CHAPTER FOUR

RELATIONS

العلاقات

نعرف من الهندسة التحليلية أن أي نقطة من مستوي منسوب لمحورين موجهين ومتقاطعين Y'OY ،X'OX مثلاً، يكون لها احداثيان هما x و y ونعبر عن ذلك بالرمز y, y, يسمى y, زوجاً مرتباً، مركبته الأولى (اليسرى) هي y, ومركبته الثانية (اليمنى) هي y, ومن الواضح أن الزوج المرتب y, y لا يساوي الزوج المرتب y, ما لم تكن y ومن هنا تبرز اهمية الترتيب في الازواج المرتبة.

Definition 4.1: An *ordered pair* of elements x and y is denoted by (x, y) where x is called the first element and y is the second element.

Remark 4.2: Let *x*, *y*, *z* and *w* are four elements, then:

- 1) $(x, y) \neq (y, x)$ in general.
- 2) (x, y)=(y, x) if and only if x=y.
- 3) (x, y)=(z, w) if and only if x=z and y=w.

<u>Definition 4.3:</u> Let A and B are two nonempty sets. Then *the Cartesian product of A to B* is denoted by $A \times B$ and defined as follows:

$$A \times B = \{(x, y): (x \in A) \land (y \in B)\}.$$
 $(x, y) \in A \times B$ if and only if $(x \in A) \land (y \in B)$.
 $(x, y) \notin A \times B$ if and only if $(x \notin A) \lor (y \notin B)$.
 $(x, y) \notin A \times B$ if and only if $(x \notin A) \lor (y \notin B)$.
 $(x, y) \notin A \times B$ بعرف حاصل الضرب الديكارتي للمجموعة $(x, y) \in A \times B$ في المجموعة $(x, y) \in A \times B = \{(x, y) : (x \in A) \land (y \in B)\}$

Example 4.4: Let $A=\{1, 2\}$ and $B=\{2, 3\}$, then find both $A \times B$ and $B \times A$.

Solution:
$$A \times B = \{(1, 2), (1, 3), (2, 2), (2, 3)\}.$$

And $B \times A = \{(2, 1), (2, 2), (3, 1), (3, 2)\}.$

ملاحظة:

1. من الواضح أن $A \times B \neq B \times A$. 2. في الحالة التي تكون فيها المجموعتان A و B متساويتين يرمز لحاصل ضربهما إختصاراً بالرمز A^2 أو A^2 .

Example 4.5: Let $A = \{x, y\}$ and $B = \{1, 2, 3\}$. Find

 $A \times B =$

 $B \times A =$

 $A \times A =$

 $B \times B =$

Remark 4.6: If |A| = n and |B| = m, then $|A \times B| = n(m)$.

Example 4.7: Let $A = \{x: x \in \mathbb{N} \land x^2 \le 10\}$, $B = \{1, 2\}$ and $C = \{3\}$. Find

 $A \times B =$

 $B \times A =$

 $A \times A =$

 $B \times B =$

 $C \times C =$

 $(B \cup C) \times A =$

 $(B \cap C) \times A =$

 $(A-B)\times B=$

 $(A-B)\times C=$

Theorem 4.8: Let A, B, C and D be nonempty sets. Then:

1)
$$A \times \emptyset = \emptyset \times A = \emptyset$$
.

2)
$$A \times B = B \times A$$
 if and only if $A = B$.

3)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
.

4)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$
.

5)
$$A \times (B - C) = (A \times B) - (A \times C)$$
.

6)
$$(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D)$$
.

7) If $C \subseteq A$ and $D \subseteq B$, then $C \times D \subseteq A \times B$.

Proof: 1) Suppose that $A \times \emptyset \neq \emptyset$. Then,

$$\exists (x, y) \in A \times \emptyset \Rightarrow x \in A \text{ and } y \in \emptyset \quad (\text{def. of } A \times B)$$
$$\Rightarrow x \in A \text{ and } F$$
$$\Rightarrow F. \qquad (p \wedge F = F)$$

Therefore, $A \times \emptyset = \emptyset$.

In similar way, we can show that $\emptyset \times A = \emptyset$. (H. W.)

