University of Baghdad College of Engineering Civil Engineering Department Title: Lecture 1: Compressibility and Elastic Settlement Subject: Soil Mechanics Year: Third Semester: 2 Speaker: Prof. Dr. Nesreen Kurdy Al-Obaidy **References:** Principles of Geotechnical Engineering, Textbook by Das, 2010 Fundamentals of Geotechnical-Engineering-Third-Edition, Textbook by Das Compressibility of Soil Types of Soil Settlement **Total Settlement** Elastic settlement (or immediate settlement), Solved problem # Compressibility of Soil Stress increase caused by the construction of foundations or other loads <u>compresses</u> soil layers. #### The compression is caused by: - a) deformation of soil particles - b) relocations of soil particles - c) expulsion of water or air from the void spaces. #### Fill in the blanks - The decrease in the volume of soil mass under stress is known as ____compression____ - 2. The property of soil mass pertaining to its susceptibility to decrease in volume under pressure is ____compressibility____ # Types of Soil Settlement In general, the *soil settlement* caused by loads may be divided into three broad categories: - 1. Elastic settlement (or immediate settlement) - 2. Primary consolidation settlement, - 3. Secondary consolidation settlement, ## Total Settlement The **total settlement** of a foundation can then be given as: $$S_T = S_e + S_c + S_s$$ where S_T : Total settlement S_e: Elastic settlement S_c : Primary consolidation settlement S_s : Secondary consolidation settlement ### Elastic settlement which is caused by the **elastic deformation** of dry soil and of moist and saturated soils without any change in **the moisture content**. Any time a load is applied to soil that is **partially saturated**, it will experience a reduction in volume as the air in the void is expelled and compressed. In addition, its volume will decrease slightly as a result of the compression of solid particles (the elastic deformation of solid particles is negligibly small) This reduction in the soil's volume that is noted immediately after the application of the load is called **initial consolidation**. It may also be referred to as **immediate settlement**, although some experts feel this is a misnomer. **In saturated soils**, initial consolidation is largely the result of compressing solid particles. • #### Elastic settlement Theoretically, if the foundation is perfectly flexible, the settlement may be expressed as $$S_{e-rigid} = 0.93 S_{e-flexible}$$ ## Elastic settlement Elastic settlement calculations generally are based on equations derived from the **theory of elasticity**. $$S_e = \Delta \sigma(\alpha B') \frac{1 - \mu_s^2}{E_s} I_s I_f$$ where $\Delta \sigma$ = net applied pressure on the foundation μ_s = Poisson's ratio of soil E_s = average modulus of elasticity of the soil under the foundation: from z = 0 to about z = 5B B' = B/2 for center of foundation = B for corner of foundation $$I_s$$ = shape factor (Steinbrenner, 1934) $$= F_1 + \frac{1 - 2\mu_s}{1 - \mu_s} F_2$$ $$F_1 = \frac{1}{\pi} \left(A_0 + A_1 \right)$$ $$F_2 = \frac{n'}{2\pi} \tan^{-1}A_2$$ $$A_0 = m' \ln \frac{(1 + \sqrt{m'^2 + 1})\sqrt{m'^2 + n'^2}}{m'(1 + \sqrt{m'^2 + n'^2 + 1})}$$ $$A_1 = \ln \frac{(m' + \sqrt{m'^2 + 1})\sqrt{1 + n'^2}}{m' + \sqrt{m'^2 + n'^2 + 1}}$$ $$A_2 = \frac{m'}{n'\sqrt{m'^2 + n'^2 + 1}}$$ $I_f = \text{depth factor (Fox, 1948)} = f\left(\frac{D_f}{B}, \mu_s, \text{ and } \frac{L}{B}\right)$ α = factor that depends on the location on the foundation For calculation of settlement at the *center* of the foundation: $$\alpha = 4$$ $$m' = \frac{L}{B}$$ $$n' = \frac{H}{\left(\frac{B}{2}\right)}$$ For calculation of settlement at a *corner* of the foundation: $$\alpha = 1$$ $$m' = \frac{L}{B}$$ $$n' = \frac{H}{B}$$ **Table** Variation of F_1 with m' and n' | | | | | m | ı' | | | | | |-------|---|---|---|--|---|---|---|---|--| | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | 0.014 | 0.013 | 0.012 | 0.011 | 0.011 | 0.011 | 0.010 | 0.010 | 0.010 | 0.010 | | 0.049 | 0.046 | 0.044 | 0.042 | 0.041 | 0.040 | 0.038 | 0.038 | 0.037 | 0.037 | | 0.095 | 0.090 | 0.087 | 0.084 | 0.082 | 0.080 | 0.077 | 0.076 | 0.074 | 0.074 | | 0.142 | 0.138 | 0.134 | 0.130 | 0.127 | 0.125 | 0.121 | 0.118 | 0.116 | 0.115 | | 0.186 | 0.183 | 0.179 | 0.176 | 0.173 | 0.170 | 0.165 | 0.161 | 0.158 | 0.157 | | 0.224 | 0.224 | 0.222 | 0.219 | 0.216 | 0.213 | 0.207 | 0.203 | 0.199 | 0.197 | | 0.257 | 0.259 | 0.259 | 0.258 | 0.255 | 0.253 | 0.247 | 0.242 | 0.238 | 0.235 | | 0.285 | 0.290 | 0.292 | 0.292 | 0.291 | 0.289 | 0.284 | 0.279 | 0.275 | 0.271 | | 0.309 | 0.317 | 0.321 | 0.323 | 0.323 | 0.322 | 0.317 | 0.313 | 0.308 | 0.305 | | 0.330 | 0.341 | 0.347 | 0.350 | 0.351 | 0.351 | 0.348 | 0.344 | 0.340 | 0.336 | | 0.348 | 0.361 | 0.369 | 0.374 | 0.377 | 0.378 | 0.377 | 0.373 | 0.369 | 0.365 | | 0.363 | 0.379 | 0.389 | 0.396 | 0.400 | 0.402 | 0.402 | 0.400 | 0.396 | 0.392 | | 0.376 | 0.394 | 0.406 | 0.415 | 0.420 | 0.423 | 0.426 | 0.424 | 0.421 | 0.418 | | 0.388 | 0.408 | 0.422 | 0.431 | 0.438 | 0.442 | 0.447 | 0.447 | 0.444 | 0.441 | | 0.399 | 0.420 | 0.436 | 0.447 | 0.454 | 0.460 | 0.467 | 0.458 | 0.466 | 0.464 | | 0.408 | 0.431 | 0.448 | 0.460 | 0.469 | 0.476 | 0.484 | 0.487 | 0.486 | 0.484 | | 0.417 | 0.440 | 0.458 | 0.472 | 0.481 | 0.484 | 0.495 | 0.514 | 0.515 | 0.515 | | 0.424 | 0.450 | 0.469 | 0.484 | 0.495 | 0.503 | 0.516 | 0.521 | 0.522 | 0.522 | | 0.431 | 0.458 | 0.478 | 0.494 | 0.506 | 0.515 | 0.530 | 0.536 | 0.539 | 0.539 | | 0.437 | 0.465 | 0.487 | 0.503 | 0.516 | 0.526 | 0.543 | 0.551 | 0.554 | 0.554 | | 0.443 | 0.472 | 0.494 | 0.512 | 0.526 | 0.537 | 0.555 | 0.564 | 0.568 | 0.569 | | 0.448 | 0.478 | 0.501 | 0.520 | 0.534 | 0.546 | 0.566 | 0.576 | 0.581 | 0.584 | | | 0.014
0.049
0.095
0.142
0.186
0.224
0.257
0.285
0.309
0.330
0.348
0.363
0.376
0.388
0.399
0.408
0.417
0.424
0.431
0.437
0.443 | 0.014 0.013 0.049 0.046 0.095 0.090 0.142 0.138 0.186 0.183 0.224 0.224 0.257 0.259 0.285 0.290 0.309 0.317 0.330 0.341 0.348 0.361 0.363 0.379 0.376 0.394 0.388 0.408 0.399 0.420 0.408 0.431 0.417 0.440 0.424 0.450 0.431 0.458 0.437 0.465 0.443 0.472 | 0.014 0.013 0.012 0.049 0.046 0.044 0.095 0.090 0.087 0.142 0.138 0.134 0.186 0.183 0.179 0.224 0.224 0.222 0.257 0.259 0.259 0.285 0.290 0.292 0.309 0.317 0.321 0.348 0.361 0.369 0.363 0.379 0.389 0.376 0.394 0.406 0.388 0.408 0.422 0.399 0.420 0.436 0.408 0.431 0.448 0.417 0.440 0.458 0.424 0.450 0.469 0.431 0.458 0.478 0.443 0.472 0.494 | 0.014 0.013 0.012 0.011 0.049 0.046 0.044 0.042 0.095 0.090 0.087 0.084 0.142 0.138 0.134 0.130 0.186 0.183 0.179 0.176 0.224 0.224 0.222 0.219 0.257 0.259 0.259 0.258 0.285 0.290 0.292 0.292 0.309 0.317 0.321 0.323 0.330 0.341 0.347 0.350 0.348 0.361 0.369 0.374 0.363 0.379 0.389 0.396 0.376 0.394 0.406 0.415 0.388 0.408 0.422 0.431 