# Chapter Two

# **Analytic Functions**

## [1] Functions of a Complex Variable

#### **Definition:**

A function f defined on a set A to a set B is a rule assigns a unique element of B to each element of A; in this case we call f a single function. i.e.:  $f: A \to B$ ,  $A, B \subseteq \mathbb{C}$ 

$$\forall z \in A, \exists! w \in B \text{ s.t } w = f(z) \in B$$



#### **Definition:**

The domain of f in the above def. is A and the range is the set R of elements of B which f associate with elements of A.

**Note**: The elements in the domain of f are called independent variables and those in the range of f are called dependent variables.

## **Definition:**

A *f* rule which assigns more than one number of *B* to any number of *A* is called a multiple valued function.

## **Example:**

1. 
$$f(z) = (z)^{1/2}$$

Has two roots therefore f(z) is a multiple function.

2. 
$$f(z) = (z)^{3/5} = (z^3)^{1/5}$$

Has five roots therefore f(z) is a multiple function. In general, if  $f(z) = \arg z$  then f is a multiple function.

3. If  $f(z) = \operatorname{Arg} z$  then f is a single function.

#### **Note:**

- 1. Let  $f: Z \to W$ , if Z and W are complex, then f is called complex variables function (a complex function) or a complex valued function of a complex variable.
- 2. If *A* is a set of complex numbers and *B* is a set of real numbers then *f* is called real—valued function of a complex variable, conversely *f* is a complex—valued function of real variables.

**Example:** Find the domain of the following functions

$$1. f(z) = \frac{1}{z}$$

Ans.:  $D_f = \mathbb{C} \setminus \{0\}$ 

$$2. f(z) = \frac{1}{z^2 + 1}$$

Ans.:  $D_f = \mathbb{C} \setminus \{-i, i\}$ 

$$3. f(z) = \frac{z + \bar{z}}{2}$$

Ans.:  $D_f = \mathbb{C}$ , f is real-valued.

4. 
$$f(z) = y \int_0^\infty e^{-xt} dt + i \sum_{n=0}^\infty y^n$$

Improper Geometric integral series

Ans.: 
$$D_f = x \in (0, \infty)$$
 and  $y \in (-1,1)$ 

(What are the conditions that must be satisfied for x so the integration will be converging?)

## **Definition:** A complex function

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

n is a positive integer and  $a_0$ ,  $a_1 \dots a_n \in \mathbb{C}$ , is a polynomial of degree n  $(a_n \neq 0)$ .

**<u>Definition:</u>** A function  $f(z) = \frac{P(z)}{Q(z)}$ , where P and Q are two polynomials, is called a rational function.

**Note:**  $D_f = \mathbb{C} \setminus \{z : Q(z) \neq 0\}$ 

**♦** Suppose that:

w = u + iv is the value of a function f at z = x + iy

i. e. : 
$$f(z) = f(x + iy) = u + i v$$

each of the real numbers u and v depends on the real variables x and y, and it follows that f(z) can be expressed in terms of a pair of real—valued functions of real variables x and y.

$$f(z) = u(x, y) + i v(x, y)$$

If the polar coordinates r and  $\theta$  are used instead of x and y, then

$$u + i v = f(re^{i\theta})$$

Where w = u + iv and  $z = re^{i\theta}$ , in that case, we may write

$$f(z) = u(r, \theta) + i v(r, \theta)$$

**Example:** If  $f(z) = z^2$ , then

$$f(x + iy) = (x + iy)^2 = x^2 - y^2 + i 2xy$$

Hence:  $u(x,y) = x^2 - y^2$ , v(x,y) = 2xy, when polar coordinates are used

$$f(re^{i\theta}) = (re^{i\theta})^{2}$$
$$= r^{2}e^{i2\theta}$$
$$= r^{2}\cos 2\theta + i r^{2}\sin 2\theta$$

Therefore:  $u(r, \theta) = r^2 \cos 2\theta$ 

$$v(r,\theta) = r^2 \sin 2\theta$$

**Note:** If v(x,y) = 0 then f is real, i.e. f is real-valued function.

#### [1] Limits

Let f be a function at all points z in some deleted neighborhood of  $z_0$ , the statement that the limit of f(z) as z approaches  $z_0$  is a number  $w_0$ , or that

$$\lim_{z \to z_0} f(z) = w_0$$

Means that for every  $\epsilon > 0$  there exists  $\delta > 0$  such that

$$|f(z) - f(z_0)| < \epsilon$$
 whenever  $|z - z_0| < \delta$ 

And this means:  $z \rightarrow z_0$  in z – plane

$$w \rightarrow w_0$$
 in  $w$  – plane



## **Example:** Prove that

$$\lim_{z \to 1} \frac{iz}{2} = \frac{i}{2}$$

Such that f is defined on |z| < 1.

