CHAPTERONE ELECTRIC FIELLDS)

PROPERTIES OF ELECTRIC CHARGES:

The electric charge has the following important properties (according to Franklin’s
model of electricity):

*Two kinds of electric charges occur in nature, with the property that unlike
charges attract one another and like charges repel one another.

e Electric charge is conserved(this means that, charge is not created in the
process. The electric field state is due to a transfer of charge from one object to
the other. One object gains some amount of negative charge while the other
gains an equal amount of positive charge. For example ,when a glass rod is
rubbed with silk, the silk obtains a negative charge that is equal in magnitude to
the positive charge on the glass rod.

e Electric charge is quantized (this means that the net charge in a closed region
remains the same).

Q:If you rub an inflated balloon against your hair, the two materials attract
each other. Is the amount of charge present in the balloon and your hair after
rubbing (a) less than, (b) the same as, or (c) more than the amount of charge
present before rubbing?

INSULATORS AND CONDUCTORS:

It is convenient to classify substances in terms of their ability to conduct electric
charge:

1-Electrical conductors(materials in which electric charges move freely such as
copper, aluminum, and silver) When such materials are charged in some small
region, the charge readily distributes itself over the entire surface of the material.

2-Electrical insulators(materials in which electric charges cannot

move freely such as glass, rubber, and wood )When such materials are charged by
rubbing, only the area rubbed becomes charged, and the charge is unable to
move to other regions of the material.




3- Semiconductors are a third class of materials, and their electrical properties
are somewhere between those of insulators and those of conductors such as
silicon and germanium.

(Note: When a conductor is connected to the Earth by means of a conducting
wire orpipe, it is said to be grounded.)

Charging by induction:
To understand induction, consider a neutral (uncharged) conducting sphere
insulated from ground, as shown in Fig.1a. When a negatively charged rubber rod
is brought near the sphere, the region of the sphere nearest the rod obtainsan
excess of positive charge while the region farthest from the rod obtains anequal
excess of negative charge, as shown in Fig.1b. (That is, electrons inthe region
nearest the rod migrate to the opposite side of the sphere. This occurseven if the
rod never actually touches the sphere.) If the same experiment is performedwith
a conducting wire connected from the sphere to ground (Fig. 1c),some of the
electrons in the conductor are so strongly repelled by the presence ofthe negative
charge in the rod that they move out of the sphere through theground wire and
into the Earth. If the wire to ground is then removed (Fig.1d), the conducting
sphere contains an excess of induced positive charge. Whenthe rubber rod is
removed from the vicinity of the sphere (Fig. 1e), this inducedpositive charge
remains on the ungrounded sphere. Note that the chargeremaining on the sphere
is uniformly distributed over its surface because of the repulsive forces among the
like charges. Also note that the rubber rod loses none ofits negative charge during
this process.
Charging an object by induction requires no contact with the body inducingthe
charge. This is in contrast to charging an object by rubbing (that is, by
conduction), which does require contact between the two objects.A process
similar to induction in conductors takes place in insulators.
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Figure 1Charging a metallic object by induction (that is, the two objects never touch eachother). (a) A
neutral metallic sphere, with equal numbers of positive and negative charges.(b) The charge on the
neutral sphere is redistributed when a charged rubber rod is placed nearthe sphere. (c) When the
sphere is grounded, some of its electrons leave through the groundwire. (d) When the ground
connection is removed, the sphere has excess positive charge that isnonuniformly distributed. (e) When



the rod is removed, the excess positive charge becomes uniformly distributed over the surface of the
sphere.

COULOMB’S LAW

Coulomb’s experiments showed that the electric force between two stationary
charged particles

e is inversely proportional to the square of the separation r between the particles
and directed along the line joining them;

e is proportional to the product of the charges g: and g on the two particles;

e is attractive if the charges are of opposite sign and repulsive if the charges have
the same sign.

From these observations, we can express Coulomb’s law as an equation giving
the magnitude of the electric force (sometimes called the Coulomb force)
betweentwo point charges:

Fe=kelqu] [q2]/r?

Where ke is a constant called the Coulomb constant.The value of the Coulomb
constant depends on the choice of units. The Slunit of charge is the coulomb (C).
The Coulomb constant kein Sl units has the value:

ke=8.987 5 x10° N.m?2/C?

This constant is also written in the form
ke=1/4n'€0

Where the constant €0 is known as the permittivity of free space and has the
value 8.854 2 x10''2 C2/N.m?>.

The smallest unit of charge known in nature is the charge on an electron or
proton, which has an absolute value of

|e]-1.60219 x10%° C

Table 1 Charge and Mass of the Electron, Proton, and Neutron

Particle Charge (C) Mass (kg)
Electron (e) -1.60219 x10°%° 9.109 5 x103!
Proton (p) +1.60219 x10'%° 1.672 61 x10°%7




Neutron (n) 0 1.674 92 x10%

EXAMPLE 1:-The electron and proton of a hydrogen atom are separated (on the
average) by a distance of approximately 5.3 x10'! m. Find the magnitudes of the
electric force and the gravitational force between the two particles.

Solution: From Coulomb’s law, we find that the attractive electric force has the
magnitude
Fe= ke|€?| /r?

Fe=(8.99 x10° N.m?2/C?) (1.60 x10*° C)?/(5.3 x 101! m)?
Fe=8.2x10%N
Using Newton’s law of gravitation and Table 1 for theparticle masses, we find that
the gravitational force has the magnitude

Fe= G memp/ r 2
Fe=(6.7x10IN.m?/kg?)x(9.11 x103'kg)(1.67 x10?’kg)/(5.3 x10!1)?
Fe= 3.6x10% N

The ratio Thus, the gravitational force between charged atomic particles is
negligible when compared with the electric force. Note the similarity of form of

Newton’s law of gravitation and Coulomb’s law of electric forces.
* %k *

The force is a vector quantity thus, the law expressed in vector form
F12= keq1q2r”/r? (1)

Where r’is a unit vector directed from g1 to gz, as shown in Figure (2a)



from equation(1) , we see that if g1 and g2 have the same sign, as in Figure 2a, the
product giqg: is positive and the force is repulsive. If g1 and gz are of opposite sign,
as shown in Figure 2b, the product g1q: is negative and the force is attractive.
Noting the sign of the product gi1g: is an easy way of

determining the direction of forces acting on the

charges /'}\ /: |

) 1
Figure 2Two point charges separated by a distance r exert a force 4
on each other that is given by Coulomb’s law. The force F»; exerted / - F
by g2 on q1 is equal in magnitude and opposite in direction to the T
force Fi;exerted by q: on q.. (a) When the charges are of the same Fy) (a)
sign, the force is repulsive. (b) When the charges are of opposite
signs, the force is attractive. s

