[7] Analytic Functions

Definition:

A function f is said to be analytic at z_0 if $f'(z_0)$ exists and f'(z) exists at each point z in the same neighborhood of z_0 .

Note: *f* is analytic in a region *R* if it is analytic at every point in *R*.

Definition:

If *f* is analytic at each point in the entire plane, then we say that *f* is an entire function.

Example: $f(z) = z^2$, is an entire function since it is a polynomial.

Definition:

If *f* is analytic at every point in the same neighborhood of z_0 but *f* is not analytic at z_0 , then z_0 is called singular point.

Example: Let $f(z) = \frac{1}{z}$, then $f'(z) = \frac{-1}{z^2}$ ($z \neq 0$)

Then *f* is not analytic at $z_0 = 0$, which is a singular point.

Note: If *f* is analytic in *D*, then *f* is continuous through *D* and C-R equations are satisfied.

<u>Note</u>: A sufficient conditions that *f* be analytic in \mathbb{R} are that C-R equations are satisfied and u_x , v_x , u_y , v_y are continuous in \mathbb{R} .

[8] Harmonic Functions

Definition:

A function h of two variables x and y is said to be harmonic in D if the first partial derivatives are continuous in D and

$$h_{xx} + h_{yy} = 0$$
 (Laplace equation)

Example: Show that u(x, y) = 2x(1 - y) is harmonic in some domain *D*.

<u>Solution</u>:

 $u_x = 2(1 - y) \rightarrow u_{xx} = 0$ $u_y = -2x \qquad \rightarrow u_{yy} = 0$ $\therefore u_{xx} + u_{yy} = 0$

Since u, u_x, u_y are continuous and satisfied Laplace equation then the function is harmonic.

Definition:

Let w = u + iv, we say that w is harmonic function if u, v are also harmonic functions and we say v is a harmonic conjugate of u and u is a harmonic conjugate of v.

Theorem: If a function f(z) = u(x, y) + i v(x, y) is analytic in a domain *D* then its component functions *u* and *v* are harmonic in *D*.

Proof:

Since *f* is analytic then it satisfies C-R equations

i.e.: $u_x = v_y$, $u_y = -v_x$ $\rightarrow u_{xx} = v_{yx}$, $u_{yy} = -v_{xy}$ $\therefore u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$

 $\rightarrow u$ is harmonic function. By the same way we prove that v is harmonic function.

Note: The converse of the above theorem is not true, which means that if u and v are harmonic functions then f is not necessary analytic function.

Example: u(x, y) = 2xy, $v(x, y) = x^2 - y^2$

<u>Solution:</u> u, v are harmonic functions, but

$$f(z) = u + iv = 2xy + i(x^2 - y^2)$$

52

is not analytic function since it doesn't satisfy C-R equations

$$u_x = 2y$$
, $v_x = 2x$
 $u_y = 2x$, $v_y = -2y$
 $\rightarrow u_x \neq v_y$

 \therefore *f* is not analytic function.

Definition:

Let u, v be two harmonic functions and $u_x = v_y$, $u_y = -v_x$, then we say that v is a harmonic conjugate of u.

Note:

- 1. If v is a harmonic conjugate of u and u is a harmonic conjugate of v then u, v are constant functions.
- 2. If v is a harmonic conjugate of u then u is a harmonic conjugate of -v.
- 3. f = u + iv is analytic iff v a harmonic conjugate of u.

Example: Show that $u(x, y) = \sin x \cosh y$ is harmonic and find the harmonic conjugate.

Solution:

 $u_x = \cos x \cosh y \rightarrow u_{xx} = -\sin x \cosh y$

 $u_y = \sin x \sinh y \rightarrow v_{yy} = \sin x \cosh y$

 $\rightarrow u_{xx} + v_{yy} = 0 \rightarrow u$ is harmonic

To find the harmonic conjugate v we must satisfy

$$u_x = v_y$$
, $u_y = -v_x$

1. $u_x = \cos x \cosh y = v_y$

2. $v = \cos x \sinh y + \phi_x$

We obtain ϕ_x by integration and using the second equation of C-R:

53

 $v_x = -\sin x \sinh y + \emptyset'_x$

But $-v_x = u_y$, then

 $-\sin x \sinh y + \emptyset'_x = -\sin x \sinh y \rightarrow \emptyset'_x = 0 \stackrel{f}{\rightarrow} \emptyset_x = c$

 $\therefore v = \cos x \sinh y + c$

Example: Let u(x, y) = xy, find v such that f(z) = u + iv is analytic.

Solution: Since *f* is an analytic, then C-R equation are satisfied

 $u_x = v_y \rightarrow y = v_y \rightarrow v = \frac{y^2}{2} + \emptyset(x)$ But $u_y = -v_x \rightarrow x = -\emptyset'(x)$ $\rightarrow \emptyset'(x) = -x$ $\stackrel{\int}{\rightarrow} \emptyset(x) = \frac{-x^2}{2} + c$ $\therefore v = \frac{y^2}{2} - \frac{x^2}{2} + c$ If c = 0, then $f(z) = xy + i\left(\frac{y^2}{2} - \frac{x^2}{2}\right)$