2). Suppose that $A \times B = B \times A$, to prove A = B.

$$\forall x \in A \text{ and } \forall y \in B \Rightarrow (x, y) \in A \times B \qquad (\text{def. of } A \times B)$$

$$\Rightarrow (x, y) \in B \times A \qquad (A \times B = B \times A)$$

$$\Rightarrow x \in B \text{ and } y \in A \qquad (\text{def. of } B \times A)$$

$$\Rightarrow A \subseteq B \text{ and } B \subseteq A$$

$$\Rightarrow A = B.$$

Suppose that A=B, to prove $A\times B=B\times A$

$$A \times B = \{(x, y): (x \in A) \land (y \in B)\} \text{ (def. of } A \times B)$$
$$= \{(x, y): (x \in B) \land (y \in A)\} \text{ (since } A = B)$$
$$= B \times A.$$

3).
$$A \times (B \cap C) = \{(x, y): (x \in A) \land (y \in B \cap C)\}$$
 (def. of $A \times B$)
$$= \{(x, y): (x \in A) \land (y \in B \land y \in C)\} \text{ (def. of } A \cap B)}$$

$$= \{(x, y): (x \in A \land y \in B) \land (x \in A \land y \in C)\}$$

$$= \{(x, y): ((x, y) \in A \times B) \land ((x, y) \in A \times C)\}$$

$$= \{(x, y): (x \in A) \land (y \in B \cup C)\} \text{ (def. of } A \times B)$$

$$= \{(x, y): (x \in A) \land (y \in B \cup C)\} \text{ (def. of } A \cup B)}$$

$$= \{(x, y): (x \in A) \land (y \in B \lor y \in C)\} \text{ (def. of } A \cup B)}$$

$$= \{(x, y): ((x, y) \in A \times B) \lor ((x, y) \in A \times C)\}$$

$$= \{(x, y): ((x, y) \in A \times B) \lor ((x, y) \in A \times C)\}$$

$$= \{(x, y): (x \in A) \land (y \in B \land y \notin C)\} \text{ (def. of } A \times B)}$$

$$= \{(x, y): (x \in A) \land (y \in B \land y \notin C)\} \text{ (def. of } B \land C)}$$

$$= \{(x, y): (x \in A) \land (y \in B \land y \notin C)\} \text{ (def. of } B \land C)}$$

$$= \{(x, y): (x \in A \land y \in B) \land (x \in A \land y \notin C)\}$$

$$= \{(x, y): ((x, y) \in A \times B) \land ((x, y) \notin A \times C)\}$$

$$= \{(x, y): ((x, y) \in A \times B) \land ((x, y) \notin A \times C)\}$$

$$= \{(x, y): (x \in A \land y \in B) \land (x \in C \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (y \in B \land y \in D)\}$$

$$= \{(x, y): (x \in A \land x \in C) \land (x \in B \land x \in C)\}$$

$$\Rightarrow x \in A \land y \in B \text{ (since, } C \subseteq A \text{ and } D \subseteq B)$$

$$\Rightarrow (x, y) \in A \times B$$
Hence, $C \times D \subseteq A \times B$.

Remark 4.9: $(A \times B) \cup (C \times D) \neq (A \cup C) \times (B \cup D)$.

Example 4.10: Prove that $(A \times B) \cap (B \times A) = \emptyset \Leftrightarrow A \cap B = \emptyset$.

Proof: Suppose that $(A \times B) \cap (B \times A) = \emptyset$, to prove $A \cap B = \emptyset$. If not, then $\exists x \in A \cap B \Rightarrow x \in A \land x \in B \pmod{A \cap B}$

$$\Rightarrow$$
 $(x, x) \in (A \times B) \land (x, x) \in (B \times A)$

$$\Rightarrow$$
 $(x, x) \in (A \times B) \cap (B \times A)$

$$\Rightarrow$$
 (A×B) \cap (B×A) \neq Ø.

That is a contradiction. Hence, $A \cap B = \emptyset$.

Now, suppose that $A \cap B = \emptyset$, to prove $(A \times B) \cap (B \times A) = \emptyset$. If not, then $\exists (x, y) \in (A \times B) \cap (B \times A) \Rightarrow (x, y) \in A \times B \land (x, y) \in B \times A$

$$\Rightarrow$$
 (x \in A \land y \in B) \land (x \in B \land y \in A)

$$\Rightarrow$$
 $(x \in A \land x \in B) \land (y \in A \land y \in B)$

$$\Rightarrow$$
 (x \in A \cap B) \wedge (y \in A \cap B)

 \Rightarrow A \cap B $\neq \emptyset$.