(b

Q:Object A has a charge of +2uC, and object B has a charge of+6 uC. Which
statement is true? a) Fas=3Fsa  b) Fag=-Fsa ¢) 3Fas=Fsa

When more than two charges are present, the force between any pair of them is
given by Equation (1). Therefore, the resultant force on any one of them equals
the vector sum of the forces exerted by the various individual charges.
Forexample, if four charges are present, then the resultant force exerted by
particles2, 3, and 4 on particle 1 is:

F1=F21+F31+Fa1

EXAMPLE 2:-Consider three point charges located at the corners of a right
triangle as shown in Figure 3, where q1=q3=5uc ,q2=-2 uc, and a=0.1m. Find the

resultant force exerted on gs .

Solution :First, note the direction of the individual forces exerted by g1 and g2 on
gs. The force F,3 exerted by g2 on gsis attractive because g2 and g3 have opposite
signs. The forceF13 exerted by g1 on gz is repulsive because both charges are
positive.The magnitude of Fas3 is

Fas=ke |92 | |q3] / a®



F23=(8.99 x10°N.m?/C?)x(2.0 x10°® C)(5.0 x10°® C)/(0.10 m)?
F23=9.0N

Note that because g3 and g2 have opposite signs, F»z is to the left, as shown in
Figure 4.
The magnitude of the force exerted by g1 on gs is
Fis= ke |q1 | a3 / (v2a)?
F13=(8.99 x10° N.m2/C?) (5.0 x 10 C)(5.0 x10°® C)/2(0.10 m)?
F13= 11N

The force Fizis repulsive and makes an angle of 45° with the x axis. Therefore, the
x and y components of Fi3 are equal,with magnitude given by

Fi3cos 45° =7.9 N.
The force Fs is in the negative x direction. Hence, the xand y components of the
resultant force acting on gz are

F3x=F13x+F23=7Z.9 N-9.0N=-1.1 N
F3y=F13y=7.9 N

We can also express the resultant force acting on gsin unit vector form as
Fs=(-1.1i +7.9j) N

il




Figure 4:The force exerted by g1 0on gz is F13 The force exerted by g2 on g3 is F23 . The resultant
force F3 exerted on gsis the vector sum Fi3+Fz3.

THE ELECTRIC FIELD
the electric field E at a point in space is defined as the electric force Fe acting on a
positive test charge qo placed at that point divided by the magnitude of the test
charge:

E EFe/qo

Note that E is the field produced by some charge external to the test charge—it is
not the field produced by the test charge itself. For example, every electron
comes with its own electric field. The vector E has the Sl units of newtons per
coulomb (N/C).

To determine the direction of an electric field, consider a point charge q located a
distance r from a test charge qo located at a point P, as shown in Figure (5)
According to Coulomb’s law, the force exerted by g on the test charge is

Fe= keq qor”/r?
where r” is a unit vector directed from g toward go. Because the electric field at P,
the position of the test charge, is defined by E = Fe/qo,we find that at P, the
electric field created by q is
E= keqr™/r?
If g is positive, as it is in Figure (5a), the electric field is directed radially out ward
from it. If g is negative, as it is in Figure (5b), the field is directed toward it.
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Figure 5: A test charge q0 at point P is a distance r from a point charge q. (a) If g is positive, then the
electric field at P points radially outward from g. (b) If g is negative, then the electric field at P points
radially inward toward q.

- at any point P, the total electric field due to a group of charges equals the vector
sum of the electric fields of the individual charges

E= keZiqiri"/riz
whereriis the distance from the ith charge qgito the point P (the location of the test
charge) and ;" is a unit vector directed from gitoward P.

Q:A charge of +3uC is at a point P where the electric field is directed to the right
and has a magnitude of 4 X10° N/C. If the charge is replaced with a -3 uC charge,
what happens to the electric field at P ?

EXAMPLE 3:-A charge q1=7.0 uCis located at the origin, and a second
chargeq>=5.0 uC is located on the x-axis, 0.30 m from the origin (Fig.6). zFind the
electric field at the point P, which has coordinates (0, 0.40) m.

Solution First, let us find the magnitude of the electric field at P due to each
charge. The fields E; due to the 7.0 uC charge and E, due to the -5.0 uC charge are
shown in Figure(6)their magnitudes are:

E1= ke|q1| /r12=(8.99 x10°N.m2/C2) (7.0 x 10 C)/ (0.40 m)?
E1=3.9x10°N/C

E2= ke|q2| /r22=(8.99 x10° N.m2/C?) (5.0 x 10 C)/ (0.50 m)>
F,=1.8x10°N/C
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Figure 6The total electric field E atP equals the vector sum E1+E; where E; is the field due to the positive
charge g 1 and Ezis the field due to the negative charge 2

The vector E1 has only a y component. The vector E; has an x component given by
E, cosB=3/5E; and a negative y component given by

-E, sin 6=-4/5E;Hence, we can express the vectors as:

E1=3.9 x10°j N/C

E,=(1.1x10%-1.4 x105)) N/C

The resultant field E at P is the superposition of E1 and E; :

E =E;+E>=(1.1 x10°i+2.5 x10°j) N/C

EXAMPLE 4:- An electric dipoleis defined as a positive charge q and a negative
charge -q separated by some distance. For the dipole shown in Figure 7, find the
electric field E at P due to the charges, where P is a distance y>>a from the origin.

Solution :At P, the fields E1 and E; due to the two charges are equal in magnitude
because P is equidistant from the charges. The total field is
E= E1+ Ezwhere

10



E1= Ex=keq/r *=keq/(y*+ a°)
The y components of E; and Ez cancel each other, and the x components add
because they are both in the positive x -direction. Therefore, E is

Fig. 7 we see that cos® =a/r=a/( y*+ a?)Y? Therefore,
E=2E1c0s0=2keqa/(y*+ a?) ( y*+ a%)/?
E=2keqa/( y*+ a?)*?
Because y>>awe can neglect a? and write
Ex2kega/ y?

