# Definition (The Field):

Let F be a nonempty set and +, . be two binary operations on F, then (F, +, .) is called field if its satisfy the following conditions:

F1: (Closure Property),  $\forall a, b \in F$  we have:

$$a+b \in F$$
 and  $a.b \in F$ 

F2: (Associative Property),  $\forall a,b,c \in F$  we have:

$$a + (b + c) = (a + b) + c \in F$$
 and  $a \cdot (b \cdot c) = (a \cdot b) \cdot c \in F$ 

F3: (Commutative Property),  $\forall a, b \in F$  we have:

$$a+b=b+a$$
 and  $a.b=b.a$ 

F4: (Existence of identity element)

There is an element  $0 \in F$  such that a + 0 = 0 + a = a,  $\forall a \in F$ , and

There is an element  $1 \in F$  such that a. 1 = 1.a = a,  $\forall a \in F$ 

(Notice that:  $1 \neq 0$ ).

F5: (Existence of inverse element)

$$\forall a \in F, \exists -a \in F \text{ such that } a + (-a) = (-a) + a = 0$$

$$\forall a \in F, \exists a^{-1} \in F \text{ such that } a. a^{-1} = a^{-1}.a = 1$$

F6: (Distributive Property),  $\forall a,b,c \in F$  we have:

$$a.(b+c) = a.b + a.c$$
 and  $(a+b).c = a.c + b.c$ 

Note: The identity element for the binary operations + and . is unique.

Examples:  $(\mathbb{R}, +, .)$ ,  $(\mathbb{Q}, +, .)$  are fields.

#### Note:

R is the set of real numbers

Q is the set of rational numbers, where  $Q = \{\frac{a}{b}: a, b \text{ integers}, b \neq a \text{ and } g. c. d(a, b) = 1\}$ .

### Definition (The Relation on A):

Let A be a nonempty set, R is called a relation on A if  $R \subset A \times A$ , where

 $A \times A = \{(a,b): a,b \in A\}, (a,b) \in R \text{ i.e. } aRb, \forall a,b \in A.$ 

# Definition (The Order Relation on A) or (Order Set):

Let A be a nonempty set, the relation  $R \le$  on A is called order relation on A [  $(A, \le)$  order set ] if its satisfy the following conditions:

- i)  $a \le a, \forall a \in A$  (Reflexive).
- ii) If  $a \le b$  and  $b \le a \implies a = b$ ,  $\forall a, b \in A$  (Anti-symmetric).
- iii) If  $a \le b$  and  $b \le c \implies a \le c$ ,  $\forall a, b, c \in A$  (Transitive).

### Examples:

The relation ≤ on R (Q) is order relation

i.e.  $(\mathbf{R}, \leq)$ ,  $(\mathbf{Q}, \leq)$  are order sets.

# Definition (The Order Field):

Let (F, +, ...) be a field and  $\leq$  be a relation on F, we say that  $(F, +, ... \leq)$  is an order field if:

- i)  $a \le a, \forall a \in F (Reflexive)$
- ii) If  $a \le b$  and  $b \le a \implies a = b$ ,  $\forall a, b \in F$  (Anti-symmetric)
- iii) If  $a \le b$  and  $b \le c \implies a \le c$ ,  $\forall a, b, c \in F$  (Transitive)
- iv) Either  $a \le b$  or  $b \le a, \forall a, b \in F$
- v) If  $a \le b$  and  $c \le d \Rightarrow a + c \le b + d, \forall a, b, c, d \in F$
- vi) If  $a \le b$  and  $c > 0 \implies a.c \le b.c$ ,  $\forall a, b, c \in F$

The relation  $\leq$  on (F, +, ...) is total order relation.

# Examples:

 $(\mathbb{R}, +, ., \leq)$ ,  $(\mathbb{Q}, +, ., \leq)$  are order fields.