That is a contradiction. Hence, $(A \times B) \cap (B \times A) = \emptyset$.

<u>Definition 4.11:</u> (Generalization of the Cartesian product):

Let $A_1, A_2, ..., A_n$ be any sets. Then the Cartesian product of these sets is denoted by $\prod_{i=1}^{n} A_i$ and defined as follows;

$$A = \prod_{i=1}^{n} A_{i} = A_{1} \times A_{2} \times ... \times A_{n}.$$

$$= \{(x_{1}, x_{2}, ..., x_{n}): (x_{1} \in A_{1}) \wedge (x_{2} \in A_{2}) ... \wedge (x_{n} \in A_{n})\}.$$

$$= \{(x_{1}, x_{2}, ..., x_{n}): x_{i} \in A_{i}; 1 \leq i \leq n\}.$$

Example 4.12: Let \mathbb{R} be the set of all real numbers. Then

$$\mathbb{R}^n = \mathbb{R} \times \ldots \times \mathbb{R} = \{(a_1, \ldots, a_n) \colon a_i \in \mathbb{R}; \ 1 \leq i \leq n\}.$$

وهذا يعني أن كل عنصر من \mathbb{R}^n مكون من n مركبة من الاعداد الحقيقية وسترى مستقبلاً اهمية دراسة n=1 (والتي تسمى فضاء ذا n بعداً بعد أن تعرف عليها عمليات تتصف بصفات معينة). وبصورة خاصة عندما n=1 فإن عناصر المجموعة $\mathbb{R} \times \mathbb{R} = \mathbb{R} \times \mathbb{R}$ عبارة عن نقاط مستوي منسوب لمحورين موجهين ومتقاطعين. عناصر المجموعة $\mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ عبارة عن نقاط الفضاء الثلاثي منسوب الى ثلاثة محاور موجهة متقاطعة

سوال:

المجموعة ٦ يمكن اعتبارها فضاء ذا بعد واحد فماذا تمثل عناصرها ؟

Exercises

- 1) If $A = \{x: x \in \mathbb{N} \land x \le 3\} = \{1, 2, 3\}$, $B = \{3, 4\}$ and $C = \{x: x \in \mathbb{N} \land 15 \le x^2 \le 40\} = \{4, 5, 6\}$. Then find;
- (i) $A \times B =$
- (ii) $B \times A =$
- (iii) $A \times C =$
- (iv) $C \times A=$
- (v) $B \times C =$
- (vi) $C \times B =$
- (vii) $(A \times B) \cap (B \times A) =$
- (viii) $A \times (B \cup C)=$
- (ix) $(A \times B) \cup (A \times C)=$
- (x) $A \times (B \cap C) =$
- (xi) $(A \times B) \cap (A \times C)$.
- (xii) $A \times B \times C =$
- (xiii) $A \times C \times B =$
- (xiv) $B \times A \times C =$
- (xv) $|A \times B \times C| =$
- (xvi) $|(A \times B \times C) \cap (A \times C \times B)| =$

(xvii)
$$|(A \times B \times C) \cup (A \times C \times B)| =$$

(xviii) $(A \times B) \cup (A \times B \times C) =$

(xix)
$$(A \times B) \cap (A \times B \times C) =$$

- 2) If $A = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ and $B = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3$, where \mathbb{R} is the set of real numbers, prove that; $A \cap B = \emptyset$.
- 3) Write the members of a set A, where A= $\{(x,y): (x, y \in \mathbb{Z}^+) \land [(1 \le x \le 3) \land (1 \le y \le 2)]\}.$

Binary Relations

العلاقات الثنائية

Definition 4.13: Let A and B are two sets. Any subset R of $A \times B$ is called a *binary relation from A to B*. in other words,

R is a relation from A to B \Leftrightarrow R \subseteq A×B.

 $(x, y) \in R$ can be written as xRy or $x \sim y$.

 $(x, y) \notin R$ can be written as $x \not R y$ or $x \not\sim y$.