Lr ' S

Figure 7 The total electric field E atP due to two charges of equal magnitude and opposite sign (an

electric dipole) equals the vector sum E;+ E; The field E; is due to the positive charge g, and Eis the field
due to the negative charge -q.

ELECTRIC FIELD OF A CONTINUOUS CHARGE DISTRIBUTION
To evaluate the electric field created by a continuous charge distribution, we use
the following procedure: First, we divide the charge distribution into small
elements, each of which contains a small charge Ag, as shown in Figure 8.
The electric field at P due to one element carrying charge Agis

AE= keAqr”/r?

11



wherer is the distance from the element to point P andr” is a unitvector
directedfrom the charge element toward P. The total electric field at P due to all
elementsin the charge distribution is approximately

AEzkeiiAqiri“/riz

where the index irefers to the ith element in the distribution. Because the
chargedistribution is approximately continuous so:

E= kequrn/rz(Electric field of a continuous charge distribution)

AE

Figure 8:The electric field at P due to a continuous charge distributionis the vector sum of the
fieldsAEdue to all the elements Aqof the charge distribution.

Note

¢ If a charge Q is uniformly distributed throughout a volume V, the volume
charge density p is defined by

p=Q/V

where p has units of coulombs per cubic meter (C/m3).

12



¢ If a charge Q is uniformly distributed on a surface of area A, the surface charge
density o is defined by
o =Q/A

where o has units of coulombs per square meter (C/m?).

¢ If a charge Q is uniformly distributed along a line of length L, the linear charge
density A is defined by
A=Q/L

where A has units of coulombs per meter (C/m).

¢ |f the charge is no uniformly distributed over a volume, surface, or line, we
have to express the charge densities as

p=dQ/dV o=dQ/dA A=dQ/dL
where dQ is the amount of charge in a small volume, surface, or length element.

EXAMPLE 5:- A rod of lengthLhas a uniform positive charge per unit
Length A and a total charge Q. Calculate the electric field at apoint P that is
located along the long axis of the rod and adistance a from one end

(Fig. 9).

Solution:Let us assume that the rod is lying along the x axis, that dx is the length
of one small segment, and that dg is the charge on that segment. Because the
rod has a charge per unit length A, the charge dg on the small segment is dg=Adx
The field dEdue to this segment at P is in the negative xdirection (because the
source of the field carries a positivecharge Q), and its magnitude is

dE= kedq/x*=keAdx/x?

The total field at Pdue to all segments of the rod, which are at different

distancesfrom P, is given by
E= fkeAdx/x?

13
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Figure 9The electric field at P due to a uniformly chargedrod lying along the x axis. The magnitude of
the field at P due to thesegment of charge dgis k.dg/x*. The total field at P is the vector sum over all
segments of the rod.

where the limits on the integral extend from one end of the rod (x=a) to the
other(x=L+a). The constants keand A can be removed from the integral to yield
E=keAfdx/x*=keA[-1/X]

E= keA{(1/a)-(1/(L+a)}

E=k. Q/a(L+a)
Where we have used the fact that the total charge Q =AL. If P is far from the rod
(a>>L), then the | in the denominator can be neglected, and
E=ke Q/a2.This is just the form you would expect for a point charge.

EXAMPLE 6.

A ring of radius a carries a uniformly distributed positive total charge Q. Calculate
the electric field due to the ring at a point P lying a distance x from its center
along the central axis perpendicular to the plane of the ring (Fig. 10).

Solution The magnitude of the electric field at P due to the segment of charge
dgis
dE= kedq/r?

This field has an x component dEx=dEcosO along the axis and a component dEL
perpendicular to the axis. As we see in Figure 10b, however, the resultant field at
P must lie along the x axis because the perpendicular components of all the
various charge segments sum to zero. That is, the perpendicular component of
the field created by any charge element is canceled by the perpendicular
component created by an element on the opposite side of the ring. Because and
r=(x?+a%)"? and cosB= x/r, we find that

dEx=dEcosB =(kedq/ r 2)x/r=kexdq/(x*+a? )*/?

14
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Figure 10 A uniformly charged ring of radius a. (a) The field at P on the x axis due to an elementof
charge dq. (b) The total electric field at P is along the x axis. The perpendicular component ofthe field at
P due to segment 1 is canceled by the perpendicular component due to segment 2.

All segments of the ring make the same contribution to the field at P because they
are all equidistant from this point. Thus, we can integrate to obtain the total field
at P:

Ex=[kexdq/ (x*+a? )*/%= {kex / (x*+a? )*/?}fdq

Ex=kexQ / (x*+a? )32
This result shows that the field is zero at x =0

HOME WORKE:- A disk of radius R has a uniform surface charge Y density o
.Calculate the electric field at a point P that lies along the central perpendicular
axis of the disk and a distance x from the

center of the disk .

ELECTRIC FIELD LINES

Rules for drawing electric field lines

* The lines must begin on a positive charge and terminate on a negative charge.
* The number of lines drawn leaving a positive charge or approaching a negative
charge is proportional to the magnitude of the charge.

* No two field lines can cross.

MOTION OF CHARGED PARTICLES IN AUNIFORM ELECTRIC FIELD

15



When a particle of charge g and mass m is placed in an electric field E, the
electric force exerted on the charge is gE. If this is the only force exerted on the
particle, it must be the net force and so must cause the particle to accelerate. In
this case, Newton’s second law applied to the particle gives

Fe=qE=ma
The acceleration of the particle is therefore

a=qE /m
If E is uniform (that is, constant in magnitude and direction), then the
accelerationis constant. If the particle has a positive charge, then its acceleration
is in thedirection of the electric field. If the particle has a negative charge, then its
accelerationis in the direction opposite the electric field.

EXAMPLE 23.11:-An electron enters the region of a uniform electric field
(electric field in the positive y direction and the acceleration of the electron is in
the negative direction), with vi=3x10°m/s and E=200N/C. The horizontal length of
the plates is L=0.100 m. (a) Find the acceleration of the electron while it isin the
electric field.

Solution :The charge on the electron has an absolutevalue of
1.60 x101°C, and m=9.11x10 3kg.Therefore,

a=-eEj /m=-(1.60 x10 "*°C)(200N/C)j/( 9.11x10 3kg)
a=-3.51 x10%%j m/s?
(b) Find the time it takes the electron to travel through
the field.
Solution:The horizontal distance across the field is I=0.100 m. we find that
thetime spent in the electric field is

t =I/vi= 0.100 m/3.00x10° m/s=3.33 x10%s

%k %k %k %k %k % %k %k %k %k %k % %k %k %k %k %k %k k
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SUMMARY

Electric charges have the following important properties:

¢ Unlike charges attract one another, and like charges repel one another.
e Charge is conserved.

e Charge is quantized.

