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Lecture 1 

Units and Vector 

1.1. Units 

Physics experiments involve the measurement of a variety of quantities. 

These measurements should be accurate and reproducible. 

The first step in ensuring accuracy and reproducibility is defining the units in which 

the measurements are made. 

1.2. SI units 

Meter (m): unit of length, kilogram (kg): unit of mass, second (s): unit of time. 

 

  

 

 

 

 

The units for length, mass, and time (as well as a few others), are regarded as base 

SI units. 

These units are used in combination to define additional units for other important 

physical quantities such as force and energy. 

 

1.3. The Role of Units in Problem Solving 

The conversion of units 

1 ft = 0.3048 m 

1 mi = 1.609 km 

1 hp = 746 W 
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1 liter = 10-3 m3 

Example 1 The World’s Highest Waterfall 

The highest waterfall in the world is Angel Falls in Venezuela, with a total drop of 

979.0 m. express this drop in feet. 

Since 3.281 feet = 1 meter, it follows that 

(3.281 feet)/ (1 meter) = 1 

Length= (979.0 meters) (3.281 feet/1 meter) = 3212 feet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4. Converting Between Units. 

1. In all calculations, write down the units explicitly. 
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2. Treat all units as algebraic quantities. When identical units are divided, they are 

eliminated algebraically. 

3. Use the conversion factors located on the page facing the inside cover. Be guided 

by the fact that multiplying or dividing an equation by a factor of 1 does not alter the 

equation. 

Example 2 Interstate Speed Limit 

Express the speed limit of 65 miles/hour in terms of meters/second. 

Use 5280 feet = 1 mile and 3600 seconds = 1 hour and 3.281 feet = 1 meter. 

 

 

  

 

 

1.5. Scalars and Vectors 

A scalar quantity is one that can be described by a single number: temperature, 

speed, mass A vector quantity deals inherently with both magnitude and direction: 

velocity, force, displacement 

Arrows are used to represent vectors. The direction of the arrow gives the direction 

of the vector. 

By convention, the length of a vector arrow is proportional to the magnitude of the 

vector.  
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1.6 Vector Addition 

When studying musculoskeletal biomechanics, it is common to have more 

than one force to consider. Therefore, it is important to understand how to work with 

more than one vector. When adding or subtracting two vectors, there are some 

important properties to consider. Vector addition is commutative: 

A + B = B + A                                           (1.1) 

A + B =A + (-B)                                        (1.2) 

Vector addition is associative: 

A + (B + C) = (A +B) +C                          (1.3) 

Unlike scalars, which can just be added together, both the magnitude and orientation 

of a vector must be taken into account. The detailed procedure for adding two vectors 

(A+ B = C) is shown in Box 1.1 for the graphical, polar coordinate, and component 

representation of vectors. The graphical representation uses the “tip to tail” method. 

The first step is to draw the first vector, A. Then the second vector, B, is drawn so 

that its tail sits on the tip of the first vector. The vector representing the sum of these 

two vectors (C) is obtained by connecting the tail of vector A and the tip of vector 

B. Since vector addition is commutative, the same solution would have been 

obtained if vector B were the first vector. When using polar coordinates, the vectors 

are drawn as in the graphical method, and then the law of cosines is used to determine 

the magnitude of C and the law of sines is used to determine the direction of C. For 

the component resolution method, each vector is broken down into its respective x 

and y components. The components represent the magnitude of the vector in that 

direction. The x and y components are summed: 

CX = AX + BX                                                       (1.4) 

Cγ = Aγ+ Bγ                                                                                                  (1.5) 

The vector C can either be left in terms of its components, CX and Cγ, or be converted 

into a magnitude, C, using the Pythagorean Theorem, and orientation, θ, using 
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trigonometry. This method is the most efficient of the three presented and is used 

throughout the text. 

 

1.6 Vector Multiplication 

Multiplication of a vector by a scalar is relatively straight forward. 