Proof: 
$$f(z) = \frac{iz}{2}$$

Let  $\epsilon > 0$ , T.p.  $\exists \delta > 0$  such that

$$|z-1| < \delta \to \left| f(z) - \frac{i}{2} \right| < \epsilon$$



To find  $\delta$ 

$$\left| f(z) - \frac{i}{2} \right| = \left| \frac{iz}{2} - \frac{i}{2} \right| = \left| \frac{1}{2}i(z-1) \right|$$

Let  $\delta = 2\epsilon$  then:

$$\left| f(z) - \frac{i}{2} \right| = |i| \left| \frac{z-1}{2} \right| < \frac{\delta}{2} < \epsilon$$

Note: |i| = 1

**Example:** If  $f(z) = z^2$ , |z| < 1, prove that

$$\lim_{z \to 1} z^2 = 1$$

**<u>Proof:</u>** Let  $\epsilon > 0$ , T.p.  $\exists \delta > 0$  s.t

$$|z^2 - 1| < \epsilon$$
 whenever  $0 < |z - 1| < \delta$ 

$$|z^{2} - 1| = |z + 1||z - 1| \le (|z| + 1)|z - 1|$$
  
 $< 2|z - 1| < \epsilon$ 

$$= |z - 1| < \frac{\epsilon}{2}$$

$$\therefore \text{ chose } \delta = \frac{\epsilon}{2}$$

$$\therefore \lim_{z \to 1} z^2 = 1$$

**Example:** Prove that

$$\lim_{z \to 1+2i} [(2x+y) + i(y-x)] = 4+i$$

Proof: 
$$f(z) = (2x + y) + i(y - x)$$

$$z_0 = 1 + 2i, \quad z = x + iy$$

$$L = 4 + i$$

Let  $\epsilon > 0$ , T.p.  $\exists \ \delta > 0$  s.t  $0 < |z - z_0| < \delta \ \rightarrow |f(z) - L| < \epsilon$ 

$$|z - z_0| = |x + iy - 1 - 2i|$$

$$= |(x-1) + i(y-2)| < \delta$$

$$|x-1| \le |(x-1) + i(y-2)|$$

$$|f(z) - L| = |2x + y + i(y - x) - 4 - i|$$

$$\le |2x + y - 4 + i(y - x - 1)|$$

$$\le |2x - 2 + y - 2| + |i(y - x - 1)|$$

$$= |2x - 2 + y - 2| + |y - 2 - x + 1|$$

$$\le 2|x - 1| + |y - 2| + |y - 2| + |x - 1|$$

$$= 3|x - 1| + 2|y - 2|$$

Let 
$$\delta = \min\left(\frac{\epsilon}{6}, \frac{\epsilon}{4}\right) = \frac{\epsilon}{6}$$

Such that 
$$|x-1| < \delta < \frac{\epsilon}{6}$$

$$|y-2|<\delta<\frac{\epsilon}{4}$$

$$\rightarrow |f(z) - L| \le \frac{3\epsilon}{6} + \frac{2\epsilon}{4} < \epsilon$$

#### **Exercise:** Prove that

$$\lim_{z\to z_0}z^2=z_0^2$$

## **Properties of Limit:**

- 1. If f(z) = c then  $\lim_{z \to z_0} f(z) = c$ .
- 2. If f(z) = z then  $\lim_{z \to z_0} f(z) = z_0$ .
- 3.  $\lim_{z \to z_0} (f(z) \mp g(z)) = \lim_{z \to z_0} f(z) \mp \lim_{z \to z_0} g(z).$
- 4.  $\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{\lim_{z \to z_0} f(z)}{\lim_{z \to z_0} g(z)}$
- 5.  $\lim_{z \to z_0} f(z) \cdot g(z) = \lim_{z \to z_0} f(z) \cdot \lim_{z \to z_0} g(z)$

