathbb{N}).$$

Theorem: (Density of Irrational Numbers in ℝ):

If $x, y \in \mathbb{R}$ and x < y, then $\exists s \in \mathbb{Q}'$ (irrational number) such that x < s < y.

Proof:

Let $x, y \in \mathbb{R}$ and $x < y, \sqrt{2} \in \mathbb{Q}' \subseteq \mathbb{R} \Rightarrow \sqrt{2} \in \mathbb{R}$

$$\sqrt{2} x < \sqrt{2} y \in \mathbb{R}$$

By (D. Q in \mathbb{R}), $\exists r \in \mathbb{Q}$ such that

$$\sqrt{2}x < r < \sqrt{2}y$$

$$x < \frac{r}{\sqrt{2}} < y \quad (\frac{r}{\sqrt{2}} \in \mathbb{Q}').$$

H.W.

Prove that if $x, y \in \mathbb{Q}$, then $\exists r \in \mathbb{Q}'$ such that x < r < y.