Conductorsare materials in which charges move freely. Insulators are materials
in which charges do not move freely.

Coulomb’s lawstates that the electric force exerted by a charge g1 on a second
chargeq: is:

F12= Keq1q2r"/r?
wherer is the distance between the two charges andr” is a unit vector directed
fromgqi to g2 . The constant k., called the Coulomb constant, has the value

k.= 8.987 5 x10° N.m?/C?

The smallest unit of charge known to exist in nature is the charge on an electron
or proton:

le]-1.60219 x10™° C

The electric field E at some point in space is defined as the electric force F.
that acts on a small positive test charge placed at that point divided by the magnitudeof the
test charge qo :

E E Fe/qo

At a distance r from a point charge g, the electric field due to the charge is given
by:
E= keqr™/r?
where“r is a unit vector directed from the charge to the point in question. The
electric field is directed radially outward from a positive charge and radially inward toward a
negative charge

The electric field due to a group of point charges can be obtained by using
the superposition principle. That is, the total electric field at some point equals the vector
sum of the electric fields of all the charges:

E= keZiqiri™/ri?
The electric field at some point of a continuous charge distribution is

E= kefdqr"/r?
wheredgis the charge on one element of the charge distribution and r is the distancefrom the
element to the point in question.

17



Electric field lines describe an electric field in any region of space. The numberof lines per unit
area through a surface perpendicular to the lines is proportionalto the magnitude of E in that

region.
A charged particle of mass m and charge g moving in an electric field E has acceleration

a=gE /m

18



CHAPTERTWO (GAUSS’S LAW)

In the preceding chapter we showed how to use Coulomb’s law to calculate the
electric field generated by a given charge distribution. In this chapter, we describe
Gauss’s law and an alternative procedure for calculating electric fields.
ELECTRIC FLUX
Consider an electric field that is uniform in both magnitude and direction, as
shown in Figure 2.1.The product of the magnitude of the electric field E and
surface area A perpendicular to the field is called the electric flux®e

®Oc=EA(2.1)
From the Sl units of E and A, we see that ®O¢ has units of (N.m?/C).Electric flux is
proportional to the number of electricfield lines penetrating some surface.

Area=A

Figure 2.1 Field lines representing i
a uniform electric field penetrating a plane of

area A perpendicular to the field. The electric

flux ®ethrough this area is equal

toEA.

EXAMPLEL:
What is the electric flux through a sphere that has a radius of 1.00 m and carries a
charge of +1.00 uC at its center?

Solution The magnitude of the electric field 1.00 m from this charge is given by
equation

ke
E= rlqu =(8.99 x10°N.m?/C?) (1.0 x 10® C)/ (1.00 m)?

E1=8.9x103N/C
The field points radially outward and is therefore everywhereperpendicular to the
surface of the sphere. The flux through the sphere (whose surface




areaA=4mnr?=(12.6m?) is thus
@Oe=EA= (8.9x10°N/C) (12.6m?)
=1.13 x10°> N.m2/C

Home work:What would be the (a)electric field and (b) flux
through the sphere if it had a radius of 0.500 m?

* %k %k * %k %k %k %k %k

If the surface under consideration is not perpendicular to the field, the flux
through it must be less than that given by Equation 2.1.From Figure 2.2 we see
that the two areas are related by A= A cosB. Because the flux through A equals
the flux through A, weconclude that the flux through A is

®c=E A =EA cosb

Normal

.'1 //
) rd

A'=Acos @

Figure 2.2 Field lines representing auniform electric field penetrating an area Athat is at an angle 6 to
the field. Because the number of lines that go through the area A is the same as the number that go
through A, the flux through Ais equal to the flux through A and is given by

O¢ = EA cosO

From this result, we see that the flux through a surface of fixed area A has a
maximum value EA when the surface is perpendicular to the field (in other words,
when the normal to the surface is parallel to the field, that is,
0=0 in Figure 2.2); the flux is zero when the surface is parallel to the field (in other
words, when the normal to the surface is perpendicular to the field, that is, 6=90.
In more general consider a surface divided up into a large number of small

elements (Figure 2.3)



@k =[surface E.dA  (Definition of electric flux)

The net flux through the surface is proportional to the net number of lines leaving
the surface.lf more lines are leaving than entering, the net flux is positive. If more
lines are entering than leaving, the net flux is negative.
we can write the net flux ®ethrough a closed surface as

®c=[E.dA=[E.dA (2.2)

Where E represents the component of the electric field normal to the surface.

Figure 2.3 a small element of surface area AA;. The electric field $9 il
makes an angle Bwith the vector AA;, defined as being normal to
the surface element, and the flux

through the element is equal to EiAA; cos

EXAMPLE 2:-Consider a uniform electric field E oriented in the x direction.Find
the net electric flux through the surface of a cubeof edgesL, oriented as shown in
Figure 2.4.

Solution :The net flux is the sum of the fluxes through allfaces of the cube. First,
note that the flux through four of the faces (3),(4), and the unnumbered ones) is
zero because E is perpendicular to dAon these faces.
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Figure 2.4A closed surface inthe shape of a cube in a uniform electric field oriented parallel to the x
axis.

The net flux through faces 1and2 is
Ok = [1E.dA+[EdA

For face(1),E is constant and directed inward but dA; is directed
Outward(6=180); thus, the flux through this face is

J1E.dA=[1 E.(cos180)dA=-E[dA=-EA=-EL?
Because L2 the area of each face isA=L?

For face(2) ,E is constant and outward and in the same direction
asdA2(6=0); hence, the flux through this face is

J2E.dA=[>E.(cos0)dA=-E[, dA=+EA=EL?