#### **Proof:**

1- Let  $\epsilon > 0$ , T.p.  $\exists \ \delta > 0$  s.t  $|f(z) - c| < \epsilon$  whenever  $|z - z_0| < \delta$ 

$$\rightarrow |f(z) - c| = |c - c| = 0$$

Let  $\delta$  be any real number

$$\lim_{z\to z_0} f(z) = c$$

2- Let 
$$\epsilon > 0$$
, T.p.  $\exists \delta > 0$ ,  $|f(z) - z_0| < \epsilon$  if  $|z - z_0| < \delta$ 

$$\to |f(z) - z_0| = |z - z_0| < \epsilon$$

Chose  $\epsilon = \delta$ 

$$\therefore \lim_{z \to z_0} f(z) = z_0$$

**Example:** Find limit f(z) if its exist, such that

$$f(z) = \frac{2xy}{x^2 + y^2} + \frac{x^2}{1 + y} i$$

**Proof:** Assume that limit f(z) exists.

Let y = 0, we get

$$\lim_{z \to z_0 = 0} f(z) = \lim_{(x,y) \to (0,0)} f(z) = \lim_{x \to 0} x^2 i = 0$$

Let x = 0, we get  $\lim f(z) = 0$ 

Let y = x, then

$$\lim_{z \to 0} f(z) = \lim_{(x,x) \to (0,0)} f(z) = \lim_{(x,x) \to (0,0)} \left( \frac{2x^2}{2x^2} + \frac{x^2}{1+x} i \right)$$

$$\lim_{(x,x)\to(0,0)} \left(1 + \frac{x^2}{1+x}i\right) = 1 + \lim_{(x,x)\to(0,0)} \frac{x^2}{1+x}i = 1 + 0 = 1$$

This is impossible; therefor this limit is not exist.

**Note:** The limit in the real numbers is studying the approaches from the right and left, but in the complex numbers is studying from every side of the circle.



**Theorem:** If 
$$\lim_{z\to z_0} f(z) = w_1$$
, then  $\lim_{z\to z_0} f(z) = w_2$ 

Then  $w_1 = w_2$ . (The limit is unique)

Proof: Let  $\epsilon > 0$ 

Since

$$\lim_{z \to z_0} f(z) = w_1 \to \exists \ \delta_1 > 0, \text{if } |z - z_0| < \delta_1$$

$$\to |f(z) - w_1| < \frac{\epsilon}{2}$$

Since

$$\lim_{z \to z_0} f(z) = w_2 \to \exists \ \delta_2 > 0, \text{if } |z - z_0| < \delta_2$$

$$\to |f(z) - w_2| < \frac{\epsilon}{2}$$

$$|w_1 - w_2| = |w_1 - f(z) + f(z) - w_2|$$

$$\leq |w_1 - f(z)| + |f(z) - w_2|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Chose  $\delta = \min(\delta_1, \delta_2)$ 

$$\therefore |w_1-w_2|<\epsilon$$

$$\rightarrow w_1 = w_2$$

**Theorem:** Let 
$$f(z) = u(x, y) + iv(x, y)$$
 such that  $z = x + iy$ ,

$$z_0 = x_0 + y_0$$
,  $w_0 = u_0 + iv_0$ , Then

$$\lim_{z \to z_0} f(z) = w_0 \ \text{iff} \ \lim_{z \to z_0} u(x, y) = u_0, \lim_{z \to z_0} v(x, y) = v_0$$

**Note:**  $\mathbb C$  is a complete space, since f is converge iff u, v are converge, but u, v are converge and u, v are real functions. Therefore it is Cauchy

$$f$$
 is converge  $f$  is Cauchy

∴ C is complete

**Note:** 
$$p(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$
 s. t  $a_i \in \mathbb{C}$ ,  $i = 0,1,\dots,n$ 

Then

$$\lim_{z \to z_0} p(z) = p(z_0)$$

**Example:** Find limit of f(z) if it's exist

1. 
$$\lim_{z \to 3-4i} \frac{4x^2y^2 - 1 + i(x^2 - y^2) - ix}{\sqrt{x^2 + y^2}}$$

Solution:

$$\lim_{z \to 3-4i} \frac{(4x^2y^2 - 1) + i(x^2 - y^2 - x)}{\sqrt{x^2 + y^2}} =$$

$$= \lim_{z \to 3-4i} \frac{4x^2y^2 - 1}{\sqrt{x^2 + y^2}} + i \lim_{z \to 3-4i} \frac{x^2 - y^2 - x}{\sqrt{x^2 + y^2}}$$

$$= 115 - 2i$$

2. 
$$\lim_{z \to i} \frac{z-i}{z^2+1}$$

Solution:

$$\lim_{z \to i} \frac{z - i}{z^2 + 1} = \lim_{z \to i} \frac{z - i}{z^2 - (-1)} = \lim_{z \to i} \frac{z - i}{z^2 - i^2} = \lim_{z \to i} \frac{z - i}{(z - i)(z + i)}$$

