H.W.(8)

1) Area by Double Integrals sketch the region bounded by the given lines and curves. Then express the region's area as an iterated double integral and evaluate the integral.

- 1. The coordinate axes and the line x + y = 2
- **2.** The lines x = 0, y = 2x, and y = 4
- 3. The parabola  $x = -y^2$  and the line y = x + 2
- **4.** The parabola  $x = y y^2$  and the line y = -x
- 2) Give the areas of regions in the xy-plane:

$$\int_0^6 \int_{y^2/3}^{2y} dx \, dy$$

**14.** 
$$\int_0^3 \int_{-x}^{x(2-x)} dy \, dx$$

- 3) Finding Average Values:
- 1) Find the average value of  $f(x,y)=\sin(x+y)$  over
- **a.** the rectangle  $0 \le x \le \pi$ ,  $0 \le y \le \pi$ .
- **b.** the rectangle  $0 \le x \le \pi$ ,  $0 \le y \le \pi/2$ .
- 2) Find the average height of the paraboloid  $z = x^2 + y^2$  over the square  $0 \le x \le 2$ ,  $0 \le y \le 2$ .

# 8. Double Integrals in Polar Form

How to construct double integral?

Assume  $f(r, \theta)$  is defined on region

 $R: g_1(\theta) \le r \le g_2(\theta), \alpha \le \theta \le \beta$  contained in the region

$$Q: 0 \le r \le a, \alpha \le \theta \le \beta$$



where  $g_1(\theta)$  and  $g_2(\theta)$  are continuous curves:  $0 \le g_1(\theta) \le g_2(\theta) \le a$ .

• We cover Q by a grid of circular ares and rays. The arcs are cut from circles centered at origin with radii  $\Delta r, 2\Delta r, 3\Delta r, ..., m\Delta r$  where  $\Delta r = \frac{a}{m}$ 

The rays are:  $\theta = \alpha$ ,  $\theta = \alpha + \Delta\theta$ ,  $\theta = \alpha + 2\Delta\theta$ , ...,  $\theta = \alpha + m'\Delta\theta = B$ 

- The arcs and rays partition *Q* into small polar rectangles.
- We number the polar rectangles that lie inside *R* with areas:

$$\Delta A_1, \Delta A_2, \dots, \Delta A_n$$

- Let  $(r_k, \theta_k)$  be any point in the  $k^{\text{th}}$  polar rectangle whose area is  $\Delta A_k$ . Then  $S_n =$  $\sum_{k=1}^{n} f(r_k, \theta_k) \Delta A_k$ If f is continuer, then this sum will approach a limit and as  $\Delta r \to 0$  and  $\Delta \theta \to 0$ , the limit is called the double integral of f over R:  $\lim_{n\to\infty} S_n = \iint_R f(r,\theta) dA$ .
- To find  $\Delta A_k$ : Recall that the area of a circular **sector** is  $A = \frac{1}{2}\theta r^2$
- We choose  $r_k$  to be the average of the radii of the inner and outer arcs bounding the  $k^{\text{th}}$  polar rectangle.



Inner radius: 
$$\frac{1}{2} \left( r_k - \frac{\Delta r}{2} \right)^2 \Delta \theta$$
  
Outer radius: 
$$\frac{1}{2} \left( r_k + \frac{\Delta r}{2} \right)^2 \Delta \theta.$$

• 
$$\Delta A_k = A_L - A_S = \frac{\Delta \theta}{2} \left[ \left( r_k + \frac{\Delta r}{2} \right)^2 - \left( r_k - \frac{\Delta r}{2} \right)^2 \right] = \frac{\Delta \theta}{2} \left( 2r_k \Delta r \right) = r_k \Delta r \Delta \theta$$

Hence,  $S_n = \sum_{k=1}^n f(r_k, \theta_k) r_k \Delta r \Delta \theta$ .

• As 
$$n \to \infty$$
:  $\lim_{n \to \infty} s_n = \iint_R f(r, \theta) r dr d\theta$ 

Thus 
$$\int_R f(r,\theta) dA = \int_{\theta=\alpha}^{\theta=\beta} \int_{r=g_1(\theta)}^{r=g_2(\theta)} f(r,\theta) r dr d\theta$$

Note that if  $f(r, \theta)$  is the constant function whose value is 1 then the integral of f over R is the area in Polar coordinate. That is The area of a closed and bounded region R in the polar coordinate plane is

$$A = \iint_{\mathbb{R}} r dr d\theta$$

# **Example:**

Describe the given region in polar coordinates:



$$x^{2} + y^{2} = 9^{2} \Leftrightarrow r^{2} = 9^{2} \Leftrightarrow r = 9$$

$$sol: 0 \leqslant r \leqslant 9, \quad \frac{\pi}{2} \leqslant \theta \leqslant 2\pi$$

$$x^{2} + y^{2} = 1^{2} \quad \Leftrightarrow r = 1$$

$$x^{2} + y^{2} = 4^{2} \quad \Leftrightarrow r = 4$$

$$sol: 1 \leqslant r \leqslant 4 \quad , \quad -\frac{\pi}{2} \leqslant \theta \leqslant \frac{\pi}{2}$$



$$x = 1 \Leftrightarrow r\cos\theta = 1 \Leftrightarrow r = \sec\theta$$

$$y = \sqrt{3}, x = 1 \Leftrightarrow \tan\theta = \sqrt{3} \Leftrightarrow \theta = \frac{\pi}{3}$$

$$0 \leqslant r \leq \sec\theta, \quad 0 \leq \theta \leq \frac{\pi}{3}$$

### **Example:**

Find the area of the region cut from the first quadrant by the cardioid  $r=1+\sin\,\theta$ 



$$A = \int_0^{\frac{\pi}{2}} \int_0^{1+\sin \theta} r dr d\theta = \frac{3\pi}{8} + 1$$

### **Changing Cartesian Integrals into Polar Integrals:**

$$\iint_{R} f(x,y)dxdy = \iint_{G} f(r\cos\theta, r\sin\theta)rdrd\theta$$

That is replace (I) x by  $r\cos\theta$ 

- (2) y by rsin  $\theta$
- (3) dxdy by  $rdrd\theta$

## **Example:**

Find  $\iint_R e^{x^2+y^2} dy dx$ , where R is the semicircular region bounded by the x-axis and the curve  $y=\sqrt{1-x^2}$ .