Therefore, the net flux over all six faces is
®¢ =-EL%+EL%+0 +0 + 0 +0=0

GAUSS’S LAW
Consider a positive point charge g located at the center of a sphere of radius r, as
shown in Figure 2.5. From Equation (E= ke|q| /r ?) we know that themagnitude of
the electric field everywhere on the surface of the sphere
As noted in Example 2.1, the field lines are directed radially outward and hence
perpendicular to the surface at every point on the surface. That is, at
each surface point, E is parallel to the vector AAirepresenting a local element of
area AAisurrounding the surface point. Therefore,
Ei.AAi =EiAA;

and from Equation 2.2 we find that the net flux through the gaussian surface is

¢ = [E.dA =[EJA=E[dA




Gaussian

,,\ &+ surface

-
Figure 2.5A spherical Gaussian surface of radius r surrounding %

apoint charge g. When the charge is \+ ___1_—}? s ;
at the center of the sphere, theelectric field is everywhere q E
normalto the surface and constant in magnitude

where we have moved E outside of the integral because, by symmetry, E is
constant over the surface and given by E= keq/r 2.Furthermore, because the
surface is spherical, Hence, the net flux through the gaussian surface is

ke q (41r?)

72

E =4 1t keq=% —(because ke=1/41€0)

We can verify that this expression for the net flux gives the same result as
Example 1:

Home work:
Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from
its center. What is the total flux through the sphere?

Notes:-
1- the net flux through any closed surface is
Qe = [E.dA== % (Gauss’s law )

2-the net electric flux through a closed surface thatsurrounds no charge is zero.
3-the electric field due to many charges is the vector sum of the electric fields
produced by the individual charges

JE.dA =[(E1+Ex+......... ).dA
5-Gauss’s law is useful for evaluating E when the charge distribution has high
symmetry
6-The net electric fluxthrough any closed surface depends
only on the charge insidethat surface(see figure 2.6).



Figure 2.6The net flux throughsurface S is q./ €0 , Ry
the net fluxthrough surface S‘isqi+q,/ €0 and the net flux
through surfaceS\is zero. 4 @ 2

q1

gy S’

X
Home work:
For a gaussian surface through which the net flux is zero, the following four
statements could be true. Which of the statements must be true? (a) There are
no charges inside the surface. (b) The net charge inside the surface is zero. (c)
The electric field is zero everywhere on the surface. (d) The number of electric
field lines entering the surface equals the numberleaving the surface

EXAMPLE 2.3 :A spherical gaussian surface surrounds a point charge q.
Describewhat happens to the total flux through the surface if(a) the charge is
tripled, (b) the radius of the sphere is doubled,(c) the surface is changed to a
cube, and (d) the chargeis moved to another location inside the surface.
Solution (a)The flux through the surface is tripledbecause flux is proportional to
the amount of charge insidethe surface.

(b) The flux does not change because all electric field lines from the charge pass
through the sphere, regardless ofits radius.

(c) The flux does not change when the shape of the Gaussian surface changes
because all electric field lines from thecharge pass through the surface, regardless
of its shape.

(d) The flux does not change when the charge is moved

to another location inside that surface because Gauss’s law

refers to the total charge enclosed, regardless of where the

charge is located inside the surface.

EXAMPLE 2.4:- Starting with Gauss’s law, calculate the electric field due to
anisolated point charge q.




Solution :We choose aspherical gaussian surface of radius r centered on the
pointcharge, as shown in Figure 2.7 .The electric field due to apositive point
charge is directed radially outward by symmetryand is therefore normal to the
surface at every point(E is parallel to dAat each point). Therefore,E.dA= EAand
Gauss’s law gives

O = fE.dA =IEdA= %

_Gaussian
& surface
Figure 2.7The point charge g is at the center of the \.r
sphericalgaussian surface, and E is parallel to dAat every
point on thesurface. . W {:_!:?_(!A
l’j’ E

By symmetry, E is constant everywhere on the surface, so it can be removed from
the integral.Therefore,

[EA =E[dA=E(4mt r 2)=%

4
(41mtr?) €0

E=keq/r 2

This is the familiar electric field due to a point charge that wedeveloped from
Coulomb’s law in Chapter 1.

EXAMPLE 2.5:-An insulating solid sphere of radius a has a uniform volume
charge density p and carries a total positive charge Q (Fig. 2.8).
(a) Calculate the magnitude of the electric field at a point outside the sphere.

Solution :Because the charge distribution is spherically symmetric, we again select
a spherical gaussian surface of radius r, concentric with the sphere, as shown in
Figure 2.7a.for the point charge in Example 2.4. we find that

E=keQ/r 2e(for r>a)

Note that this result is identical to the one we obtained for apoint charge.
Therefore, we conclude that, for a uniformly charged sphere, the field in the

7



region external to the sphereis equivalent to that of a point charge located at the
center ofthe sphere.

(b) Find the magnitude of the electric field at a point inside the sphere.
Solution: In this case we select a spherical gaussian surface having radius (r <a),
concentric with the insulated sphere(Fig. 2.8b). Let us denote the volume of this
smaller sphere by V\. To apply Gauss’s law in this situation, it is importantto
recognize that the charge gin within the Gaussian surface of volume W\is less than
Q. To calculate gin, we usethe fact thatgin=pV'

qn=p V'=p (G r?)
By symmetry, the magnitude of the electric field is constant everywhere on the
spherical gaussian surface and is normalto the surface at each point. Therefore,
Gauss’s law in the region r <a gives

e[ As AL
JEdA =E[dA=E(4rt r ?) 0

Solving for E gives
4
qin p (51'[7"3) _pr

E_ =
ATTTr2€0 4nr2€0 3€0

Because p=Q/ (gna3)by definition and since ke=1/41€0, this expression for E can
be written as

k
or __ Qr9(forr<a)

“4ma3€0 a3
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Ganssian
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(a) P (b)

Figure 2.8A uniformly charged insulating sphere of radius aand total charge Q. (a) The
magnitude of the electric field at a pointexterior to the sphere is keQ/r ? (b) The magnitude of
the electricfield inside the insulating sphere is due only to the charge within thegaussian sphere
is keQr/a3.

EXAMPLE 2.6:- A thin spherical shell of radius a has a total charge Q
distributed uniformly over its surface (Fig. 2.9). Find the electric field at points
(a) outside and (b) inside the shell.

Solution:(a) The calculation for the field outside the shellis identical to

that for the solid sphere shown in Example2.5a. Therefore,

E=keQ/r 2e(for r>a)

(b) The electric field inside the spherical shell is zero.Because of the spherical
symmetry of the charge distribution and because the net charge inside the
surface is zero.

Shows that E =0 in the region r <a. We obtain the same results using Equation (E=
kefdqg/r?) from chapter one and integrating over the charge distribution( Gauss’s
law allows us to determine these results in a much simpler way).