$$=\lim_{z\to i}\frac{1}{(z+i)}=\frac{1}{2i}$$

3. 
$$\lim_{z \to (-1,i)} \frac{z^2 + (3-i)z + 2 - 2i}{z + 1 - i}$$

**Solution:** 

Note: 
$$z^2 + (3 - i)z + 2 - 2i = (z + 1 - i)(z + 2)$$

$$\lim_{z \to (-1,i)} \frac{z^2 + (3-i)z + 2 - 2i}{z + 1 - i} = \lim_{z \to (-1,i)} \frac{(z + 1 - i)(z + 2)}{(z + 1 - i)}$$
$$= \lim_{z \to (-1,i)} (z + 2)$$
$$= -1 + i + 2$$
$$= 1 + i$$

## [3] Continuity

#### **Definition:**

A function f is continuous at a point  $z_0$  if all of the three following conditions are satisfied:

- 1.  $\lim_{z \to z_0} f(z)$  exists,
- 2.  $f(z_0)$  exists,
- 3.  $\lim_{z \to z_0} f(z) = f(z_0)$

A function of a complex variable is said to be continuous in a region R if it is continuous at each point R.

**Theorem:** If f, g are continuous functions at  $z_0$  then

- 1. f + g is continuous.
- 2. f. g is continuous.

 $3. \frac{f}{g}$ ,  $g(z_0) \neq 0$  is continuous.

4.  $f \circ g$  is continuous at  $z_0$  if f is continuous at  $g(z_0)$ .

**Example:**  $f(z) = z^2$  is continuous in complex plane since  $\forall z_0 \in \mathbb{C}$ 

1. 
$$f(z_0) = z_0^2$$

$$2. \lim_{z \to z_0} f(z) = z_0^2$$

3. 
$$\lim_{z \to z_0} f(z) = f(z_0)$$

**Example:** Is  $f(z) = \frac{z^2 - 1}{z - 1}$  continuous at z = 1

*Solution:* f is not continuous since f(1) not exist

$$f(z_0) = \frac{z_0^2 - 1}{z_0 - 1} = \frac{(z_0 - 1)(z_0 + 1)}{z_0 - 1} = z_0 + 1$$

$$\lim_{z\to 1} f(z) = 2$$

But 
$$f(1) = \frac{0}{0}$$

$$\therefore \lim_{z \to 1} f(z) \neq f(1)$$

**Theorem:** f(z) = u(x,y) + iv(x,y) is continuous at  $z_0$  iff u(x,y) and v(x,y) are continuous at  $(x_0,y_0)$ .

**Proof:** Let f be continuous at  $z_0$ , then

$$\lim_{z \to z_0} f(z) = f(z_0)$$

That means:

$$\lim_{z \to z_0} (u(x, y) + iv(x, y)) = u(x_0, y_0) + i v(x_0, y_0)$$

$$\to \lim_{z \to z_0} u(x, y) + i \lim_{z \to z_0} v(x, y) = u(x_0, y_0) + i v(x_0, y_0)$$

$$\therefore \lim_{z \to z_0} u(x, y) = u(x_0, y_0)$$

$$\lim_{z \to z_0} v(x, y) = v(x_0, y_0)$$

 $\therefore u, v$  are continuous at  $z_0$ .

**Example:** Is  $f(x + iy) = x^2 + y^2 + ixy$  continuous at (1, 1)

**Solution:** 
$$u(x,y) = x^2 + y^2$$
,  $v(x,y) = xy$ 

By the above theorem

$$u(1,1) = 2$$
,  $\lim_{\substack{x \to 1 \\ y \to 1}} u(x,y) = 2 = u(1,1)$ 

$$v(1,1) = 1$$
,  $\lim_{\substack{x \to 1 \ y \to 1}} v(x,y) = 1 = v(1,1)$ 

u, v are continuous at (1,1)

f(z) is continuous at (1,1).

**Example:** Find the limit if it's exists

$$\lim_{z\to 0} \frac{\bar{z}}{z}$$

Solution:

$$\lim_{z \to 0} \frac{\bar{z}}{z} = \lim_{z \to 0} \frac{x - iy}{x + iy}$$

1. If 
$$y = 0 \to \lim_{x \to 0} \frac{x}{x} = 1$$

2. If 
$$x = 0 \to \lim_{y \to 0} \frac{-iy}{iy} = -1$$

∴ The limit is not exist.