If A = B, then R is a relation on A.

إذا كانت B ، A مجموعتين مفروضتين وكانت $A \times B \subseteq A \times B$ قيل إن A علاقة ثنانية من A الى B. وفي الحالة الخاصة التى تكون A = B يقال إن A علاقة ثنانية على A

یان: $B = \{1, 2, 4, 5\}$ ، $A = \{1, 2, 3\}$ فإن:

 $A \times B = \{(1,1), (1,2), (1,4), (1,5), (2,1), (2,2), (2,4), (2,5), (3,1), (3,2), (3,4), (3,5)\}$ $A \times B = \{(1,1), (1,2), (1,4), (1,5), (2,1), (2,2), (2,4), (2,5), (3,1), (3,2), (3,4), (3,5)\}$ $A \times B = \{(1,1), (1,2), (1,4), (1,2), (2,5), (2,4), (2,5), (2,4), (2,5), (3,1), (3,2), (3,4), (3,5)\}$ $A \times B = \{(1,1), (1,2), (1,2), (2,4), (2,5), (2,4), (2,5), (3,1), (3,2), (3,4), (3,5)\}$ $A \times B = \{(1,1), (1,2), (1,2), (2,4), (2,5), (2,4), (2,5), (2,4), (2,5), (3,4), (3,5)\}$ $A \times B = \{(1,1), (1,2), (2,4), (2,5), (2,5),$

 $R = \{(x, y): (x, y) \in A \times B \land x = y\} \subseteq A \times B$

فإننا نجد أن:

 $R = \{(1, 1), (2, 2)\} \subseteq A \times B$

نقول في هذه الحالة إننا عرفنا علاقة ثنائية R (أو إختصارا علاقة R إذا لم يكن ثمة التباس) من المجموعة R المي المجموعة R و هذه العلاقة هنا ما هي إلا علاقة التساوى المألوفة " = ".

y المركبة x ترتبط بالمركبة x المركبة x المركبة x ترتبط بالمركبة x المركبة x ترتبط بالمركبة x المركبة x الم

ووفقاً لما تقدم فإنه من الواضح أن R = (1,1), $(2,2) \in R$ وبالتالي فإن R = (1,1) وبالتالي فإن R = (1,2) وحيث أن R = (1,2) هنا هي علاقة التساوي "=" فإنه يمكننا أن نكتب ما سبق كما يلى:

"=" = $\{(1,1),(2,2)\}.$

Example 4.14: Let $A = \{a, b, c\}$, $B = \{b, c, d\}$ and $R_1 = \{(a,b), (a,c), (b,b), (c,c)\}$.

- 1) Is R₁ a binary relation from A to B?
- 2) Is R_1 a binary relation on A?
- 3) Is R_1 a binary relation on B?
- 4) If $R \subseteq A \times B$ such that $xRy \Leftrightarrow x = y$, then write the members of R.

ملاحظة: لاحظ فيما تقدم كنا قادرين على تحديد مجموعة جزئية من المجموعة $A \times B$ بواسطة تعريف علاقة R من A الى B. ولكن غالباً ما تعطى المجموعة الجزئية R بصرف النظر عن كوننا قادرين أو غير قادرين على إيجاد معنى الرابط R (علاقة المساواة، علاقة أصغر،...، أو أية علاقة أخرى) بين المركبتين x و y فمثلاً على إيجاد معنى الرابط R تعتبر علاقة ثنائية معرفة من R الى R بالرغم من أن معنى الرابط R بين R من جهة وبين R من جهة أخرى ليست واضحة.

Definition 4.15: If R is a relation from A to B, then *the inverse* relation of R is denoted by R^{-1} and defined as;

$$R^{-1} = \{(y, x) : (x, y) \in R\}$$

إذا كانت R علاقة ثنائية من A الى B فإن العلاقة العكسية للعلاقة R يرمز لها بالرمز R^{-1} وتعرف كالاتى: $R^{-1} = \{(y, x): (x, y) \in R\}$

. R^{-1} $\subset B \times A$ لان A لان A هي علاقة ثنائية من B الى A لان A الى A الى A التعريف يتبين أن A هي علاقة ثنائية من A الى A الى