Essentially, each component of the vector is individually multiplied by the scalar, 

resulting in another vector. For example, if the vector in Figure 1.2 is multiplied by 

5, the result is AX = 5x 4 N= 20 N and Aγ= 5 x 3 N = 15 N. 

Another form of vector multiplication is the cross product, in which two vectors are 

multiplied together, resulting in another vector (C = A x B). The orientation of C is 

such that it is mutually perpendicular to A and B. The magnitude of C is calculated 

as C = A.B sin (θ), where θ represents the angle between A and B, and (.) denotes 

scalar multiplication. These relationships are illustrated in Figure 1.3. The cross 

product is used for calculating joint torques below in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

Lecture 2 

1.7 Unit Vectors  
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The basic idea behind vector components are any vector can be composed (put 

together) from component vectors. That is, it is always possible to think of a vector 

as the vector addition of component vectors, and the simplest component vectors 

would be a pair of mutually perpendicular vectors, pointing along the coordinate 

axes, that form the sides of a right triangle for which the desired vector is the 

hypotenuse.  

 

 

 

 

 

 

 

 In this document all vectors will be written in bold text. The vector addition 

can be written as: 

                                                A = Ax + Ay 

The terms Ax and Ay are themselves vectors, in this case vectors pointing along the 

x and y axes, respectively. There is an alternative, completely equivalent approach 

that uses the discussion on pages 14 and 15. The alternative approach is to express a 

vector quantity in terms of unit vectors. A unit vector is a dimensionless vector 

one unit in length used only to specify a given direction. Unit vectors have no 

other physical significance. In Physics 2110 and 2120 we will use the symbols i, j, 

and k (if there is a third dimension, i.e. a “z” direction), although in many texts the 

symbols x^, y^, and z^ are often used. In class I will write these vectors with arrows 

above them to indicate they are unit vectors, i.e. i, j, k. 
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The component vectors can now be written in unit vector notations as: 

                           Ax = Axi and Ay = Ayj 

where the terms Ax and Ay are the scalar components of the vector A, respectively. 

Recall   

                        Ax =Acosθ and Ay = Asinθ.  

The following figures show how unit vectors relate to the above figure. 

 

 

  

 

 

 

 

As the figures to the right show the vector A can be written in unit vector notation 

as 

                                   A = Axi + Ayj 

where Ax and Ay are the scalar components of A, respectively. 

This is certainly equivalent to specifying a vector in the “magnitude” and “direction” 

form, where 

 |A| = √Ax
2 + Ay

2   

 Ax = A cos θ 

 Ay = Asin θ 

 θ = tan−1 Ay

Ax
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The advantage of the unit vector approach to writing out vectors is that it saves 

space and computational effort. It is especially useful in vector addition and 

multiplication (which we will get to later in the course). 

Examples: 

1. The northwest corner of Liberty Park in Salt Lake City has coordinates 9th South 

and 5th East. Using the origin of the coordinate system at 0 South and 0 East with 

South corresponding to the +x- axis and East corresponding to the +y- axis, write 

out the position vector for the northwest corner of Liberty Park in both magnitude 

and direction form and unit vector form. 

Solution:  

a. Magnitude and Direction form: 

Call this position vector r. The statement 9th South and 5th East are the actual 

statements of the x and y components of the vector r, which could be called rx and 

ry, respectively. 

That is, rx = 9 blocks and ry = 5 blocks. Therefore, 

|r| = r = √rx
2 + ry

2 = √(9blocks)2 + (5blocks)2 = 10.3 blocks 

θ = tan−1
ry

rx
= tan−1

5blocks

9blocks
= 29.1o 

b. Unit Vector form: 

Since the vector components, rx and ry are already known there is nothing more to 

do here than write down the result. 

r = rxi + ryj = (9blocks)i + (5blocks)j 

Practice Problems 
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1. Look at #63 on page 25 in the text. Express each vector, A, B, and C in this 

question in unit vector notation. Then write A + B + C in unit vector notation. 