Gaussian Gaussian
surface surface

7N

|
[+
0 |

Nt

(a) (b) ()

Figure 2.9(a) The electric field inside a uniformly charged spherical shell is zero. The
fieldoutside is the same as that due to a point charge Q located at the center of the shell. (b)
Gaussiansurface for r >a. (c) Gaussian surface for r <a.

EXAMPLE 2.7:- Find the electric field a distance r from a line of positive charge
of infinite length and constant charge per unit lengthA(Fig. 2.10).

Solution :we select a cylindrical gaussian surface of radius r and length Lthat is
coaxialwith the line charge. For the curved part of this surface, E is
constant in magnitude and perpendicular to the surface at each point.
Furthermore,the flux through the ends of the gaussian cylinder is
zero because E is parallel to these surfaces.
The total charge inside our gaussian surface is AL. ApplyingGauss’s law we find
that forthe curved surface
AL
@; = E.dA ~EJdA-EA-q/€0 = 2

The area of the curved surface A=2 nrL; is therefore,

A A

o 2 €0r r

Thus, we see that the electric field due to a cylindrically symmetriccharge
distribution varies as 1/r, whereas the field externalto a spherically symmetric
charge distribution varies as1/r 2.

10
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Figure 2.10An infinite line of charge surrounded by a cylindricalgaussian surface concentric
with the line.

EXAMPLE 2.8:- Find the electric field due to a nonconducting, infinite plane of
positive charge with uniform surface charge density o.

Solution :By symmetry, E must be perpendicular to theplane and must have the
same magnitude at all pointsequidistant from the plane. The fact that the
direction of E isaway from positive charges indicates that the direction of Eon one
side of the plane must be opposite its direction on the

other side, as shown in Figure 2.11. The flux through each end of the cylinder is
EA;hence, the total flux through the entire gaussian surface isjust that through
the ends,Dg=2EA.

Noting that the total charge inside the surface is gin=0A,we use Gauss’s law and
find that

®p=2EA=q;,/€0=0A /€0

E=0/2€0 —>(*)

Because the distance from each flat end of the cylinder tothe plane does not
appear in Equation (*), we conclude thatE=c / 2€0 at any distance from the
plane. That is, the field isuniform everywhere

11
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Figure 2.11 A cylindrical gaussian surface penetrating an infiniteplane of charge. The flux is EA
through each end of the gaussiansurface and zero through its curved surface.

EXAMPLE 2.9:-Explain why Gauss’s law cannot be used to calculate the electric
field near an electric dipole,a charged disk, or a triangle with a point charge at
each corner.

Solution The charge distributions of all these configurations do not have
sufficient symmetry to make the use of Gauss’s law practical. We cannot find a
closed surface surroundingany of these distributions.

CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM

When there is no net motion of charge within a conductor, the conductor

is in electrostatic equilibrium. As we shall see, a conductor in electrostatic
equilibrium has the following properties:

1. The electric field is zero everywhere inside the conductor.

2. If an isolated conductor carries a charge, the charge resides on its surface.
3. The electric field just outside a charged conductor is perpendicular to the

surfaceof the conductor and has a magnitude o /€0, whereais the surface

chargedensity at that point(®g = IE.dAZEAZqin/€O=0A /€0where we have used
the fact that gin=0A. Solving for E gives E=c /€0).

4. On an irregularly shaped conductor, the surface charge density is greatest at
locationswhere the radius of curvature of the surface is smallest.

EXAMPLE 2.10:-A solid conducting sphere of radius a carries a net
positivecharge 2Q. A conducting spherical shell of inner radius band outer radius

12



cis concentric with the solid sphere and carriesa net charge -Q. Using Gauss’s law,
find the electricfield in the regions labeled (1),(2),(3) and(4) in Figure 2.12and the
charge distribution on the shell when the entire systemis in electrostatic
equilibrium.

Solution : To determine the electricfield at various distances r from this center,
we construct aspherical gaussian surface for each of the four regions of interest.

To find E inside the solid sphere (region (1)), consider a gaussian surface of radius
r <a. Because there can be nocharge inside a conductor in electrostatic
equilibrium, we seethat gin=0; thus, on the basis of Gauss’s law and symmetry
E1=0,forr<a.

In region (2)between the surface of the solid sphere andthe inner surface of the
shell—we construct a sphericalgaussian surface of radius r where

a <r <b and note that thecharge inside this surface is +2Q. Because of the
spherical symmetry, the electric field lines must be directed radially outward and
be constant inmagnitude on the gaussian surface. Following Example 2.4and using
Gauss’s law, we find that:

E2A=E2(4nr?)=qi/€0=2Q/€0 (fora <r <b)

(In region(4), where r >c, the spherical gaussian surfacewe construct surrounds a
total charge ofqi,=2Q+(-Q)=Q. Therefore, application of Gauss’s law tothis
surface gives

Es=kQ/r?* (for r>c)

In region (3), the electric field must be zero because thespherical shell is also a
conductor in equilibrium. If we constructa gaussian surface of radius r where b<r
<c, we seethat gin must be zero because E3z=0 From this argument, weconclude
that the charge on the inner surface of the sphericalshell must be -2Q to cancel
the charge +2Q on the solid

sphere. Because the net charge on the shell is -Q, we concludethat its outer
surface must carry a charge+Q.

13



Figure 2.12A solid conducting sphere of radius a and carrying acharge 2Q surrounded by a
conducting spherical shell carrying acharge -Q.

SUMMARY

Electric flux is proportional to the number of electric field lines that penetrate a
surface. If the electric field is uniform and makes an angle Owith the normal to a
surface of area A, the electric flux through the surface is

14



®e=EAcos6(1)
In general, the electric flux through a surface is
®c=[E.dA (2)
You need to be able to apply Equations 1 and 2 in a variety of situations, particularlythose in
which symmetry simplifies the calculation.
Gauss’s law says that the net electric flux @ethrough any closed gaussian surfaceis equal to

the net charge inside the surface divided by €0:
@ = [E.dA =qu/€0

Using Gauss’s law, you can calculate the electric field due to various symmetric
charge distributions. Table 24.1 lists some typical results.