**Example:** Discuss the continuity of

$$f(z) = \begin{cases} \frac{z-i}{z^2-1} & \text{if } z \neq i, -i\\ 2i & \text{if } z = \mp i \end{cases}$$

*Solution*: Note f is not continuous at  $z = \mp i$ .

(Since  $f( \mp i )$  is undefined)

$$f(z) = 2i$$
 and  $\lim_{z \to -i} f(z) = \lim_{z \to -i} \frac{z - i}{(z - i)(z + i)} = \lim_{z \to -i} \frac{1}{(z + i)} = \frac{1}{2i}$ 

But f is not defined at z=-i, therefore f is not continuous at z=i, that is f is continuous at  $\{z\in\mathbb{C}\setminus\{-i,i\}\}$ 

**Example:** Discuss the continuity of

$$f(z) = \begin{cases} \frac{z^2 + 4}{z + 2i} & \text{if } z \neq -2i\\ -4i & \text{if } z = -2i \end{cases}$$

**Solution:** f is continuous at  $\forall z \neq -2i$ .

When z = -2i

$$\lim_{z \to -2i} f(z) = f(-2i) = -4i$$

$$\lim_{z \to -2i} f(z) = \lim_{z \to -2i} \frac{(z - 2i)(z + 2i)}{(z + 2i)} = -4i$$

But f is not defined at z = -2i

 $\therefore f$  is not continuous at z = -2i.

Then is f is continuous at  $\{z \in \mathbb{C} : z \neq -2i \}$ 

**Exercise:** Discuss the continuity of

$$f(z) = \begin{cases} \frac{z+2i}{z^2+4} & \text{if } z \neq \mp 2i\\ \frac{1}{4}i & \text{if } z = -2i \end{cases}$$

#### [4] Derivative

Let f be a function whose domain of definition contains a neighborhood  $|z-z_0| < \epsilon$  of a point  $z_0$ . The derivative of f at  $z_0$  is the limit

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

and the function f is said to be differentiable at  $z_0$  when  $f'(z_0)$  exists. If  $\Delta z = z - z_0$ , then  $\Delta z \to 0$  when  $z \to z_0$ . Thus

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

**Theorem:** If f is differentiable at  $z_0$ , then f is continuous at  $z_0$ .

**<u>Proof:</u>** To prove f is continuous, we must prove that

$$\lim_{z \to z_0} f(z) = f(z_0)$$

$$\lim_{z \to z_0} f(z) - f(z_0) = \lim_{z \to z_0} \left[ \frac{f(z) - f(z_0)}{z - z_0} (z - z_0) \right]$$

$$= \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} \cdot \lim_{z \to z_0} (z - z_0)$$

$$= f'(z_0) \cdot 0$$

$$= 0$$

$$\therefore \lim_{z \to z_0} f(z) = f(z_0)$$

#### **Differentiation Formulas:**

In the following formulas, the derivative of a function f at a point  $z_0$  is denoted by either  $\frac{d}{dz}f(z)$  or  $f'(z_0)$ .

1. 
$$\frac{d}{dz} c = 0$$
, c is constant

$$2.\,\frac{d}{dz}\,z=1$$

$$3. \frac{d}{dz} \left( c f(z) \right) = c f'(z)$$

4. 
$$\frac{d}{dz}[f+g] = \frac{d}{dz}f + \frac{d}{dz}g = f' + g'$$

5. 
$$\frac{d}{dz}[f.g] = f.g' + g.f'$$

6. 
$$\frac{d}{dz} \left[ \frac{f}{g} \right] = \frac{g \cdot f' - f \cdot g'}{g^2}, \ g \neq 0$$

$$7. \frac{d}{dz} (z^n) = n z^{n-1}$$

8. 
$$(g \circ f)'(z_0) = g'(f(z_0)) \cdot f'(z_0)$$

**Note:** If w = f(z) and W = g(w), then

$$\frac{dW}{dz} = \frac{dW}{dw} \cdot \frac{dw}{dz}$$
 (The Chain rule)

**Example:** Find the derivative of  $f(z) = (2z^2 + i)^5$ 

**Solution**: write  $w = 2z^2 + i$  and  $W = w^5$ 

Then:

$$\frac{d}{dz}(2z^2+i)^5=5w^4.4z=20\ z(2z^2+i)^4$$

 $(\Delta x, 0)$ 

**Examples:** Find f'(z) by using the definition of derivative:

1. 
$$f(z) = z^2$$

Solution:

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^2 - z^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{z^2 + 2z \, \Delta z + (\Delta z)^2 - z^2}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\Delta z (2z + \Delta z)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} (2z + \Delta z)$$

$$= 2z$$

1. 
$$f(z) = \bar{z}$$

**Solution:** 

$$\frac{dw}{dz} = \lim_{\Delta z \to 0} \frac{\overline{z + \Delta z} - \overline{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\overline{z} + \overline{\Delta z} - \overline{z}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

Let  $\Delta z = (\Delta x, \Delta y)$  approach the origin (0,0) in the  $\Delta z$  -plane. In particular, as  $\Delta z \to 0$  horizontally through the point  $(\Delta x, 0)$  on the real axis, then

$$\overline{\Delta z} = \overline{\Delta x + i \ 0} = \Delta x - i \ 0$$

$$= \Delta x + i \ 0$$

$$= \Delta z$$

$$(0, \Delta y) - \overline{\qquad \qquad }$$

$$(0, 0)$$

$$\therefore \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z}{\Delta z} = 1$$

When  $\Delta z$  approaches (0,0) vertically through the point  $(0,\Delta y)$  on the imaginary axis, then

$$\overline{\Delta z} = \overline{0 + \iota \Delta y} = 0 - i \Delta y$$
$$= -(0 + i \Delta y)$$
$$= -\Delta z$$

$$\therefore \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{-\Delta z}{\Delta z} = -1$$

But the limit is unique, and then  $\frac{dw}{dz}$  is not exist.

## [5] Cauchy - Riemann Equations (C-R-E)

**Theorem:** Suppose that f(z) = u(x,y) + iv(x,y) and f'(z) exists at a point  $z_0 = x_0 + iy_0$ . Then the first-order partial derivatives of u and v must exist at  $(x_0, y_0)$ , and they must satisfy the Cauchy-Riemann equations

$$u_x = v_y$$
,  $u_y = -v_x$ 

There is also

$$f'(z_0) = u_x + iv_x$$

Where these partial derivatives are to be evaluated at  $(x_0, y_0)$ .

#### **Proof:**

Let f be differentiable at  $z_0$  then

$$\begin{split} f'(z_0) &= \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} \;, \qquad \Delta z = \Delta x + i \Delta y \\ &= \lim_{\Delta z \to 0} \frac{u(x_0 + \Delta x, y_0 + \Delta y) + i v(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) - i v(x_0, y_0)}{\Delta x + i \Delta y} \\ &= \lim_{\Delta z \to 0} \frac{u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0)}{\Delta x + i \Delta y} + i \lim_{\Delta z \to 0} \frac{v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0)}{\Delta x + i \Delta y} \end{split}$$
 Let  $v = 0 \implies \Delta v = 0 \implies \Delta z = \Delta x \to 0$ 

$$= \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) - u(x_0, y_0)}{\Delta x} + i \lim_{\Delta x \to 0} \frac{v(x_0 + \Delta x, y_0) - v(x_0, y_0)}{\Delta x}$$

$$= u_x(x_0, y_0) + i v_x(x_0, y_0) \quad \dots (1)$$
Let  $x = 0 \Rightarrow \Delta x = 0 \Rightarrow \Delta z = i \Delta y \to 0$ 

$$= \lim_{i \Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) - u(x_0, y_0)}{i \Delta y} + i \lim_{i \Delta y \to 0} \frac{v(x_0, y_0 + \Delta y) - v(x_0, y_0)}{i \Delta y}$$

$$= \frac{1}{i} u_y(x_0, y_0) + v_y(x_0, y_0)$$

$$= v_y(x_0, y_0) - i u_y(x_0, y_0) \quad \dots (2)$$

From (1) and (2) we get

$$u_x = v_y$$
 ,  $u_y = -v_x$ 

#### **Note:**

- 1.  $f'(z) = u_x + iv_x$  or  $f'(z) = u_y iv_y$ .
- 2. If f'(z) exists then C-R-Eq. are satisfied, but the converse is not true.

