Electronics II Ali T. Shaheen

Syllabus

1. Feedback Amplifier

- Classifications of amplifiers
 - Voltage, current, transconductance and transresistance amplifiers
- > The feedback concept
- > The transfer ratio or gain of feedback amplifier
- ➤ Negative feedback amplifier
- > Feedback amplifier topologies
 - Voltage series, voltage shunt, current series and current shunt
- ➤ General characteristics of –ve feedback amplifier
 - Input impedance of feedback amplifier
 - Output impedance of feedback amplifier
- ➤ How to find the feedback topology of an amplifier?
- Outlines of analysis of feedback amplifier

2. Differential amplifier

- ➤ Differential amplifier using BJT
 - DC Transfer C/Cs
 - Difference mode input dynamic range
 - Small signal analysis
 - Differential mode gain
 - Common mode gain
 - Common mode rejection ratio (CMRR)
 - Difference mode and common mode input impedances
- ➤ Differential amplifier using FET
 - DC Transfer C/Cs
 - Difference mode input dynamic range
 - Small signal analysis
 - Differential mode gain
 - Common mode gain
 - Common mode rejection ratio (CMRR)

- Difference mode and common mode input impedances
- > Mismatch analysis
- ➤ Biasing Techniques in ICs
 - Constant current source (CCS) and current mirror using BJTs
 - Constant current source using FETs
- > Differential amplifiers with active load
- ➤ Improved differential amplifier with single ended output

3. Output stage

- Objectives
- > Requirements
- Class A output stage
 - Transfer characteristics for small and large loads
 - Power and efficiency
 - Maximum power and maximum efficiency
 - Power dissipation (maximum instantaneous and average power dissipation)
- ➤ Class B and AB push pull output stages
 - Disadvantages of class A
 - Advantages of class B
 - Transfer c/cs
 - Crossover distortion
 - Class AB output stage
 - Transfer c/s
 - Power and efficiency
 - Max. Efficiency
 - Maximum output voltage limit

4. Operational amplifier architecture

- Basic stages description
- ➤ The analysis of 741 op. amp
- DC analysis
- > Ac analysis
- > Tutorial and discussion

5. Frequency response

- > Introduction
- > The general voltage gain function
- ➤ Low frequency response
 - Low frequency response of CE BJT amplifier
 - Low frequency response of CS FET amplifier
- ➤ High frequency response
 - The π -equivalent model at high frequencies
 - High frequency response of CE short circuit current gain
 - Millar theorem
 - High frequency response of CE amplifier
 - High frequency response of Emitter follower amplifier
 - High frequency response of CS amplifier
- ➤ Determining the -3dB upper frequency

6. Op-Amp applications

- Linear applications
 - Inverting amplifier and non inverting amplifier
 - Inverting and non inverting summers
 - Subtractor
 - Integrator
 - Differentiator
 - Solution of differential equation (analog computer)
- > Non linear applications
 - Logarithmic amplifier
 - Anti-log amplifier
 - Temperature compensated logarithmic amplifier
 - Half wave rectifier and full wave rectifier
 - Comparator

7. Linear oscillators

- > The oscillation criterion
- > The Barkhausen conditions

- > FET phase shift oscillator
- ➤ BJT phase shift oscillator
- Phase shift oscillator using op-amp
- ➤ Wien bridge oscillator
- > Frequency limitations of an oscillator
- ➤ General form oscillator configuration
- Collpits and Hartley oscillators
- > Tuned oscillator

8. Wave shaping and waveform generators

- Comparator
- Schmitt trigger (regenerative comparator)
- > Square wave generator using op-amp (free running square wave generator)
- > Triangular wave generator using op-amp

9. Multivibrators

- > Transistor based Bistable Multivibrator
- > Transistor based Monostable Multivibrator
- > Transistor based Astable Multivibrator
- ➤ IC based Multivibrators
- > 555 IC timer connected as monostable multivibrator
- > 555 IC timer connected as a stable multivibrator
- ➤ Transistor based Schmitt trigger
- ➤ Op- amp based Schmitt trigger
- > Tutorial and discussion

10. Analog multipliers

- Variable transconductance multiplier
- > Two quadrant multiplier
- > Four quadrant multiplier
- > Four quadrant multiplier with wide dynamic ranges
- Applications of analog multipliers: amplification, multiplication, division, squaring, square root circuits and in communication circuits (balanced modulator using analog multiplier)

11. Phase locked loop (PLL)

- ➤ Block diagram and operation
- ➤ The voltage controlled oscillator (VCO)
- > The phase detector
- > PLL applications

References

- 1. "Analysis and Design of Analog Integrated Circuits" By: Paul R. Gray
- 2. "Microelectronics" By: Jacob Millman & Grebal
- 3. "Microelectronics" By: Jacob Millman
- 4. "Microelectronic Circuits" By: A. S. Sedra & K. C. Smith
- 5. "Electronic Circuits-design and integrated" By: D. Schilling and C. Belove
- 6. "Microelectronic Devices and Circuits" By: Clifton G. Fonstad
- 7. "Microelectronics: Circuit Analysis and Design" By: Donald A. Neamen
- 8. "Design with Operational Amplifiers and Analog Integrated Circuits" By: S. Franco
- 9. "Op-Amps: Design, Application, and Troubleshooting" By: David L. Terrell