TABLE 24.1 Typical Electric Field Calculations Using Gauss's Law

Charge Distribution Eleciric Field Location
Insulating sphere of radius - E._
R, uniform charge density, k,—s r> R
2
and total charge () .
}
k,.i..\ r r< R
. K
Thin 5]:ahuric;11 shell of radius 0
Rand total charge k,— r> R
L) ]"_
. 0 r<- R
Line charge of infinite length A Otside the
. . - op = -
and charge per unit length A 2l line
: r
Nonconducting, infinite T Everywhere
harged plane having g ide
ch 1%Ld plane h 1111‘1_5 %, outside
surface charge density o the plane
Conductor having surface T Just outside
charge density o :] the conductor
Inside the
0 conductor
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CHAPTE R THREE (Electric Potential)

POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL

The potential energy of the charge—field system is decreased by an amount

(dU = -qoE.ds). For a finite displacement of the charge from a point A to a point B,
the change in potential energy of the system AU =Us - Uais

B
AU = —EI{}J. E-ds
A

(3.1)
Because the force qoE is conservative, this line integral does not depend on the
path taken from A to B.

The potential energy per unit charge U/qo is independent of the value of qo
and has a unique value at every point in an electric field. This quantity U/qois
called the electric potential (or simply the potential) V. Thus, the electric potential
at any point in an electric field is

V=U/q0 (3.2)

The potential difference AV = Vi -Va between any two points A and B in an electric
field is defined as the change in potential energy of the system divided by the test

charge qo:
AU B
i‘.l-”z—:—j E-ds

qo A (3.3)
the potential difference is proportional to the change in potential energy, and we
see from Equation 3.3
AU =qoAV

-Electric potential is a scalar characteristic of an electric field, independent of
the charges that may be placed in the field.

-The electric potential at an arbitrary point in an electric field equals the work
required per unit charge to bring a positive test charge from infinity to that
point.



Thus, if we take point A in Equation 3.3 to be at infinity, the electric potential at
any point Pis
Vp = 'I E. dS (3.4)

In reality, Vp represents the potential difference AV between the point P and a
point at infinity. Because electric potential is a measure of potential energy per
unit charge, the Sl unit of both electric potential and potential difference is joules
per coulomb, which is defined as a volt (V):
That is, 1 J of work must be done to move a 1-C charge through a potential
difference of 1 V.

J

1v=1-~=
C

Equation 3.3 shows that potential difference also has units of electric field
times distance. From this, it follows that the Sl unit of electric field (N/C) can also

be expressed in volts per meter:
N V

—=1—

C m
Because 1V =1J/C and because the fundamental charge is approximately1.6 x10°
19 C the electron volt is related to the joule as follows:

1eV=1.60x10"° C.v =1.60 x10™"°J

POTENTIAL DIFFERENCES IN A UNIFORM ELECTRIC FIELD

Consider a uniform electric field directed along the negative y axis, as shown in
Figure 3.1. Let us calculate the potential difference between two points A and B
separated by a distance d, where d is measured parallel to the field lines.
Equation 3.3 gives

B B B
Vp— Vy=AV= —j E'dSZ—J Emsﬂ“ds:—j E ds
A A A

Because E is constant, we can remove it from the integral sign; this gives



b
;U-”Z—Ej ds = — Ed
A 9(3 6) (Potential difference in a uniform electric field)

The minus sign indicates that point B is at a lower electric potential than point A;
that is Vs < Va.

Electric field lines always point in the direction of decreasing electric potential,
as shown in Figure 3.1a.

Now suppose that a test charge go moves from A to B. We can calculate the
change in its potential energy from Equations 3.3 and 3.6:

AU =qoAV=-qoEd ->(3.7)

q

B(O—

Figure 3.1 When the electric field E is directed downward, point B is at a lower electric potential than
point A. Apositive test charge that moves from point A to point B loses electric potential energy.

Note

1- A positive charge loses electric potential energy when it moves in the
direction of the electric field



2- As the charged particle gains kinetic energy, it loses an equal amount of
potential energy.

3- A negative charge gains electric potential energy when it moves in the
direction of the electric field

4- The name equipotential surface is given to any surface consisting of a
continuous distribution of points having the same electric potential.
EXAMPLE 3.1:- A 12-V battery is connected between two parallel plates, as
shown in Figure 3.2. The separation between the plates is d = 0.30 cm, and we
assume the electric field between the plates to be uniform. Find the magnitude of
the electric field between the plates.

Solution: The magnitude of the electric field between the plates is, from Equation
3.6,

_lvB-vA| _ 12V
d 0.3x1072

E = 4.0x10% V/m

This configuration, which is shown in Figure 3.2 and called a parallel-plate
capacitor.

Figure 3.2 A 12-V battery connected to two parallel plates. The
electric field between the plates has a magnitude given by the
potential difference AV divided by the plate separation d.

EXAMPLE 3.2:- A proton is released from rest in a uniform electric field that has
a magnitude of 8.0 X10* V/m and is directed along the positive x axis (Fig. 3.3).
The proton undergoes a displacement of 0.50 m in the direction of E. (a) Find the
change in electric potential between points A and B.

Solution Because the proton (which, as you remember, carries a positive charge)
moves in the direction of the field, we expect it to move to a position of lower
electric potential. From Equation 3.6, we have




AV =-Ed =-(8.0 x10* V/m)(0.50 m)
=-4x10%V

(b) Find the change in potential energy of the proton for this displacement.
Solution:-
AU = qoAV =eAV
=(1.6x10729C)(- 4X10%V)
=-6.4X101°)

The negative sign means the potential energy of the proton decreases as it moves
in the direction of the electric field.

Figure 3.3 A proton accelerates from A to Bin the
direction of the electric field. + =

ELECTRIC POTENTIAL AND POTENTIAL ENERGY DUE TO POINT CHARGES
Consider an isolated positive point charge q. To find the electric potential at a
point located a distance r from the charge

Vg-Vua= -f E.ds
where A and B are the two arbitrary points .At any field point, the electric field
due to the point charge is E = ke qr”/r* where r” is a unit vector directed from the
charge toward the field point. The quantity E.ds can be expressed as



E.ds =ke % r*.ds
r

Because the magnitude of r” is 1, the dot product r".ds=ds cos® where 0 s the
angle between r” and ds. thus, ds cosB =dr. That is, any displacement ds along the
path from point A to point B produces a change dr in the magnitude of r. Making
these substitutions, we find that hence, the expression for the potential
difference becomes

B A | Fr eq B 2 r .,
) ) 1 1
B Va= kg~
B A ->(3.10)

The integral of E.ds is independent of the path between points A and B—as it
must be because the electric field of a point charge is conservative.