The converse of the above theorem is not necessary true:

## Example: Let

$$f(z) = \begin{cases} 0 & \text{if } z = 0\\ \frac{(\bar{z})^2}{z} & \text{if } z \neq 0 \end{cases}$$

Solution: The C-R-Eq. are satisfied

$$f'(0) = \lim_{z \to 0} \frac{f(z) - f(0)}{z - 0} = \lim_{z \to 0} \frac{\frac{(\bar{z})^2}{z} - 0}{z - 0}$$
$$= \lim_{z \to 0} \left(\frac{\bar{z}}{z}\right)^2$$
$$= \lim_{z \to 0} \frac{(x - iy)^2}{(x + iy)^2}$$

Let 
$$y = 0 \to f'(0) = 1$$

Let 
$$x = 0 \to f'(0) = 1$$

Let 
$$y = x \to f'(0) = \frac{y^2(1-i)^2}{y^2(1+i)^2} = \frac{1-2i-1}{1+2i-1}$$
$$= \frac{-2i}{2i}$$
$$= -1$$

f'(z) is not exist at z = 0.

**Example:** 
$$f(z) = z^2 = x^2 - y^2 + 2 ixy$$

**Solution:** 

$$u(x,y) = x^2 - y^2 \to u_x = 2x$$

$$v(x,y) = 2xy \rightarrow v_y = 2x$$

$$\rightarrow u_x = v_y$$

$$u_y = -2y$$
,  $v_x = 2y$ 

$$\rightarrow u_y = -v_x$$

$$f'(z) = u_x + iv_x = 2x + i2y = 2(x + iy) = 2z$$

**Example:**  $f(z) = \bar{z} = x - iy$ 

**Solution:** 
$$u(x,y) = x \rightarrow u_x = 1$$

$$v(x,y) = -y \to v_y = -1$$

 $u_x \neq v_y \rightarrow f$  is not differentiable at z.

**Note:** The following theorem gives a necessary and sufficient condition to satisfy the converse of the previous theorem.

**Theorem:** Let f(z) = u(x, y) + iv(x, y), and

1. u, v,  $u_x$ ,  $v_x$ ,  $u_y$ ,  $v_y$  are continuous at  $N_{\epsilon}(z_0)$ 

2. 
$$u_x = v_y$$
,  $u_y = -v_x$ 

Then f is differentiable at  $z_0$  and

$$f'(z_0) = u_x + iv_x$$

$$f'(z_0) = v_v - iu_v$$

**Example:** Show that the function

$$f(z) = e^{-y}\cos x + i e^{-y}\sin x$$

Is differentiable *z* for all and find its derivative.

**Solution:** 

Let 
$$u(x, y) = e^{-y} \cos x$$

$$\to u_x = -e^{-y}\sin x$$

$$u_y = -e^{-y}\cos x$$

$$v(x, y) = e^{-y} \sin x$$

$$\rightarrow v_x = e^{-y} \cos x$$

$$v_y = -e^{-y}\sin x$$

1. 
$$u_x = v_y$$
 and  $u_y = -v_x$ 

2. u, v,  $u_x$ ,  $v_x$ ,  $u_y$ ,  $v_y$  are continuous

Then f'(z) exist. To find  $f'(z) = u_x + iv_x$ 

$$f'(z) = u_x + iv_x = -e^{-y}\sin x + ie^{-y}\cos x$$

$$= e^{-y}(i\cos x - \sin x)$$

$$= ie^{-y}(\cos x + i\sin x)$$

$$= ie^{-y}e^{ix}$$

$$= ie^{ix-y}$$

$$= ie^{i(x+iy)}$$

$$= ie^{iz}$$

## [6] Polar Coordinates of Cauchy - Riemann Equations

Let  $f(z) = u(r, \theta) + iv(r, \theta)$ , then Cauchy-Riemann equations are:

$$u_r = \frac{1}{r} v_\theta$$
 ,  $u_\theta = -r v_r$ 

And 
$$f'(z_0) = e^{-i\theta}(u_r + i v_r)$$
.

## **Example:** Use C-R equations to show that the functions

1. 
$$f(z) = |z|^2$$

2. 
$$f(z) = z - \bar{z}$$

are not differentiable at any nonzero point.

#### Solution:

1. 
$$|z|^2 = x^2 + y^2$$

$$u(x,y) = x^2 + y^2$$
,  $v(x,y) = 0$ 

$$u_x = 2x$$
 ,  $v_x = 0$ 

$$u_y = 2y \qquad , \qquad v_y = 2x$$

C-R equations are not satisfied, therefore f' is not exist.

2. 
$$z - \bar{z} = (x + iy) - (x - iy)$$

$$= x + iy - x + iy$$

$$= 2y i$$

$$u(x,y) = 0 \qquad , \quad v(x,y) = 2y$$

$$u_{x}=0$$
 ,  $v_{x}=0$ 

$$u_y = 0$$
 ,  $v_y = 2$ 

C-R equations are not satisfied, hence f' is not exist.