Finally, in unit vector notation what is the answer to the actual question asked? 

2. In unit vector notation what would be the displacement vector that goes from the 

northwest corner of Liberty Park to the southeast corner of Liberty Park at 1300 

south and 700 East? 
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Lecture 3 

Chapter 2 

Kinematics in One Dimension 

 

2.1 Mechanics 

Mechanics is the branch of physics which deals with the motion of material 

objects and their interaction.  

Kinematics  

Kinematics deals with the concepts that are needed to describe motion. 

Dynamics deals with the effect that forces have on motion. 

Together, kinematics and dynamics form the branch of physics known as Mechanics. 

2.2 Displacement  
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2.3 Speed and Velocity 

2.3.1Average speed is the distance traveled divided by the time required to cover 

the distance. 

 

 

SI units for speed: meters per second (m/s) 

Example 1 Distance Run by a Jogger How far does a jogger run in 1.5 hours (5400) 

if his average speed is 2.22 m/s? 
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Distance = (Average speed) (Elapsed time) = (2.22 m /s) (5400 s) =12000 m 

2.3.2 Average Velocity  

The average velocity (<v>) of a particle during the time interval Δt is defined as the 

ratio of its displacement (∆�⃗� ) to the time interval for this displacement:  

〈�⃗� 〉 =
∆�⃗� 

∆𝐭
                                                                     

The unit of velocity measurement is m/s.  

Example 1. A particle moving along the x axis is located at xi (10 m) at ti (1 s) and 

at xf (6 m) at tf (3 s). Find its displacement and the average velocity during this time 

interval.  

Solution. The displacement is given by:  

Δx = xf – xi = 6 m – 10 m = – 4 m 

Example 2 The World’s Fastest Jet-Engine Car 

Andy Green in the car Thrust SSC set a world record of 341.1 m/s in 1997. To 

establish such a record, the driver makes two runs through the course, one in each 

direction, to nullify wind effects. From the data, determine the average velocity for 

each run. 
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2.3.3 Instantaneous 

Velocity  

The instantaneous velocity 

(𝑣 ) equals the limit of the 

average velocity, 
∆𝐫 

∆𝐭
 as Δt 

approaches zero: 

𝑣 = lim
∆𝑡→0

∆𝑥 

∆𝑡
=

𝑑𝑥 

𝑑𝑡
                                                 

Example 3. The position of a particle moving along the x axis varies in time 

according to the expression x = 4t2, where x is in m, and t is in s. Find the 

instantaneous velocity at any time.  

Solution. We can compute the velocity at any time (t) by using the definition of the 

instantaneous velocity. If the initial coordinate of the particle at time t is xi = 4t2, 

then the coordinate at a later time (t + Δt) is:  

xf = 4(t + Δt)2 = 4[t2 + 2tΔt + (Δt)2] = 4t2 + 8tΔt + 4(Δt)2  

Therefore, the displacement in the time interval is:  

Δx = xf – xi = 4t2 + 8tΔt + 4(Δt)2 - 4t2= 8tΔt + 4(Δt)2  

The average velocity in the time interval is: 

〈v〉 =
∆x

∆t
=

xf − xi

tf − ti
= 8t + 4∆t                                    
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To find the instantaneous velocity, we take the limit of this expression as Δt 

approaches zero. In doing so, we see that the term 4Δt goes to zero, therefore: 

𝒗 = 𝐥𝐢𝐦
∆𝒕→𝟎

∆𝒙

∆𝒕
= 𝟖𝒕 𝒎/𝒔 

 

 

Lecture 4 

2.4. Average Acceleration  

The average acceleration of a particle in the time interval Δt = tf – ti is defined 

as the ratio Δv/Δt, where Δυ = υf – υi is the change in velocity during the time 

interval:  

〈�⃗⃗� 〉 =
∆�⃗� 

∆𝐭
=

𝐯𝐟 − 𝐯𝐢

𝐭𝐟 − 𝐭𝐢
                                                     

2.5. Instantaneous Acceleration  

It is useful therefore to define the instantaneous acceleration (�⃗⃗� ) as the limit 

of the average acceleration as Δt approaches zero:  

Example 4 Acceleration and Increasing Velocity Determine the average 

acceleration of the plane. 
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Example 5 

Acceleration and Decreasing Velocity 
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Lecture 5 

2.6. Gravitational Acceleration and Free Fall 

When an object's fall to Earth is not helped or opposed by anything else, not 

even air resistance, we say the object is freely falling or in free fall.  