,

1

# Bounded Set in Order Field $(F, +... \le)$ .

### Definitions:

Let  $(F, +, ., \leq)$  be an order field and  $A \subseteq F$ , then:

- 1)  $u \in F$  is called upper bound for A[u.b.(A)] if  $a \le u, \forall a \in A$ .
- 2)  $\ell \in F$  is called lower bound for  $A [\ell.b.(A)]$  if  $\ell \le a, \forall a \in A$ .
- 3) A is called bounded above if it has upper bound.
- 4) A is called bounded below if it has lower bound.
- 5) A is called bounded if A has upper bound and lower bound
- 6)  $u^* \in F$  is called least upper bound for  $A[\ell, u, b, (A) \text{ or } sup(A)]$  if
  - i)  $u^*$  is an upper bound for A i.e.  $u^* \in F$  s.t.  $a \le u^*, \forall a \in A$
  - ii) For each upper bound u for A we have u' ≤ u.
- 7)  $\ell^* \in F$  is called greatest lower bound for  $A[g, \ell, b, (A) \text{ or } lnf(A)]$  if
  - i) \( \ell^\* \) is a lower bound for \( A \) i.e. \( \ell^\* \) ∈ \( F \) s.t. \( \ell^\* \) ≤ \( a, \ned a \) ∈ \( A \)
  - ii) For each lower bound  $\ell$  for A we have  $\ell \leq \ell^*$

### Remarks:

- 1)  $\ell \alpha \le \ell \le \alpha \le u \le u + \beta$ ,  $\forall \alpha \in A$ ,  $\alpha, \beta > 0$ .
- If the set A has least upper bound (greatest lower bound) then its unique.

### Examples:

Let A = (0,1]. Find upper bound, lower bound, least upper bound and greatest lower bound.

3

#### Answer

```
Since 1 \in \mathbb{R} s.t. a \le 1, \forall a \in (0,1], (1 \in A) and 1.5 \in \mathbb{R} s.t. a < 1.5, \forall a \in (0,1] 2 \in \mathbb{R} s.t. a < 2, \forall a \in (0,1] \vdots \therefore u.b.(A) = 1,1.5,2,\cdots (upper bounds) \therefore A = (0,1] is bounded above \ell.u.b.(A) = 1 (least upper bound)
```

Now, since  $0 \in \mathbb{R}$  s.t. 0 < a ,  $\forall a \in (0,1]$  and  $-0.5 \in \mathbb{R}$  s.t. -0.5 < a ,  $\forall a \in (0,1]$   $-1 \in \mathbb{R}$  s.t. -1 < a ,  $\forall a \in (0,1]$  :  $\therefore \ell.b.(A) = 0, -0.5, -1, \cdots$  (lower bounds)  $\therefore A = (0,1]$  is bounded below  $g.\ell.b.(A) = 0$  (greatest lower bound)

i.e. A = (0,1] is bounded (since A is bounded above and bounded below).

 Let B = {3,4,5,6}. Find upper bound, lower bound, least upper bound and greatest lower bound.

Since  $6 \in \mathbb{R}$  s.t.  $a \le 6$ ,  $\forall a \in B = \{3,4,5,6\}$   $\therefore$  u. b.  $(B) = 6,6.25,6.5,7,\cdots$   $\therefore B = \{3,4,5,6\}$  is bounded above  $\ell$ . u. b. (B) = 6Now, since  $3 \in \mathbb{R}$  s.t.  $3 \le a$ ,  $\forall a \in B = \{3,4,5,6\}$   $\therefore \ell$ .b.  $(B) = 3,2.5,2,1,\cdots$   $\therefore B = \{3,4,5,6\}$  is bounded below  $g.\ell$ .b. (B) = 3

The set  $B = \{3,4,5,6\}$  is bounded (since B is bounded above and bounded below).

- 3. N = {1,2,3, ...} is unbounded ( since N is bounded below but unbounded from above)
- 4. R is unbounded ( since R unbounded from above and from below).

### H.W.

Check the  $A_1=\{-n:n\in\mathbb{N}\}$ ,  $A_2=(-1,1)$  and  $A_3=\left\{\frac{1}{n}:n\in\mathbb{N}\right\}$  are bounded.