## **Example:**

Find 
$$\int_0^1 \int_0^{\sqrt{1-x^2}} (x^2 + y^2) dy dx = \int_0^1 \left( x^2 \sqrt{1-x^2} + \frac{(1-x^2)^{\frac{3}{2}}}{3} \right) dx$$



we can integrate this by trigonometric substitution  $x = \sin \theta$  .. but it will take some times. However if we change to polar:

$$\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} (x^{2} + y^{2}) dy dx = \int_{0}^{\frac{\pi}{2}} \int_{0}^{1} r^{2} r dr d\theta \quad \text{since } \begin{cases} 0 \le x \le 1 \\ 0 \le y \le \sqrt{1 - x^{2}} \end{cases}$$
$$= \int_{0}^{\frac{\pi}{2}} \frac{d\theta}{4} = \frac{\pi}{8}$$

### **Example:**

Find the volume of the solid region bounded above by the paraboloid  $z = 9 - x^2 - y^2$  and below by the unit circle in the xy-plane.

#### **Solution:**

The region of integration R is the unit circle  $x^2+y^2=1$ , which is described in polar coordinates by r=1,0  $\leq \theta \leq 2\pi$ . The volume is given by the double integral

$$\iint_{R} (9 - x^{2} - y^{2}) dA = \int_{0}^{2\pi} \int_{0}^{1} (9 - r^{2}) r dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} (9r - r^{3}) dr d\theta$$

$$= \int_{0}^{2\pi} \left[ \frac{9}{2} r^{2} - \frac{1}{4} r^{4} \right]_{r=0}^{r=1} d\theta$$

$$= \frac{17}{4} \int_{0}^{2\pi} d\theta = \frac{17\pi}{2}.$$

## **Example:**

Using polar integration, find the area of the region R in the xy-plane enclosed by the circle  $x^2 + y^2 = 4$ , above the line y=1, and below the line  $y = \sqrt{3} x$ .

#### Sol:

The given circle equation is:  $x^2 + y^2 = 4$ 

The given lines are:

- 1. y = 1, which in polar form is  $r = 1/\sin(\theta)$ .
- 2.  $y = \sqrt{3}x$ , which corresponds to  $\theta = \pi/3$ .



Then the angle  $\theta$  varies from  $\theta = \pi/6$  to  $\theta = \pi/3$  (line  $y = \sqrt{3}x$ ).

The radial limit r varies from  $1/\sin(\theta) = \csc \theta$  to 2.

$$\iint_{R} dA = \int_{\pi/6}^{\pi/3} \int_{\csc \theta}^{2} r \, dr \, d\theta$$

$$= \int_{\pi/6}^{\pi/3} \left[ \frac{1}{2} r^{2} \right]_{r=\csc \theta}^{r=2} d\theta$$

$$= \int_{\pi/6}^{\pi/3} \frac{1}{2} \left[ 4 - \csc^{2} \theta \right] d\theta$$

$$= \frac{1}{2} \left[ 4\theta + \cot \theta \right]_{\pi/6}^{\pi/3}$$

$$= \frac{1}{2} \left( \frac{4\pi}{3} + \frac{1}{\sqrt{3}} \right) - \frac{1}{2} \left( \frac{4\pi}{6} + \sqrt{3} \right) = \frac{\pi - \sqrt{3}}{3}.$$

-The average value of f over R is  $av(f) = \frac{1}{Area(R)} \iint_R f(r,\theta) r dr d\theta$ 

## **Example:**

Find the average height of the surface  $z=\sqrt{a^2-x^2-y^2}$  above the disk  $x^2+y^2\leq a^2$  in the xy-plane.

averge height = 
$$\frac{4}{a^2\pi} \int_0^{\frac{\pi}{2}} \int_0^a r\sqrt{a^2 - r^2} dr d\theta = \frac{4}{3\pi a^2} \int_0^{\frac{\pi}{2}} a^3 d\theta = \frac{2a}{3} R$$

# H.W. (9)

 $1. \ Describe \ the \ given \ region \ in \ polar \ coordinates.:$ 



2. Change the Cartesian integral into an equivalent polar integral. Then evaluate the polar integral.

$$\int_{-1}^{1} \int_{0}^{\sqrt{1-x^2}} dy \, dx$$

$$\int_0^2 \int_0^{\sqrt{4-y^2}} (x^2 + y^2) \, dx \, d$$

- 3, Find the area of the region cut from the first quadrant by the cardioid  $r = 1 + \sin \theta$ .
- 4. The region that lies inside the cardioid  $r=1+\cos\theta$  and outside the circle r=1 is the base of a solid right cylinder. The top of the cylinder lies in the plane z=x. Find the cylinder's volume.



- 5. Find the average distance from a point P(x,y) in the disk  $x^2 + y^2 \le a^2$  to the origin.
- 6. Evaluate the integral  $\iint_R (x^2 + y^2)^{-2} dA$ , where R is the region inside the circle  $x^2 + y^2 = 2$  for  $x \le -1$ .