Example 4.16: Let $A = \{1, 2, 4\}, B = \{2, 3, 5\}$ and $R \subseteq A \times B$, such that $R = \{(1, 2), (1, 3), (2, 2)\}$. Find;

- 1) $R^{-1} =$
- 2) $\{x: (x \in A) \land (x R y)\} =$
- 3) $\{x: (x \in A) \land x \not R y \} =$

مجال العلاقة **Definition 4.17:** Domain of a relation

The domain of a relation $R \subset A \times B$ is the set of the first coordinates of each pair. In other words:

dom R=
$$\{x \in A; \exists y \in B: (x, y) \in R\}$$

= $\{x \in A; \exists y \in B: xRy\}$

It is clear that dom $R \subset A$.

منطلق العلاقة هو مجموعة المساقط الاولى للعلاقه.

Definition 4.18: Range of a relation مدى العلاقة

The range of a relation $R \subseteq A \times B$ is the set of the second coordinates of each pair. In other words:

range R=
$$\{y \in B; \exists x \in A: (x, y) \in R\}$$

= $\{y \in B; \exists x \in A: xRy\}$

It is clear that range $R \subset B$.

مجال العلاقة هو مجموعة المساقط الثانية للعلاقه

Example 4.19: If
$$A = \{1, 3, 5, 7\}$$
, $B = \{1, 2, 4, 6\}$ and $R = \{(1, 2), (1, 4), (1, 6), (3, 4), (3, 6), (5, 6)\}$. Then; dom $R = \{1, 3, 5\}$ and range $R = \{2, 4, 6\}$.

ملاحظات: R حيث $R \times A \to R$ علاقة ثنائية من A الى B لان R تربط بين عنصرين الاول (1) سمينا Rفي A و الثاني في B.

(2) بإستطاعتنا أن نعرف علاقة أحادية على مجموعة ما S. فمثلاً لو كانت $S = \mathbb{Z}^+$ فإنه يمكن أن نعرف علاقة أحادية على \mathbb{Z}^+ حيث نقول مثلاً إن \mathbb{R}_1 تعني أن العنصر \mathbb{Z}^+ هو عدد فردي وبذلك يكون لدينا:

$$\begin{aligned} R_1 &= \{1, 3, 5, \ldots\} \subset \mathbb{Z}^+ \\ R_1^c &= \{2, 4, 6, \ldots\} \subset \mathbb{Z}^+ \end{aligned}$$

 R_1 لاحظ أن $R_1^c=\mathbb{Z}^+$ وأن $R_1\cap R_1^c=\mathbb{Z}^+$ وهذا يعني أن $R_1\cup R_1^c=\mathbb{Z}^+$ الى مجموعتين منفصلتين.

- (3) بالفكرة نفسها التي وردت في (1) و (2) يمكن أن نقول إن R_n مثلاً هي علاقة نونية على النونيات المرتبة للمجموعة $A_1 \times A_2 \times \ldots \times A_n$
- (4) إن العلاقة الثنائية R من A الى B تجزىء المجموعة $A \times B$ الى مجموعتين منفصلتين $A \times B$ ومتممتها $A \times B$ بالنسبة للمجموعة $A \times B$

مثال:

لتكن $\mathbb{R} \subset \mathbb{R} \times \mathbb{R}$ مجموعة الاعداد الحقيقية. $\mathbb{R} \subset \mathbb{R} \times \mathbb{R}$ مجموعة الاعداد الحقيقية.

- (أ) ماذا تمثل مجموعة النقاط في المستوي \mathbb{R}^2 التي تنتمي الى \mathbb{R}^2
 - (ب) بيّن أي العناصر ينتمي الى R مما يلي:

$$(\frac{-\sqrt{2}}{2}, \frac{\sqrt{2}}{2}); (-1,0); (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}); (\frac{\sqrt{2}}{2},0); (1,0); (1,1); (0,1).$$

 2 2

(ب) كل العناصر تنتمي الى R ما عدا النقطتين (1,1); (1,1) لان كلاً منهما لا تحقق معادلة الدائرة ($x^2 + y^2 = 1$).