If you drop a dense, heavy object from rest and monitor its fall with a sonic range 

finder, you will find that the object has uniform acceleration. Moreover, you will 

find the value of the acceleration to be very nearly 9.8 (m/s)/s or 9.8 m/s2. This value 

is called its gravitational acceleration.  

If you drop this textbook, the acceleration will have approximately that value. If you 

drop a single sheet of paper, in contrast, you will find that the acceleration is not 

uniform and is on average much less than 9.8 m/s2, so that the sheet of paper takes 

much longer to reach the ground. If you crumple the sheet of paper into a ball before 

dropping it, you reduce the effect of air resistance, and the paper falls more nearly 

like the textbook.  

On-The-Spot Activity 2-1  
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Take a smooth sheet of paper, small enough so that it doesn't extend beyond 

the edges of the cover of this book, and hold it to the underside of the book, as in 

Figure 2-20a. Hold the book and paper horizontally and release them together. The 

book and the sheet of the paper should hit the ground together. Under these 

circumstances, their accelerations are the same. “Big deal!” you say. The book is 

making the paper move with it. But what if you hold the sheet of paper flat on top of 

the book, as in Figure 2-20b, and drop it again? First decide what you think will 

happen to the paper, then try it. Does the paper do what you expected? If not, why 

not? 

 

 

 

When air resistance is prevented from affecting the sheet of paper, the paper falls 

with the same acceleration as the book, roughly 9.8 m/s2. 

 Dropped simultaneously from the same height, bodies in free fall will hit level 

ground at the same time. A hammer and a feather did exactly that when they were 

dropped in the airless conditions on the moon by a member of the 1971 Apollo 15 

mission. In another dramatic demonstration in place for many years at the Boston 

Museum of Science, feathers released inside a two-story glass column would drop 

to the bottom like the proverbial ton of bricks when the air was pumped out. Over 

short distances above or below Earth's surface (a few hundred meters or less), the 

acceleration of a freely falling body will vary with height by less than one part in a 

thousand. To two-place accuracy, it remains 9.8 m/s2. We use g as a symbol for this 

special value.  

Important: The symbol g stands for this positive number, no matter which direction 

we call positive. When we take the positive direction to be upward, the acceleration 

a = −g; that is, a = −9.8 m/s2. 
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Applying the Constant Acceleration Equations of Motion to Free Fall  

1. If you choose the positive direction to be upward, let a = −g in all the equations 

(let a = +g if you let downward be positive).  

2. Because we tend to label the vertical axis y, it is common though not necessary to 

replace x with y in all the equations to indicate vertical position. 

By these two steps, you should be able to show whenever needed (rather than 

memorize more equations) 

 

 

Lecture 6 

Chapter 3 

Dynamics 

Dynamics is study of the motion of an object in connection with the cause(s) of the 

motion.  

3.1. Newton’s Laws  

Newton’s First Law: An object at rest will remain at rest and an object in 

motion will continue in motion with a constant velocity unless it experiences a net 

external force (or resultant force).  

Newton’s Second Law: The acceleration of an object is directly proportional to the 

resultant force acting on it and inversely proportional to its mass: 
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∑𝐅 = 𝐦�⃗�                                                                    

where �⃗⃗�  is the resultant force,�⃗⃗�  is the acceleration.  