**Example:** Use C-R equations to show that f'(z) and f''(z) are exist everywhere

1. 
$$f(z) = z^3$$

Solution:

$$f(z) = z^{3} = (x + iy)^{3}$$

$$= x^{3} + 3x^{2}iy + 3x(iy)^{2} + (iy)^{3}$$

$$= x^{3} + 3i x^{2}y - 3xy^{2} - iy^{3}$$

$$= x^{3} - 3xy^{2} + i (3x^{2}y - y^{3})$$

$$u(x,y) = x^{3} - 3xy^{2} \rightarrow u_{x} = 3x^{2} - 3y^{2}$$

$$u_{y} = -6xy$$

$$v(x,y) = 3x^{2}y - y^{3} \rightarrow v_{x} = 6xy$$

$$v_{y} = 3x^{2} - 3y^{2}$$

$$\therefore u_{x} = v_{y}, \qquad u_{y} = -v_{x}$$

: C-R equations are satisfied

$$f'(z) = u_x + iv_x$$

$$= 3x^2 - 3y^2 + i 6xy$$

$$= 3(x^2 + i^2y^2 + 2i xy) = 3(x + iy)^2 = 3z^2$$

$$f''(z) = u'_x + iv'_x$$

$$= 6x + i 6y$$

$$= 6(x + iy)$$

$$= 6z$$

2. 
$$f(z) = \cos x \cosh y - i \sin x \sinh y$$

**Solution**:

$$u(x, y) = \cos x \cosh y \rightarrow u_x = -\sin x \cosh y$$
  
 $u_y = \cos x \sinh y$   
 $v(x, y) = -\sin x \sinh y \rightarrow v_x = -\cos x \sinh y$   
 $v_y = -\sin x \cosh y$ 

$$\therefore u_x = v_y \ , \qquad u_y = -v_x$$

## : C-R equations are satisfied

$$f'(z) = u_x + iv_x$$

$$= -\sin x \cosh y - i \cos x \sinh y$$

$$f''(z) = u'_x + iv'_x$$

$$= -\cos x \cosh y + i \sin x \sinh y$$

# **Example:** Let $f(z) = z^3$ , write f in polar form and then find f'(z)

Solution: 
$$f(z) = z^3 = (re^{i\theta})^3 = r^3 e^{3i\theta}$$
  
=  $r^3 \cos 3\theta + i r^3 \sin 3\theta$ 

$$u(r,\theta) = r^3 \cos 3\theta \rightarrow u_r = 3r^2 \cos 3\theta$$
  
 $u_\theta = -3r^3 \sin 3\theta$ 

$$v(r,\theta) = r^3 \sin 3\theta \rightarrow v_r = 3r^2 \sin 3\theta$$
  
 $v_\theta = 3r^3 \cos 3\theta$ 

Now, 
$$u_r = \frac{1}{r} v_\theta$$
,  $u_\theta = -rv_r$ 

$$f'(z) = e^{-i\theta} [u_r + i v_r]$$

$$= e^{-i\theta} [3r^2 \cos 3\theta + i3r^2 \sin 3\theta]$$

$$= 3r^2 e^{-i\theta} [\cos 3\theta + i \sin 3\theta]$$

$$= 3r^2 e^{-i\theta} e^{3\theta i}$$

**Example:** Let 
$$f(z) = \left(r + \frac{1}{r}\right)\cos\theta + i\left(r - \frac{1}{r}\right)\sin\theta$$
,  $z \neq 0$ ,  $f'(z)$ .

Solution:

$$u(r,\theta) = \left(r + \frac{1}{r}\right)\cos\theta$$
$$v(r,\theta) = \left(r - \frac{1}{r}\right)\sin\theta$$

$$\rightarrow u_r = \left(1 - \frac{1}{r^2}\right)\cos\theta$$
 ,  $u_\theta = -\left(r + \frac{1}{r}\right)\sin\theta$ 

$$\rightarrow v_r = \left(1 + \frac{1}{r^2}\right) \sin\theta \ , \ v_\theta = \left(r - \frac{1}{r}\right) \cos\theta$$

Since u, v,  $u_x$ ,  $v_x$ ,  $u_y$ ,  $v_y$  are continuous and C-R equations holds then

$$\begin{split} f'(z) &= e^{-i\theta} [u_r + i \ v_r] \\ &= e^{-i\theta} \left[ \left( 1 - \frac{1}{r^2} \right) \cos \theta + i \ \left( 1 + \frac{1}{r^2} \right) \sin \theta \right] \end{split}$$