Properties of Binary Relation on a Set

خواص العلاقة الثنائية على مجموعة

أن دراسة العلاقة الثنائية $\overset{\circ}{R}$ على (أو في) مجموعة $\overset{\circ}{A}$ لها أهمية كبيرة لكثرة تطبيقاتها في الرياضيات خاصة وفي بعض العلوم الأخرى عامة.

<u>Definition 4.20:</u> A relation R on a set A is called *reflexive* if the pair $(x, x) \in R$ for each $x \in A$.

R is reflexive relation on A \Leftrightarrow $(x, x) \in R$, $\forall x \in A$.

$$\Leftrightarrow x \sim x, \forall x \in A.$$

R is not reflexive relation on A $\Leftrightarrow \exists x \in A, (x, x) \notin R$.

$$\Leftrightarrow \exists x \in A, x \nsim x$$
.

إذا كانت R علاقة ثنائية على المجموعة A (أو إختصارا ً: R علاقة على A) وكانت xRx محققة لجميع عناصر A (أي: $\forall x \in A: x \in X$).

<u>Definition 4.21:</u> A relation R on a set A is called *symmetric* if the pair $(y, x) \in R$ whenever the pair $(x, y) \in R$.

In other words, the relation R on a set A is *symmetric* if the following condition satisfied:

If
$$(x, y) \in R$$
, then $(y, x) \in R \quad \forall x, y \in A$.

And the relation R on a set A is *not symmetric* if $\exists (x, y) \in A \times A; (x, y) \in R \text{ but } (y, x) \notin R.$

إذا كانت
$$R$$
 علاقة على A تحقق الشرط $(x,y)\in R \Rightarrow (y,x)\in R$ قلنا إن R علاقة تناظرية (أو متماثلة أو متناظرة) (Symmetric Relation).

<u>Definition 4. 22:</u> A relation R on a set A is called *transitive* if the pair $(x, z) \in R$ whenever the pairs $(x, y), (y, z) \in R$.

In other words, the relation R on a set A is *transitive* if the following condition satisfied:

If
$$(x, y)$$
, $(y, z) \in R$, then $(x, z) \in R \quad \forall x, y, z \in A$.

And the relation R on a set A is *not transitive* if $\exists (x, y), (y, z) \in A \times A; (x, y), (y, z) \in R$ but $(x, z) \notin R$.

اذا كانت R علاقة على A تحقق الشرط
$$(x,y),\,(y,z)\in\mathbb{R} \implies (x,z)\in\mathbb{R}$$
 قلنا إن R علاقة متعدية (ناقلة) (Transitive Relation)

<u>Definition 4. 23:</u> A relation R on a set A is called *Equivalence relation* if it is reflexive, symmetric and transitive.

A وكانت A علاقة على A وكانت A علاقة انعكاسية و تناظرية ومتعدية قلنا إن A علاقة تكافؤ على A (Equivalence Relation).

ملاحظات:

$$x \ R \ x$$
 أي التعاريف السابقة أن بإمكاننا الاستعاضة عن $(x,y) \in \mathbb{R}$ بالتعبير السابقة أن أن

$$x R y \Leftrightarrow (x,y) \in R$$

ر2) تكون R علاقة غير انعكاسية إذا وجد عنصر
$$x$$
 في x بحيث: $x \not R y \Leftrightarrow (x,x) \notin R$

- بحيث: $(x, y) \in R$ تكون R علاقة غير تناظرية إذا وجد عنصر $\exists x \ R \ v \Leftrightarrow v \ R \ x$
- وهذا $(x,z) \notin R$ علاقة غير متعدية إذا وجد عنصران $(x,z) \in R$ بحيث $(x,z) \notin R$ وهذا يكافيء

$$\exists (x R y \land y R z) : x \not R z$$

(5) لا تكون R علاقة تكافؤ إذا لم يتحقق وإحد على الاقل من الشروط الثلاثة الواردة في التعريف (23) (أي الشرط اللازم والمكافىء لتكون R علاقة تكافؤ على المجموعة A هو أنّ تحقق R الشروط الثلاثة معا وهي الانعكاسية والتناظرية والتعدي).

Example 4. 24: Let $A = \{1, 2, 3, 4\}$ and $R \subset A \times A$ such that $R = \{(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)\}.$ Then is R;

- (i) Reflexive?
- (ii) Symmetric?
- (iii) Transitive?
- (iv) Equivalence?

