[7] Analytic Functions

Definition:

A function f is said to be analytic at z_0 if $f'(z_0)$ exists and $f'(z)$ exists at each point z in the same neighborhood of z_0 .

<u>Note:</u> f is analytic in a region R if it is analytic at every point in R .

Definition:

If f is analytic at each point in the entire plane, then we say that f is an entire function.

Example: $f(z) = z^2$, is an entire function since it is a polynomial.

Definition:

If f is analytic at every point in the same neighborhood of z_0 but f is not analytic at z_0 , then z_0 is called singular point.

Example: Let $f(z) = \frac{1}{z}$, then $f'(z) = \frac{-1}{z^2}$ $(z \neq 0)$

Then f is not analytic at $z_0 = 0$, which is a singular point.

<u>Note:</u> If f is analytic in D, then f is continuous through D and C-R equations are satisfied.

Note: A sufficient conditions that f be analytic in ℝ are that C-R equations are satisfied and u_x , v_x , u_y , v_y are continuous in ℝ.

[8] Harmonic Functions

Definition:

A function h of two variables x and y is said to be harmonic in D if the first partial derivatives are continuous in D and

$$
h_{xx} + h_{yy} = 0
$$
 (Laplace equation)

Example: Show that $u(x, y) = 2x(1 - y)$ is harmonic in some domain D.

Solution:

 $u_x = 2(1 - y) \rightarrow u_{xx} = 0$ $u_v = -2x \rightarrow u_{vv} = 0$ $u_{xx} + u_{yy} = 0$

Since u, u_x, u_y are continuous and satisfied Laplace equation then the function is harmonic.

Definition:

Let $w = u + iv$, we say that w is harmonic function if u, v are also harmonic functions and we say ν is a harmonic conjugate of u and u is a harmonic conjugate of v .

Theorem: If a function $f(z) = u(x, y) + i v(x, y)$ is analytic in a domain *D* then its component functions u and v are harmonic in *D*.

Proof:

Since f is analytic then it satisfies C-R equations

i.e.: $u_x = v_y$, $u_y = -v_x$ $\rightarrow u_{xx} = v_{yx}$, $u_{yy} = -v_{xy}$ $\therefore u_{xx} + u_{yy} = v_{yx} - v_{xy} = 0$

 $\rightarrow u$ is harmonic function. By the same way we prove that v is harmonic function.

Note: The converse of the above theorem is not true, which means that if u and v are harmonic functions then f is not necessary analytic function.

Example: $u(x, y) = 2xy$, $v(x, y) = x^2 - y^2$

Solution: u, v are harmonic functions, but

$$
f(z) = u + iv = 2xy + i(x^2 - y^2)
$$

```
52
```
is not analytic function since it doesn't satisfy C-R equations

$$
u_x = 2y, \t v_x = 2x
$$

$$
u_y = 2x, \t v_y = -2y
$$

$$
\rightarrow u_x \neq v_y
$$

 \therefore f is not analytic function.

Definition:

Let *u*, *v* be two harmonic functions and $u_x = v_y$, $u_y = -v_x$, then we say that v is a harmonic conjugate of u .

Note:

- 1. If ν is a harmonic conjugate of ν and ν is a harmonic conjugate of ν then u , ν are constant functions.
- 2. If v is a harmonic conjugate of u then u is a harmonic conjugate of $-v$.
- 3. $f = u + iv$ is analytic iff v a harmonic conjugate of u.

Example: Show that $u(x, y) = \sin x \cosh y$ is harmonic and find the harmonic conjugate.

Solution:

 $u_x = \cos x \cosh y \rightarrow u_{xx} = -\sin x \cosh y$

 $u_y = \sin x \sinh y \rightarrow v_{yy} = \sin x \cosh y$

 $\rightarrow u_{xx} + v_{yy} = 0 \rightarrow u$ is harmonic

To find the harmonic conjugate v we must satisfy

$$
u_x = v_y, \ \ u_y = -v_x
$$

1. $u_x = \cos x \cosh y = v_y$

2. $v = \cos x \sinh y + \phi_x$

We obtain ϕ_x by integration and using the second equation of C-R:

 $v_x = -\sin x \sinh y + \phi'_x$

But $-v_x = u_y$, then

 $-\sin x \sinh y + \phi'_x = -\sin x \sinh y \rightarrow \phi'_x = 0 \rightarrow$ $\rightarrow \emptyset_x = c$

 $\therefore v = \cos x \sinh y + c$

Example: Let $u(x, y) = xy$, find v such that $f(z) = u + iv$ is analytic.

Solution: Since f is an analytic, then C-R equation are satisfied

 $u_x = v_y \rightarrow y = v_y \rightarrow v = \frac{y^2}{2} + \phi(x)$ But $u_y = -v_x \rightarrow x = -\phi'(x)$ $\rightarrow \emptyset'(x) = -x$ $\stackrel{\int}{\rightarrow} \emptyset(x) = \frac{-x^2}{2} + c$ $\therefore v =$ $rac{y^2}{2} - \frac{x^2}{2} + c$ If $c = 0$, then $f(z) = xy + i \left(\frac{y^2}{2} - \frac{x^2}{2} \right)$