Newton’s Third Law: If two bodies interact, the force exerted on body 1 by body 2 

is equal to and opposite the force exerted on body 2 by body 1 

 

𝐅 𝟏𝟐 = 𝐅 𝟐𝟏                                                                     

 

3.2. Newton’s Universal Law of Gravity  

Newton’s Law of Gravitation: Every particle in the universe attracts every 

other particle with a force that is directly proportional to the product of their masses 

and inversely proportional to the square of the distance between them. If the particles 

have masses m1 and m2 and are separated by a distance r, the magnitude of this 

gravitational force is: 

𝐹 = 𝐺
𝑚1𝑚2

𝑟2
                                                  

where G is a universal constant called the gravitational constant, which has been 

measured experimentally. Its value in SI units is: 

G = 6.672 × 10−11
N.m2

Kg2
                           

3.3. Weight  

The force exerted by the earth on a body is called the weight of the body (W⃗⃗⃗ ). 

A freely falling body experiences an acceleration (g⃗ ) acting toward the center of the 

earth. Applying Newton’s second law to a free falling body, with a⃗ = g⃗  and F⃗ = w⃗⃗⃗  

gives: 

W⃗⃗⃗ = mg⃗                                          
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Lecture 7 

3.4. Elasticity – Hooke’s Law  
Deformation means the change of size, shape and mass distribution of an 

object under load conditions. Deformation is an important consideration in 

understanding the mechanics of materials and biomechanics of living organisms. 

Elastic means that when the deforming forces are removed, the object returns to its 

original shape. 

Consider a body on a horizontal, smooth surface which is connected to a helical 

spring. If the spring is stretched or compressed a small distance from its equilibrium 

configuration, the spring will exert a force on the body given by Hooke’s Law: The 

force (F) required stretching (compress) body is directly proportional to the 

extension (x): 

𝐹 = 𝑘𝑥                                                              
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where k is the stiffness constant (N/m); it is assumed that the stretching or 

compressing of the body occurs along the axis OX.  

The force F per unit cross-sectional area S on an elastic body fixed at one end is 

called the stress (σ) which is equal to F/S and has units N/m2.  

The term strain refers to the relative change in dimensions or shape of a body through 

the application of external force. The strain (ε) is a measure of the degree of 

deformation; it is defined by the ratio x/l, where l is original length of the body (i.e., 

ε = x/l).  

For sufficiently small stresses, the stress is proportional to the strain; the constant of 

proportionality depends on the material being deformed and on the nature of the 

deformation. This proportionality constant is called the elastic modulus or Young’s 

modulus if it measures the resistance of a solid to change in its length: 

Y =
F/S

x/l
=

σ

ϵ
                                                       

Hooke’s law can be written as: 

σ = E. ε                                                          

The stress-strain curve is called the tensile diagram (fig. 3.1). 

Example. A strip of tissue 6 cm long with a cross-sectional area (S) of 0.12 cm2 has 

a Young’s modulus (Y) of approximately 105 N⋅m-2. What mass must be suspended 

from the strip hung vertically to cause a 0.6 cm elongation?  

Solution. Force (F), which is applied to the tissue, can be defined as: 

                                           F=m.g 

The last equation can be written as: 

m. g

S
= E.

∆l

l
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The mass is: 

 

 

3.5. Work and Energy  

The work done by a constant force is defined as the product of the component 

of the force in the direction of the displacement and the magnitude of the 

displacement: 

A = F⃗ . s = (Fcosθ)s                                                

where (Fcosθ) is the component of  𝐹  in the direction of 𝑠 . Work is a scalar quantity 

and equation 1.22 is the scalar product of the two vectors 𝐹⃗⃗  ⃗  and 𝑠 . The SI unit of 

work is the joule (J = N⋅m).  

The product of one half the mass (m) and the square of the speed (V) is defined as 

the kinetic energy of a particle: 

𝐸𝑘 =
1

2
𝑚𝑣2                                                                          

Potential energy is accumulated in a system as a result of previous work being done. 

For instances, the gravitational potential energy near the Earth’s surface is: 

𝐸𝑝 = 𝑚𝑔ℎ                                        

where m is the mass of the particle and h the displacement.  