ناقش العلاقات الاتية من حيث كونها انعكاسية أو تناظرية أو متعدية ومن ثم بيّن أيا ً منها علاقة تكافؤ:

- (أ) علاقة التعامد " \perp " على مجموعة مستقيمات المستوى \mathbb{R}^2
 - (ب) علاقة أصغر من ">" على مجموعة الاعداد].
 - (ح) علاقة قاسم لـ " | "على مجموعة الاعداد *∑.

الحل: (أ) إن علاقة التعامد على مجموعة مستقيمات المستوي ليست علاقة انعكاسية لان المستقيم لا $D' \perp D$ فإن $D \perp D' \in \mathbb{R}^2$ في $D' \perp D' \in \mathbb{R}^2$ في نفسه ولكنها تناظرية لانه إذا كان و کان D, D', D'' $\in \mathbb{R}^2$ و کان متعدیة لانه إذا کان

 $D \perp D' \wedge D' \perp D'' \Rightarrow D \perp D''$

نستنتج مما تقدم أن علاقة التعامد ليست علاقة تكافق

 $x \not < x : \forall x \in \mathbb{Z}$ إن علاقة أصغر من ">" على المجموعة $X \not < X$ ليست انعكاسية لانه $X \not < X : \forall x \in \mathbb{Z}$ كما إنها ليست تناظرية فواضح أنه إذا كانت $x,y\in\mathbb{Z}$ وكانت x< y فإن x< y ولكنها متعدية لانه إذا كانت x < z نستنتج مما تقدم أن العلاقة $y < z \wedge x < y$ وكان $x, y, z \in \mathbb{Z}$ ">" ليست علاقة تكافؤ

(ح) إن علاقة قاسم لـ "|" على * انعكاسية لان أي عدد في * قاسم لنفسه. ولكنها ليست x انظرية فمثلاً z وهي علاقة متعدية لانه إذا كانت x وكانت z وكانت z وكانت z فان z فان z استنتج مما تقدم ان العلاقة "|" ليست علاقة تكافؤ على z.

<u>سىۋال:</u>

هل أن علاقة التوازي " | ا" على مجموعة مستقيمات المستوي علاقة تكافؤ؟ أثبت ذلك.

سؤال:

هل أن علاقة تشابه المثلثات في المستوي \mathbb{R}^2 علاقة تكافؤ؟

<u>Definition 4. 25:</u> A relation R on a set A is called *Anti-symmetric* if x = y whenever the pair $(x, y) \in R$ and $(y, x) \in R$.

In other words, the relation R on a set A is *anti-symmetric* if the following condition satisfies:

$$\forall x, y \in A$$
; if $(x, y) \in R \land (y, x) \in R \Rightarrow x = y$.

And the relation R on a set A is *not anti-symmetric* if $\exists x, y \in A; (x, y) \in R \land (y, x) \in R \text{ but } x \neq y.$

نقول عن علاقة R معرفة على مجموعة A إنها علاقة تخالفية (Anti-Symmetric) إذا حققت الشرط الاتي

$$(x,y) \in R \land (y,x) \in R \implies x = y$$

Definition 4.26: Let x and y are integers with $x \neq 0$. Then "x divides يقسم y" is denoted by $x \mid y$ and defined as:

$$x \mid y \Leftrightarrow \exists k \in \mathbb{Z} \text{ such that } y = kx$$

من أمثلة العلاقات التخالفية علاقة قاسم "|" على مجموعة الاعداد \mathbb{Z}^* فواضح انه إذا كان x=y فإن y \forall $x,y\in\mathbb{Z}^*$: $y\mid x\wedge x\mid y$

<u>Definition 4. 27:</u> A relation R on a set A is called *partially ordered relation* (**P.O.R.**) or *partially ordering* if it is reflexive, anti-symmetric and transitive. The pair (A, R) is called partially ordered set.

R is P.O.R. \Leftrightarrow R is reflexive \land anti-symmetric \land transitive.

R is not P.O.R. \Leftrightarrow R is not reflexive \vee not anti-symmetric \vee not transitive.

نقول إن R علاقة ترتيب جزئي على مجموعة A إذا كانت R علاقة انعكاسية وتخالفية ومتعدية.