0.499 0.443 0.448 0.460 0.417 0.440 0.458 0.472 0.424 0.450 0.469 0.484 0.431 0.458 0.478 0.494 0.433 0. | 1.0 1.2 1.4 1.6 1.8 0.014 0.013 0.012 0.011 0.011 0.049 0.046 0.044 0.042 0.041 0.095 0.090 0.087 0.084 0.082 0.142 0.138 0.134 0.130 0.127 0.186 0.183 0.179 0.176 0.173 0.224 0.224 0.222 0.219 0.216 0.257 0.259 0.259 0.258 0.255 0.285 0.290 0.292 0.292 0.291 0.309 0.317 0.321 0.323 0.323 0.330 0.341 0.347 0.350 0.351 0.348 0.361 0.369 0.374 0.377 0.363 0.379 0.389 0.396 0.400 0.376 0.394 0.406 0.415 0.420 0.388 0.408 0.422 0.431 0.438 0.399 | 0.014 0.013 0.012 0.011 0.011 0.040 0.049 0.046 0.044 0.042 0.041 0.040 0.095 0.090 0.087 0.084 0.082 0.080 0.142 0.138 0.134 0.130 0.127 0.125 0.186 0.183 0.179 0.176 0.173 0.170 0.224 0.224 0.222 0.219 0.216 0.213 0.257 0.259 0.259 0.258 0.255 0.253 0.285 0.290 0.292 0.292 0.291 0.289 0.309 0.317 0.321 0.323 0.323 0.322 0.330 0.341 0.347 0.350 0.351 0.351 0.348 0.361 0.369 0.374 0.377 0.378 0.363 0.379 0.389 0.396 0.400 0.402 0.376 0.394 0.406 0.415 0.420 0.423 | 1.0 1.2 1.4 1.6 1.8 2.0 2.5 0.014 0.013 0.012 0.011 0.011 0.011 0.010 0.049 0.046 0.044 0.042 0.041 0.040 0.038 0.095 0.090 0.087 0.084 0.082 0.080 0.077 0.142 0.138 0.134 0.130 0.127 0.125 0.121 0.186 0.183 0.179 0.176 0.173 0.170 0.165 0.224 0.224 0.222 0.219 0.216 0.213 0.207 0.257 0.259 0.259 0.258 0.255 0.253 0.247 0.285 0.290 0.292 0.291 0.289 0.284 0.309 0.317 0.321 0.323 0.323 0.322 0.317 0.330 0.341 0.347 0.350 0.351 0.351 0.348 0.348 0.361 0.369 0.374 | 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 0.014 0.013 0.012 0.011 0.011 0.011 0.010 0.010 0.049 0.046 0.044 0.042 0.041 0.040 0.038 0.038 0.095 0.090 0.087 0.084 0.082 0.080 0.077 0.076 0.142 0.138 0.134 0.130 0.127 0.125 0.121 0.118 0.186 0.183 0.179 0.176 0.173 0.170 0.165 0.161 0.224 0.224 0.222 0.219 0.216 0.213 0.207 0.203 0.257 0.259 0.258 0.255 0.253 0.247 0.242 0.285 0.290 0.292 0.291 0.289 0.284 0.279 0.309 0.317 0.321 0.323 0.323 0.322 0.317 0.313 0.348 0.361 0.369 <td>1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 0.014 0.013 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.049 0.046 0.044 0.042 0.041 0.040 0.038 0.038 0.037 0.095 0.090 0.087 0.084 0.082 0.080 0.077 0.076 0.074 0.142 0.138 0.134 0.130 0.127 0.125 0.121 0.118 0.116 0.186 0.183 0.179 0.176 0.173 0.170 0.165 0.161 0.158 0.224 0.224 0.222 0.219 0.216 0.213 0.207 0.203 0.199 0.257 0.259 0.258 0.255 0.253 0.247 0.242 0.238 0.285 0.290 0.292 0.291 0.289 0.284 0.279 0.275 0.309 0.317 0.321<!--</td--></td> | 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0 3.5 0.014 0.013 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.049 0.046 0.044 0.042 0.041 0.040 0.038 0.038 0.037 0.095 0.090 0.087 0.084 0.082 0.080 0.077 0.076 0.074 0.142 0.138 0.134 0.130 0.127 0.125 0.121 0.118 0.116 0.186 0.183 0.179 0.176 0.173 0.170 0.165 0.161 0.158 0.224 0.224 0.222 0.219 0.216 0.213 0.207 0.203 0.199 0.257 0.259 0.258 0.255 0.253 0.247 0.242 0.238 0.285 0.290 0.292 0.291 0.289 0.284 0.279 0.275 0.309 0.317 0.321 </td | | Table | Variation | of F_1 | with m' | and n' | |-------|-----------|----------|---------|----------| |-------|-----------|----------|---------|----------| | | | | | | m' | | | | | | |------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | n ′ | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | 5.75 | 0.453 | 0.483 | 0.508 | 0.527 | 0.542 | 0.555 | 0.576 | 0.588 | 0.594 | 0.597 | | 6.00 | 0.457 | 0.489 | 0.514 | 0.534 | 0.550 | 0.563 | 0.585 | 0.598 | 0.606 | 0.609 | | 6.25 | 0.461 | 0.493 | 0.519 | 0.540 | 0.557 | 0.570 | 0.594 | 0.609 | 0.617 | 0.621 | | 6.50 | 0.465 | 0.498 | 0.524 | 0.546 | 0.563 | 0.577 | 0.603 | 0.618 | 0.627 | 0.632 | | 6.75 | 0.468 | 0.502 | 0.529 | 0.551 | 0.569 | 0.584 | 0.610 | 0.627 | 0.637 | 0.643 | | 7.00 | 0.471 | 0.506 | 0.533 | 0.556 | 0.575 | 0.590 | 0.618 | 0.635 | 0.646 | 0.653 | | 7.25 | 0.474 | 0.509 | 0.538 | 0.561 | 0.580 | 0.596 | 0.625 | 0.643 | 0.655 | 0.662 | | 7.50 | 0.477 | 0.513 | 0.541 | 0.565 | 0.585 | 0.601 | 0.631 | 0.650 | 0.663 | 0.671 | | 7.75 | 0.480 | 0.516 | 0.545 | 0.569 | 0.589 | 0.606 | 0.637 | 0.658 | 0.671 | 0.680 | | 8.00 | 0.482 | 0.519 | 0.549 | 0.573 | 0.594 | 0.611 | 0.643 | 0.664 | 0.678 | 0.688 | | 8.25 | 0.485 | 0.522 | 0.552 | 0.577 | 0.598 | 0.615 | 0.648 | 0.670 | 0.685 | 0.695 | | 8.50 | 0.487 | 0.524 | 0.555 | 0.580 | 0.601 | 0.619 | 0.653 | 0.676 | 0.692 | 0.703 | | 8.75 | 0.489 | 0.527 | 0.558 | 0.583 | 0.605 | 0.623 | 0.658 | 0.682 | 0.698 | 0.710 | | 9.00 | 0.491 | 0.529 | 0.560 | 0.587 | 0.609 | 0.627 | 0.663 | 0.687 | 0.705 | 0.716 | | 9.25 | 0.493 | 0.531 | 0.563 | 0.589 | 0.612 | 0.631 | 0.667 | 0.693 | 0.710 | 0.723 | | 9.50 | 0.495 | 0.533 | 0.565 | 0.592 | 0.615 | 0.634 | 0.671 | 0.697 | 0.716 | 0.719 | | 9.75 | 0.496 | 0.536 | 0.568 | 0.595 | 0.618 | 0.638 | 0.675 | 0.702 | 0.721 | 0.735 | | 10.00 | 0.498 | 0.537 | 0.570 | 0.597 | 0.621 | 0.641 | 0.679 | 0.707 | 0.726 | 0.740 | | 20.00 | 0.529 | 0.575 | 0.614 | 0.647 | 0.677 | 0.702 | 0.756 | 0.797 | 0.830 | 0.858 | | 50.00 | 0.548 | 0.598 | 0.640 | 0.678 | 0.711 | 0.740 | 0.803 | 0.853 | 0.895 | 0.931 | | 100.00 | 0.555 | 0.605 | 0.649 | 0.688 | 0.722 | 0.753 | 0.819 | 0.872 | 0.918 | 0.956 | | Table 1 | (con | tinued) | | | | | | | | | |---------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------| | | | | | | ı | m' | | | | | | n' | 4.5 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 25.0 | 50.0 | 100.0 | | 0.25 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | | 0.50 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | 0.036 | | 0.75 | 0.073 | 0.073 | 0.072 | 0.072 | 0.072 | 0.072 | 0.071 | 0.071 | 0.071 | 0.071 | | 1.00 | 0.114 | 0.113 | 0.112 | 0.112 | 0.112 | 0.111 | 0.111 | 0.110 | 0.110 | 0.110 | | 1.25 | 0.155 | 0.154 | 0.153 | 0.152 | 0.152 | 0.151 | 0.151 | 0.150 | 0.150 | 0.150 | | 1.50 | 0.195 | 0.194 | 0.192 | 0.191 | 0.190 | 0.190 | 0.189 | 0.188 | 0.188 | 0.188 | | 1.75 | 0.233 | 0.232 | 0.229 | 0.228 | 0.227 | 0.226 | 0.225 | 0.223 | 0.223 | 0.223 | | 2.00 | 0.269 | 0.267 | 0.264 | 0.262 | 0.261 | 0.260 | 0.259 | 0.257 | 0.256 | 0.256 | | 2.25 | 0.302 | 0.300 | 0.296 | 0.294 | 0.293 | 0.291 | 0.291 | 0.287 | 0.287 | 0.287 | | 2.50 | 0.333 | 0.331 | 0.327 | 0.324 | 0.322 | 0.321 | 0.320 | 0.316 | 0.315 | 0.315 | | 2.75 | 0.362 | 0.359 | 0.355 | 0.352 | 0.350 | 0.348 | 0.347 | 0.343 | 0.342 | 0.342 | | 3.00 | 0.389 | 0.386 | 0.382 | 0.378 | 0.376 | 0.374 | 0.373 | 0.368 | 0.367 | 0.367 | | 3.25 | 0.415 | 0.412 | 0.407 | 0.403 | 0.401 | 0.399 | 0.397 | 0.391 | 0.390 | 0.390 | | 3.50 | 0.438 | 0.435 | 0.430 | 0.427 | 0.424 | 0.421 | 0.420 | 0.413 | 0.412 | 0.411 | | 3.75 | 0.461 | 0.458 | 0.453 | 0.449 | 0.446 | 0.443 | 0.441 | 0.433 | 0.432 | 0.432 | | 4.00 | 0.482 | 0.479 | 0.474 | 0.470 | 0.466 | 0.464 | 0.462 | 0.453 | 0.451 | 0.451 | | 4.25 | 