The elastic potential energy, such as that stored in a spring, is: 

𝐸𝑝 =
1

2
𝑘𝑥2                                   

where k is the force constant of the spring and x the displacement. 
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Control Questions and Problems  

1. What studies mechanics?  

2. What is the material point?  

3. Define average and instantaneous velocity.  

4. Define average and instantaneous acceleration.  

5. Formulate the first, second and third laws of Newton.  

6. Formulate the Universal Law of Gravity.  

7. What is the elastic deformation?  

8. Formulate Hooke's law.  

9. What is the work and Energy?  

Lecture 8 

Chapter 4 

Linear Momentum and Collisions 

4.1. Linear Momentum  

The linear momentum of a particle with mass m moving with velocity v is 

defined as: 

p = mv  

Linear momentum is a vector. When giving the linear momentum of a particle 

you must specify its magnitude and direction. We can see from the definition that its 

units must be (kg·m/ s). The momentum of a particle is related to the net force on 

that particle in a simple way; since the mass of a particle remains constant, if we take 

the time derivative of a particle’s momentum we find: 

 

 (4.1) 
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4.2. Impulse  

Average Force When a particle moves freely then interacts with another system for 

a (brief) period and then moves freely again, it has a definite change in momentum; 

we define this change as the impulse I of the interaction forces: 

I = pf − pi = ∆p 

Impulse is a vector and has the same units as momentum. When we integrate Eq.4.2 

we can show: 

 

We can now define the average force which acts on a particle during a time interval 

∆t. It is: 

 

The value of the average force depends on the time interval chosen. 

4.3. Conservation of Linear Momentum  

Linear momentum is a useful quantity for cases where we have a few particles 

(objects) which interact with each other but not with the rest of the world. Such a 

system is called an isolated system. We often have reason to study systems where a 

few particles interact with each other very briefly, with forces that are strong 

compared to the other forces in the world that they may experience. In those 

situations, and for that brief period of time, we can treat the particles as if they were 

isolated.  

We can show that when two particles interact only with each other (i.e. they 

are isolated) then their total momentum remains constant: 

p1i + p2i = p1f + p2f                      (4.3) 
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or, in terms of the masses and velocities, 

m1v1i + m2v2i = m1v1f + m2v2f         (4.4) 

 

Or, abbreviating p1 + p2 = P (total momentum), this is: Pi = Pf. It is important to 

understand that Eq. 4.3 is a vector equation; it tells us that the total x component of 

the momentum is conserved, and the total y component of the momentum is 

conserved. 

Lecture 9 

4.4. Collisions 

  When we talk about a collision in physics (between two particles, say) we 

mean that two particles are moving freely through space until they get close to one 

another; then, for a short period of time they exert strong forces on each other until 

they move apart and are again moving freely. For such an event, the two particles 

have well-defined momenta p1i and p2i before the collision event and p1f and p2f 

afterwards. But the sum of the momenta before and after the collision is conserved, 

as written in Eq. 4.3. While the total momentum is conserved for a system of isolated 

colliding particles, the mechanical energy may or may not be conserved. If the 

mechanical energy (usually meaning the total kinetic energy) is the same before and 

after a collision, we say that the collision is elastic. Otherwise we say the collision 

is inelastic. If two objects collide, stick together, and move off as a combined mass, 

we call this a perfectly inelastic collision. One can show that in such a collision more 

kinetic energy is lost than if the objects were to bounce off one another and move 

off separately. 

When two particles undergo an elastic collision then we also know that: 
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In the special case of a one-dimensional elastic collision between masses m1 and m2 

we can relate the final velocities to the initial velocities. The result is:  

 

 

 

This result can be useful in solving a problem where such a collision occurs, but it 

is not a fundamental equation.  