<u>Definition 4. 28:</u> A relation R on a set A is called *totally ordered relation* (T.O.R.) or *totally ordering* if it is satisfied the following conditions:

- (i) R is P.O.R.
- (ii) $\forall x, y \in A$: $x R y \lor y R x$.

نقول إن R علاقة ترتيب كلي على A إذا كانت علاقة ترتيب جزئي وتحقق الشرط الآتي: $\forall x,y\in A:x$ R $y\vee y$ R x

إن هذا التعريف يعني أن كل علاقة ترتيب كلي هي علاقة ترتيب جزئي ولكن قد لا يكون العكس صحيحاً. والعلاقة " $_$ " على مجموعة القوة P(A) هي علاقة ترتيب جزئي على في حين ان العلاقة " $_$ " على مجموعة الاعداد الحقيقية \mathbb{R} هي علاقة ترنيب كلى على \mathbb{R} .

Exercises

- (1) If A={1, 2, 3, 4, 5} and B={3, 5, 7, 8}, then answer the following statements:
 - (i) Find $A \times B =$

And $B \times A =$

- (ii) If R= {(1, 3), (1, 5), (2, 7), (2, 8)}. Then, is R binary relation from A to B?Why?If your answer "yes", then find dom R= And range R=
- (iii) Find R⁻¹=
 Is R⁻¹ binary relation from B to A?
 Why?
 If your answer "yes", then find dom R⁻¹=
 And range R⁻¹=

(iv) If $R = \{(2, 5), (3, 4), (4, 5)\}$, then answer the following:

Is R binary relation from A to B?

Why?

Is R binary relation from B to A?

Why?

Is R binary relation on A?

Why?

Is R binary relation on B?

Why?

(v) Is $R = A \times B$ binary relation from A to B?

Find dom R=

Range R=

 R^{-1} =

Is $R^{-1} = B \times A$?

(vi) If $R \subseteq A \times B$, then R and R^{-1} in each of follows:

a)
$$x R y \Leftrightarrow x = y - 2$$

 $R = y = y - 2$

$$R^{-1}$$
=

b)
$$x R y \Leftrightarrow x = y$$

 $R = y$

$$R^{-1}=$$

c)
$$x R y \Leftrightarrow x > y - 2$$

 $R =$

$$R^{-1}$$

d)
$$x R y \Leftrightarrow x = y + 3$$

 $R =$

$$R^{-1}$$
=

- (2) If A= {1, 2, 3, 4, 5, 6}, then any of the following relations on A is reflexive? Symmetric? Transitive? Equivalence? Anti-symmetric?
 - (i) $R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)\}$ Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(ii) $R_2 = R_1 - \{(5, 5)\}$ Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(iii) $R_3 = \{(1, 1), (1, 2), (2, 1)\}$ Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(iv)
$$R_4 = R_3 \cup \{(2, 2)\}$$

Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(v)
$$R_5 = \{(2, 6)\}$$

Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(vi)
$$R_6 = \{(1, 5), (5, 1)\}$$

Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(vii)
$$R_7 = \{(3, 4), (4, 3), (3, 3), (4, 4)\}$$

Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(viii)
$$R_8 = A \times A =$$

Reflexive?

Symmetric?

Transitive?

Equivalence?

Anti-symmetric?

(3) Let \mathbb{Z}^+ be the set of positive integer numbers, and R be a relation on \mathbb{Z}^+ defined as follows:

$$\forall x, y \in \mathbb{Z}^+: x R y \Leftrightarrow x + 2 y = 12$$

Find R=

Dom R=

Range R= R⁻¹=

$$R^{-1}$$

- (4) If Z be the set of integer numbers, then any of the following relations on Z is reflexive? Symmetric? Transitive? Equivalence? Anti-symmetric? P.O.R.? T.O.R.?
 - (i) $\forall x, y \in \mathbb{Z} : x R y \Leftrightarrow x \mid y$

x يقسم y ، او y يقبل القسمة على x

- (ii) $\forall x, y \in \mathbb{Z} : x R y \Leftrightarrow x < y$
- (iii) $\forall x, y \in \mathbb{Z} : x R y \Leftrightarrow x > y$
- (iv) $\forall x, y \in \mathbb{Z} : x R y \Leftrightarrow x \leq y$