0.516 | 0.496 | 0.484 | 0.473 | 0.471 | 0.471 | 0.470 | 0.468 | 0.462 | 0.460 | | 4.50 | 0.520 | 0.517 | 0.513 | 0.508 | 0.505 | 0.502 | 0.499 | 0.489 | 0.487 | 0.487 | | 4.75 | 0.537 | 0.535 | 0.530 | 0.526 | 0.523 | 0.519 | 0.517 | 0.506 | 0.504 | 0.503 | | 5.00 | 0.554 | 0.552 | 0.548 | 0.543 | 0.540 | 0.536 | 0.534 | 0.522 | 0.519 | 0.519 | | 5.25 | 0.569 | 0.568 | 0.564 | 0.560 | 0.556 | 0.553 | 0.550 | 0.537 | 0.534 | 0.534 | | 5.50 | 0.584 | 0.583 | 0.579 | 0.575 | 0.571 | 0.568 | 0.585 | 0.551 | 0.549 | 0.548 | | Table 1 | (co | ntinued) | | | | | | | | | |---------|-------|----------|-------|-------|-------|-------|-------|-------|-------|-------| | | | | | | ı | m' | | | | | | n' | 4.5 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 25.0 | 50.0 | 100.0 | | 5.75 | 0.597 | 0.597 | 0.594 | 0.590 | 0.586 | 0.583 | 0.580 | 0.565 | 0.583 | 0.562 | | 6.00 | 0.611 | 0.610 | 0.608 | 0.604 | 0.601 | 0.598 | 0.595 | 0.579 | 0.576 | 0.575 | | 6.25 | 0.623 | 0.623 | 0.621 | 0.618 | 0.615 | 0.611 | 0.608 | 0.592 | 0.589 | 0.588 | | 6.50 | 0.635 | 0.635 | 0.634 | 0.631 | 0.628 | 0.625 | 0.622 | 0.605 | 0.601 | 0.600 | | 6.75 | 0.646 | 0.647 | 0.646 | 0.644 | 0.641 | 0.637 | 0.634 | 0.617 | 0.613 | 0.612 | | 7.00 | 0.656 | 0.658 | 0.658 | 0.656 | 0.653 | 0.650 | 0.647 | 0.628 | 0.624 | 0.623 | | 7.25 | 0.666 | 0.669 | 0.669 | 0.668 | 0.665 | 0.662 | 0.659 | 0.640 | 0.635 | 0.634 | | 7.50 | 0.676 | 0.679 | 0.680 | 0.679 | 0.676 | 0.673 | 0.670 | 0.651 | 0.646 | 0.645 | | 7.75 | 0.685 | 0.688 | 0.690 | 0.689 | 0.687 | 0.684 | 0.681 | 0.661 | 0.656 | 0.655 | | 8.00 | 0.694 | 0.697 | 0.700 | 0.700 | 0.698 | 0.695 | 0.692 | 0.672 | 0.666 | 0.665 | | 8.25 | 0.702 | 0.706 | 0.710 | 0.710 | 0.708 | 0.705 | 0.703 | 0.682 | 0.676 | 0.675 | | 8.50 | 0.710 | 0.714 | 0.719 | 0.719 | 0.718 | 0.715 | 0.713 | 0.692 | 0.686 | 0.684 | | 8.75 | 0.717 | 0.722 | 0.727 | 0.728 | 0.727 | 0.725 | 0.723 | 0.701 | 0.695 | 0.693 | | 9.00 | 0.725 | 0.730 | 0.736 | 0.737 | 0.736 | 0.735 | 0.732 | 0.710 | 0.704 | 0.702 | | 9.25 | 0.731 | 0.737 | 0.744 | 0.746 | 0.745 | 0.744 | 0.742 | 0.719 | 0.713 | 0.711 | | 9.50 | 0.738 | 0.744 | 0.752 | 0.754 | 0.754 | 0.753 | 0.751 | 0.728 | 0.721 | 0.719 | | 9.75 | 0.744 | 0.751 | 0.759 | 0.762 | 0.762 | 0.761 | 0.759 | 0.737 | 0.729 | 0.727 | | 0.00 | 0.750 | 0.758 | 0.766 | 0.770 | 0.770 | 0.770 | 0.768 | 0.745 | 0.738 | 0.735 | | 20.00 | 0.878 | 0.896 | 0.925 | 0.945 | 0.959 | 0.969 | 0.977 | 0.982 | 0.965 | 0.957 | | 50.00 | 0.962 | 0.989 | 1.034 | 1.070 | 1.100 | 1.125 | 1.146 | 1.265 | 1.279 | 1.261 | | 00.00 | 0.990 | 1.020 | 1.072 | 1.114 | 1.150 | 1.182 | 1.209 | 1.408 | 1.489 | 1.499 | | | | | | | ı | n' | | | | | |------|-------|-------|-------|-------|-------|-------|-------|-------|--------|------| | n' | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | 0.25 | 0.049 | 0.050 | 0.051 | 0.051 | 0.051 | 0.052 | 0.052 | 0.052 | 0.052 | 0.05 | | 0.50 | 0.074 | 0.077 | 0.080 | 0.081 | 0.083 | 0.084 | 0.086 | 0.086 | 0.0878 | 0.08 | | 0.75 | 0.083 | 0.089 | 0.093 | 0.097 | 0.099 | 0.101 | 0.104 | 0.106 | 0.107 | 0.10 | | 1.00 | 0.083 | 0.091 | 0.098 | 0.102 | 0.106 | 0.109 | 0.114 | 0.117 | 0.119 | 0.12 | | 1.25 | 0.080 | 0.089 | 0.096 | 0.102 | 0.107 | 0.111 | 0.118 | 0.122 | 0.125 | 0.12 | | 1.50 | 0.075 | 0.084 | 0.093 | 0.099 | 0.105 | 0.110 | 0.118 | 0.124 | 0.128 | 0.13 | | 1.75 | 0.069 | 0.079 | 0.088 | 0.095 | 0.101 | 0.107 | 0.117 | 0.123 | 0.128 | 0.13 | | 2.00 | 0.064 | 0.074 | 0.083 | 0.090 | 0.097 | 0.102 | 0.114 | 0.121 | 0.127 | 0.13 | | 2.25 | 0.059 | 0.069 | 0.077 | 0.085 | 0.092 | 0.098 | 0.110 | 0.119 | 0.125 | 0.13 | | 2.50 | 0.055 | 0.064 | 0.073 | 0.080 | 0.087 | 0.093 | 0.106 | 0.115 | 0.122 | 0.12 | | 2.75 | 0.051 | 0.060 | 0.068 | 0.076 | 0.082 | 0.089 | 0.102 | 0.111 | 0.119 | 0.12 | | 3.00 | 0.048 | 0.056 | 0.064 | 0.071 | 0.078 | 0.084 | 0.097 | 0.108 | 0.116 | 0.12 | | 3.25 | 0.045 | 0.053 | 0.060 | 0.067 | 0.074 | 0.080 | 0.093 | 0.104 | 0.112 | 0.11 | | 3.50 | 0.042 | 0.050 | 0.057 | 0.064 | 0.070 | 0.076 | 0.089 | 0.100 | 0.109 | 0.11 | | 3.75 | 0.040 | 0.047 | 0.054 | 0.060 | 0.067 | 0.073 | 0.086 | 0.096 | 0.105 | 0.11 | | 4.00 | 0.037 | 0.044 | 0.051 | 0.057 | 0.063 | 0.069 | 0.082 | 0.093 | 0.102 | 0.11 | | 4.25 | 0.036 | 0.042 | 0.049 | 0.055 | 0.061 | 0.066 | 0.079 | 0.090 | 0.099 | 0.10 | | 4.50 | 0.034 | 0.040 | 0.046 | 0.052 | 0.058 | 0.063 | 0.076 | 0.086 | 0.096 | 0.10 | | 4.75 | 0.032 | 0.038 | 0.044 | 0.050 | 0.055 | 0.061 | 0.073 | 0.083 | 0.093 | 0.10 | | 5.00 | 0.031 | 0.036 | 0.042 | 0.048 | 0.053 | 0.058 | 0.070 | 0.080 | 0.090 | 0.09 | | 5.25 | 0.029 | 0.035 | 0.040 | 0.046 | 0.051 | 0.056 | 0.067 | 0.078 | 0.087 | 0.09 | | 5.50 | 0.028 | 0.033 | 0.039 | 0.044 | 0.049 | 0.054 | 0.065 | 0.075 | 0.084 | 0.09 | | | | | | | n | 1' | | | | | |------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | n ′ | 1.0 | 1.2 | 1.4 | 1.6 | 1.8 | 2.0 | 2.5 | 3.0 | 3.5 | 4.0 | | 5.75 | 0.027 | 0.032 | 0.037 | 0.042 | 0.047 | 0.052 | 0.063 | 0.073 | 0.082 | 0.09 | | 6.00 | 0.026 | 0.031 | 0.036 | 0.040 | 0.045 | 0.050 | 0.060 | 0.070 | 0.079 | 0.08 | | 6.25 | 0.025 | 0.030 | 0.034 | 0.039 | 0.044 | 0.048 | 0.058 | 0.068 | 0.077 | 0.08 | | 6.50 | 0.024 | 0.029 | 0.033 | 0.038 | 0.042 | 0.046 | 0.056 | 0.066 | 0.075 | 0.083 | | 6.75 | 0.023 | 0.028 | 0.032 | 0.036 | 0.041 | 0.045 | 0.055 | 0.064 | 0.073 | 0.08 | | 7.00 | 0.022 | 0.027 | 0.031 | 0.035 | 0.039 | 0.043 | 0.053 | 0.062 | 0.071 | 0.07 | | 7.25 | 0.022 | 0.026 | 0.030 | 0.034 | 0.038 | 0.042 | 0.051 | 0.060 | 0.069 | 0.07 | | 7.50 | 0.021 | 0.025 | 0.029 | 0.033 | 0.037 | 0.041 | 0.050 | 0.059 | 0.067 | 0.07 | | 7.75 | 0.020 | 0.024 | 0.028 | 0.032 | 0.036 | 0.039 | 0.048 | 0.057 | 0.065 | 0.07 | | 8.00 | 0.020 | 0.023 | 0.027 | 0.031 | 0.035 | 0.038 | 0.047 | 0.055 | 0.063 | 0.07 | | 8.25 | 0.019 | 0.023 | 0.026 | 0.030 | 0.034 | 0.037 | 0.046 | 0.054 | 0.062 | 0.06 | | 8.50 | 0.018 | 0.022 | 0.026 | 0.029 | 0.033 | 0.036 | 0.045 | 0.053 | 0.060 | 0.06 | | 8.75 | 0.018 | 0.021 | 0.025 | 0.028 | 0.032 | 0.035 | 0.043 | 0.051 | 0.059 | 0.06 | | 9.00 | 0.017 | 0.021 | 0.024 | 0.028 | 0.031 | 0.034 | 0.042 | 0.050 | 0.057 | 0.06 | | 9.25 | 0.017 | 0.020 | 0.024 | 0.027 | 0.030 | 0.033 | 0.041 | 0.049 | 0.056 | 0.06 | | 9.50 | 0.017 | 0.020 | 0.023 | 0.026 | 0.029 | 0.033 | 0.040 | 0.048 | 0.055 | 0.06 | | 9.75 | 0.016 | 0.019 | 0.023 | 0.026 | 0.029 | 0.032 | 0.039 | 0.047 | 0.054 | 0.06 | | 0.00 | 0.016 | 0.019 | 0.022 | 0.025 | 0.028 | 0.031 | 0.038 | 0.046 | 0.052 | 0.05 | | 0.00 | 0.008 | 0.010 | 0.011 | 0.013 | 0.014 | 0.016 | 0.020 | 0.024 | 0.027 | 0.03 | | 0.00 | 0.003 | 0.004 | 0.004 | 0.005 | 0.006 | 0.006 | 0.008 | 0.010 | 0.011 | 0.01 | | 00.00 | 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.003 | 0.004 | 0.005 | 0.006 | 0.00 | | Table | (conti | inued) | | | | | | | | | |-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------| | | | | | | ı | n' | | | | | | n' | 4.5 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 25.0 | 50.0 | 100.0 | | 0.25 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | 0.053 | | 0.50 | 0.087 | 0.087 | 0.088 | 0.088 | 0.088 | 0.088 | 880.0 | 0.088 | 0.088 | 0.088 | | 0.75 | 0.109 | 0.109 | 0.109 | 0.110 | 0.110 | 0.110 | 0.110 | 0.111 | 0.111 | 0.111 | | 1.00 | 0.121 | 0.122 | 0.123 | 0.123 | 0.124 | 0.124 | 0.124 | 0.125 | 0.125 | 0.125 | | 1.25 | 0.128 | 0.130 | 0.131 | 0.132 | 0.132 | 0.133 | 0.133 | 0.134 | 0.134 | 0.134 | | 1.50 | 0.132 | 0.134 | 0.136 | 0.137 | 0.138 | 0.138 | 0.139 | 0.140 | 0.140 | 0.140 | | 1.75 | 0.134 | 0.136 | 0.138 | 0.140 | 0.141 | 0.142 | 0.142 | 0.144 | 0.144 | 0.145 | | 2.00 | 0.134 | 0.136 | 0.139 | 0.141 | 0.143 | 0.144 | 0.145 | 0.147 | 0.147 | 0.148 | | 2.25 | 0.133 | 0.136 | 0.140 | 0.142 | 0.144 | 0.145 | 0.146 | 0.149 | 0.150 | 0.150 | | 2.50 | 0.132 | 0.135 | 0.139 | 0.142 | 0.144 | 0.146 | 0.147 | 0.151 | 0.151 | 0.151 | | 2.75 | 0.130 | 0.133 | 0.138 | 0.142 | 0.144 | 0.146 | 0.147 | 0.152 | 0.152 | 0.153 | | 3.00 | 0.127 | 0.131 | 0.137 | 0.141 | 0.144 | 0.145 | 0.147 | 0.152 | 0.153 | 0.154 | | 3.25 | 0.125 | 0.129 | 0.135 | 0.140 | 0.143 | 0.145 | 0.147 | 0.153 | 0.154 | 0.154 | | 3.50 | 0.122 | 0.126 | 0.133 | 0.138 | 0.142 | 0.144 | 0.146 | 0.153 | 0.155 | 0.155 | | 3.75 | 0.119 | 0.124 | 0.131 | 0.137 | 0.141 | 0.143 | 0.145 | 0.154 | 0.155 | 0.155 | | 4.00 | 0.116 | 0.121 | 0.129 | 0.135 | 0.139 | 0.142 | 0.145 | 0.154 | 0.155 | 0.156 | | 4.25 | 0.113 | 0.119 | 0.127 | 0.133 | 0.138 | 0.141 | 0.144 | 0.154 | 0.156 | 0.156 | | 4.50 | 0.110 | 0.116 | 0.125 | 0.131 | 0.136 | 0.140 | 0.143 | 0.154 | 0.156 | 0.156 | | 4.75 | 0.107 | 0.113 | 0.123 | 0.130 | 0.135 | 0.139 | 0.142 | 0.154 | 0.156 | 0.157 | | 5.00 | 0.105 | 0.111 | 0.120 | 0.128 | 0.133 | 0.137 | 0.140 | 0.154 | 0.156 | 0.157 | | 5.25 | 0.102 | 0.108 | 0.118 | 0.126 | 0.131 | 0.136 | 0.139 | 0.154 | 0.156 | 0.157 | | 5.50 | 0.099 | 0.106 | 0.116 | 0.124 | 0.130 | 0.134 | 0.138 | 0.154 | 0.156 | 0.157 | | Table | (con | tinued) | | | | | | | | | |--------|-------|---------|-------|-------|-------|-------|-------|-------|-------|-------| | | | | | | | m' | | | | | | n' | 4.5 | 5.0 | 6.0 | 7.0 | 8.0 | 9.0 | 10.0 | 25.0 | 50.0 | 100.0 | | 5.75 | 0.097 | 0.103 | 0.113 | 0.122 | 0.128 | 0.133 | 0.136 | 0.154 | 0.157 | 0.157 | | 6.00 | 0.094 | 0.101 | 0.111 | 0.120 | 0.126 | 0.131 | 0.135 | 0.153 | 0.157 | 0.157 | | 6.25 | 0.092 | 0.098 | 0.109 | 0.118 | 0.124 | 0.129 | 0.134 | 0.153 | 0.157 | 0.158 | | 6.50 | 0.090 | 0.096 | 0.107 | 0.116 | 0.122 | 0.128 | 0.132 | 0.153 | 0.157 | 0.158 | | 6.75 | 0.087 | 0.094 | 0.105 | 0.114 | 0.121 | 0.126 | 0.131 | 0.153 | 0.157 | 0.158 | | 7.00 | 0.085 | 0.092 | 0.103 | 0.112 | 0.119 | 0.125 | 0.129 | 0.152 | 0.157 | 0.158 | | 7.25 | 0.083 | 0.090 | 0.101 | 0.110 | 0.117 | 0.123 | 0.128 | 0.152 | 0.157 | 0.158 | | 7.50 | 0.081 | 0.088 | 0.099 | 0.108 | 0.115 | 0.121 | 0.126 | 0.152 | 0.156 | 0.158 | | 7.75 | 0.079 | 0.086 | 0.097 | 0.106 | 0.114 | 0.120 | 0.125 | 0.151 | 0.156 | 0.158 | | 8.00 | 0.077 | 0.084 | 0.095 | 0.104 | 0.112 | 0.118 | 0.124 | 0.151 | 0.156 | 0.158 | | 8.25 | 0.076 | 0.082 | 0.093 | 0.102 | 0.110 | 0.117 | 0.122 | 0.150 | 0.156 | 0.158 | | 8.50 | 0.074 | 0.080 | 0.091 | 0.101 | 0.108 | 0.115 | 0.121 | 0.150 | 0.156 | 0.158 | | 8.75 | 0.072 | 0.078 | 0.089 | 0.099 | 0.107 | 0.114 | 0.119 | 0.150 | 0.156 | 0.158 | | 9.00 | 0.071 | 0.077 | 0.088 | 0.097 | 0.105 | 0.112 | 0.118 | 0.149 | 0.156 | 0.158 | | 9.25 | 0.069 | 0.075 | 0.086 | 0.096 | 0.104 | 0.110 | 0.116 | 0.149 | 0.156 | 0.158 | | 9.50 | 0.068 | 0.074 | 0.085 | 0.094 | 0.102 | 0.109 | 0.115 | 0.148 | 0.156 | 0.158 | | 9.75 | 0.066 | 0.072 | 0.083 | 0.092 | 0.100 | 0.107 | 0.113 | 0.148 | 0.156 | 0.158 | | 10.00 | 0.065 | 0.071 | 0.082 | 0.091 | 0.099 | 0.106 | 0.112 | 0.147 | 0.156 | 0.158 | | 20.00 | 0.035 | 0.039 | 0.046 | 0.053 | 0.059 | 0.065 | 0.071 | 0.124 | 0.148 | 0.156 | | 50.00 | 0.014 | 0.016 | 0.019 | 0.022 | 0.025 | 0.028 | 0.031 | 0.071 | 0.113 | 0.142 | | 100.00 | 0.007 | 0.008 | 0.010 | 0.011 | 0.013 | 0.014 | 0.016 | 0.039 | 0.071 | 0.113 | | и | | | |---|----|---| | | | | | | 40 | • | | | | | | L/B | D_t/B | $\mu_s = 0.3$ | $\mu_s=0.4$ | $\mu_s = 0.5$ | |-----|----------|---------------|-------------|---------------| | | <u> </u> | | | | | 1 | 0.5 | 0.77 | 0.82 | 0.85 | | | 0.75 | 0.69 | 0.74 | 0.77 | | | 1 | 0.65 | 0.69 | 0.72 | | 2 | 0.5 | 0.82 | 0.86 | 0.89 | | | 0.75 | 0.75 | 0.79 | 0.83 | | | 1 | 0.71 | 0.75 | 0.79 | | 5 | 0.5 | 0.87 | 0.91 | 0.93 | | | 0.75 | 0.81 | 0.86 | 0.89 | | | 1 | 0.78 | 0.82 | 0.85 | | Table | Representative Values of the Modulus of | |-------|-----------------------------------------| | | Elasticity of Soil | | Soil type | E _s kN/m ² | |------------|----------------------------------| | | | | Hard clay | 6000-14,000 | | Loose sand | 10,000-28,000 | | Dense sand | 35,000-70,000 | | Table | Representative Values of | |-------|--------------------------| | | Poisson's Ratio | | Type of soil | Poisson's ratio, μ_s | |--------------|--------------------------| | Loose sand | 0.2-0.4 | | Medium sand | 0.25-0.4 | | Dense sand | 0.3-0.45 | | Silty sand | 0.2-0.4 | | Soft clay | 0.15-0.25 | | Medium clay | 0.2-0.5 | #### **Example** A rigid shallow foundation 1 m * 1 m in plan is shown. Calculate the elastic settlement at the center of the foundation. #### **Solution** Given: B = 1 m and L=1 m H=5m= 5(B)=5(1) (which is smaller= \overline{Z}) $$E_s = \frac{\sum E_{s(i)} \Delta z}{\overline{z}}$$ $$= \frac{(8000)(2) + (6000)(1) + (10,000)(2)}{5}$$ $= 8400 \text{ kN/m}^2$ For the center of the foundation, $$\alpha = 4$$ $$m' = \frac{L}{B} = \frac{1}{1} = 1$$ $$n' = \frac{H}{\left(\frac{B}{2}\right)} = \frac{5}{\left(\frac{1}{2}\right)} = 10$$ From Tables $$F_1 = 0.498$$ and $F_2 = 0.016$. $$I_s = F_1 + \frac{1 - 2\mu_s}{1 - \mu_s} F_2$$ $$= 0.498 + \frac{1 - 0.6}{1 - 0.3} (0.016) = 0.507$$ Again, $$\frac{D_f}{R} = \frac{1}{1} = 1$$, $\frac{L}{R} = 1$, $\mu_s = 0.3$. From Table $I_f = 0.65$. Hence, $$S_{e(\text{flexible})} = \Delta \sigma (\alpha B') \frac{1 - \mu_s^2}{E_s} I_s I_f$$ $$= (200) \left(4 \times \frac{1}{2}\right) \left(\frac{1 - 0.3^2}{8400}\right) (0.507) (0.65) = 0.0143 \text{ m} = 14.3 \text{ mm}$$ Since the foundation is rigid, from Eq. (11.9), $$S_e(\text{rigid}) = (0.93)(14.3) = 13.3 \text{ mm}$$ ### H.W A (5m x 10m) rectangular flexible foundation is placed on two layers of clay, both 10m thick as shown in the figure below. The modulus of elasticity of the upper layer is 8 MN/m² and that of the lower layer is 16 MN/m². Determine the immediate settlement at the center of the foundation using: Elastic Theory Method. Ans S_e =36 mm # Thank