4.5. Center of Mass 

For a system of particles (that is, lots of ’em) there is a special point in space 

known as the center of mass which is of great importance in describing the overall 

motion of the system. This point is a weighted average of the positions of all the 

mass points. If the particles in the system have masses m1, m2, . . .mN, with total 

mass:  

 

 

and respective positions r1, r2, . . . ,rN, then the 

center of mass rCM is: 

 

 

(4.6) 

(4.5) 

(4.7) 
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which means that the x, y and z coordinates of the center of mass are: 

 

 

 

For an extended object (i.e. a continuous distribution of mass) the definition of rCM 

is given by an integral over the mass elements of the object: 

 

 

which means that the x, y and z coordinates of the center of mass are now: 

 

 

 

 

When the particles of a system are in motion then in general their center of mass is 

also in motion. The velocity of the center of mass is a similar weighted average of 

the individual velocities: 

 

 

In general the center of mass will accelerate; its acceleration is given by: 

 

 

If P is the total momentum of the system and M is the total mass of the system, then 

the motion of the center of mass is related to P by: 

 

 

(4.10) 

(4.9) 

(4.8) 

(4.12) 

(4.11) 

(4.13) 
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Lecture 10 

4.6. Motion of a System of Particles 

A system of many particles (or an extended object) in general has a motion 

for which the description is very complicated, but it is possible to make a simple 

statement about the motion of its center of mass. Each of the particles in the system 

may feel forces from the other particles in the system, but it may also experience a 

net force from the (external) environment; we will denote this force by Fext. We find 

that when we add up all the external forces acting on all the particles in a system, it 

gives the acceleration of the center of mass according to: 

 

 

Here, M is the total mass of the system; Fext, i is the external force acting on particle 

i. 
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In words, we can express this result in the following way: For a system of particles, 

the center of mass moves as if it were a single particle of mass M moving under the 

influence of the sum of the external forces. 

 

4.7. Worked Examples (Linear Momentum) 

1. A 3.00 kg particle has a velocity of (3.0i − 4.0j) m/s. Find its x and y components 

of momentum and the magnitude of its total momentum. 

Using the definition of momentum and the given values of m and v we have: 

p = mv = (3.00 kg) (3.0i − 4.0j) m/s = (9.0i − 12.j) kg·m/s 

So the particle has momentum components: 

px = +9.0 kg·m/s and py = −12. kg·m/s . 

The magnitude of its momentum is: 

 

 

2. A child bounces a superball on the sidewalk. The linear impulse delivered by the 

sidewalk is 2.00N· s during the 1/ 800 s of contact. What is the magnitude of the 

average force exerted on the ball by the sidewalk. 

The magnitude of the change in momentum of (impulse delivered to) the ball is |Δp| 

=|I| = 2.00 N·s. (The direction of the impulse is upward, since the initial momentum 

of the ball was downward and the final momentum is upward.) 
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Since the time over which the force was acting was: 

 

 

 

 

 

3. A 3.0 kg steel ball strikes a wall with a speed of 10 m/ s at an angle of 60_ with 

the surface. It bounces off with the same speed and angle, as shown in the Figure. If 

the ball is in contact with the wall for 0.20 s, what is the average force exerted on 

the wall by the ball?  
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The average force is defined as F = Δp / Δt, so first find the change in momentum of 

the ball. Since the ball has the same speed before and after bouncing from the wall, 

it is clear that its x velocity (see the coordinate system in the Figure.) stays the same 

and so the x momentum stays the same. But the y momentum does change. The 

initial y velocity is: 

Since F has no x component, the average force has magnitude 2.6×102 N and points 

in the y direction (away from the wall). 

 

H.W 4. A machine gun fires 35.0 g bullets at a speed of 750.0 m/s. If the gun can 

fire 200 bullets/min, what is the average force the shooter must exert to keep the gun 

from moving? 
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5. A 10.0 g bullet is stopped in a block of wood (m = 5.00 kg). The speed of the 

bullet–plus–wood combination immediately after the collision is 0.600 m/ s. What 

was the original speed of the bullet? 

 

 

 

 