-The electric potential created by a point charge at any distance r from the charge
is

V=keg/r =>(3.11)
For a group of point charges, we can write the total electric potential at P in the
form ( Electric potential due to several point charges)

V=k, Zi
: 1 ->(3.12)

where the potential is again taken to be zero at infinity and r; is the distance from
the point P to the charge qg; .

we can express the potential energy or Electric potential energy due to two
charges as

U=k

[

q192

BT

the total potential energy of the system of three charges shown in Figure 3.4 is
Q192 9193 | 9293

T2 "3 s / >(3.13)

U=k,
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Figure 3.4Three point charges are fixed at the positions shown. The potential energy of this
system of charges is given by Equation 3.13.

EXAMPLE 3.3:-A charge q1=2.00 uC is located at the origin, and a charge q2=-
6.00 Cis located at (0, 3.00) m, as shown in Figure 3.5a. (a) Find the total electric
potential due to these charges at the point P, whose coordinates are (4.00, 0) m.

Solution For two charges, the sum in Equation 3.12 gives

Ly 9 |
- kf(i + 22
n

o J

. P —6 - —F
— 899 X 1090 m ( 2.00 X 107°C , —6.00 X 107°C
C* A 4.00 m 5.00 m

= —6.29 X 10V

(b) Find the change in potential energy of a 3.00uC charge as it moves from
infinity to point P (Fig. 3.6b).

Solution When the charge is at infinity,Ui=0, and when the charge is at P, Ur=q3V;
therefore,

AU= gsVp— 0= (3.00 X 1075C)(—6.29 x 10%V)

= —189 X 107%]



—6.00uC| —6.00 uC
@ Q
3.00 m 3.00 m

}'J
Y x — X

( : 4.00 ; ) 4.00

2.00uC = 2.00uC m 3.00 uC

(a) (b)

Figure 3.5 (a) The electric potential at P due to the two charges is the algebraic sum of the potentials
due to the individual charges. (b) What is the potential energy of the three-charge system?

OBTAINING THE VALUE OF THE ELECTRIC FIELD FROM THE ELECTRIC POTENTIAL
From Equation 3.3 we can express the potential difference dV between two
points a distance ds apart as

dvV= —E-ds
~>(3.14)

If the electric field has only one component Ex, then E. ds = Ex dx
Therefore, Equation 3.14 becomes dV= - Ex dx or

dVv
E, = ——

x _ dx
__(3.15)

If the charge distribution creating an electric field has spherical symmetry

such that the volume charge density depends only on the radial distance r, then
the electric field is radial. In this case, E. ds = E; dr ,and thus we can express dV in
the form dV=- E; dr ,Therefore,



__[(3.16)

(Note:- equipotential surfaces are perpendicular to field lines)

When a test charge undergoes a displacement ds along an equipotential
surface, then dv=0 because the potential is constant along an equipotential
surface. From Equation 3.14, then, dV=- E. ds ; thus, E must be perpendicular
to the displacement along the equipotential surface . This shows that the
equipotential surfaces must always be perpendicular to the electric field lines.

In general, the electric potential is a function of all three spatial coordinates. If
V(r) is given in terms of the cartesian coordinates, the electric field components Ex
, E,, and E; can readily be found from V(x, y, z) as the partial derivatives

dV . aV . av
E.=— Ty = — E,=—

ax ! ay : Az

For example, if V= 3x%y + y* + yz, then

H 1'.' [:j 9 ] '::j ) . d 2
—— = —— (3x%y + ¥ + yz) = — (3x%y) = 3y—— (x°) = bxy
ax ox dx dx

EXAMPLE 3.4:- An electric dipole consists of two charges of equal magnitude
and opposite sign separated by a distance 2a, as shown in Figure 3.6. The dipole is

along the x axis and is centered at the origin. (a) Calculate the electric potential at
point P.

Solution:- For point P in Figure 3.7

PP X B B J ¥
J.

xX— a X+ ) 2 2

L
X- —d

(b) Calculate V and Ex at a point far from the dipole.
Solution If point P is far from the dipole, such that x>>a then a? can be neglected
in the term x?- a2 and V becomes



2k, qa

V~ =%

(x == a)
X

Using Equation 3.15 and this result, we can calculate the electric field at a point
far from the dipole:

dV 4k, qa

b m T T8 (x> a)

(c) Calculate V and Ex if point P is located anywhere between the two charges.
Solution:-

. qi ( q q \_ 2k
V=Fk L =F — = ——
42:}- ‘Na— x x+—::..) x2 — a®
P dV. d ( 2k, qx ] _ op ( — x> — a® "
o dx dx \ x*2—a%/) °~ & (x* — a®)?

[ [
e —
}'J

i {
o I =
—if q

Figure 3.6 An electric dipole located on the x axis

ELECTRIC POTENTIAL DUE TO CONTINUOUS CHARGE
DISTRIBUTIONS
The electric potential dV at some point P due to the charge element dgq is

d
av=k,—L
r

where ris the distance from the charge element to point P. in general, a
different distance from point P and because ke is constant, we can express V as
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V="k, | — dq

charge distribution can be calculated by dividing the charged body
into segments of charge dg and summing the electric potential
contributions over all segments.

Figure 3.7 The electric potential at the point P due to a continuous /

EXxaMmPLE 3.5:- () Find an expression for the electric potential at a point P located
on the perpendicular central axis of a uniformly charged ring of radius a and total
charge Q.

Solution Let us orient the ring so that its plane is perpendicular

to an x axis and its center is at the origin. We can then take point Pto be at a
distance x from the center of the ring, as shown in Figure 3.8. The charge element
dg is at a distance Vx2 + «2 from point P. Hence, we can express V as:

1..r=,{r[ﬁ=k{:[L

[ @ P
J T J x4+ ac

Because each element dgq is at the same distance from point P, we can remove
Vx? + &2 from the integral, and V reduces to

k. k.0
ot [m},: _kQ
Vx- + a- VxZ + a?

(3.17)
The only variable in this expression for Vis x. This is not surprising because our
calculation is valid only for points along the x axis, where y and z are both zero.
(b) Find an expression for the magnitude of the electric field at point P.

Solution From symmetry, we see that along the x axis E can have only an x
component. Therefore, we can use Equation 3.15:
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Jr]h" 111 r C ey
E, = _av —k{:f); (x2 + a2)"1/2
’ el ~ dx

= —kQ(—3) (x* + a®)7%(2x)

k.Ox
(x2 + a2)3/2

'P\
| R
f ~ )
/ S~ Va2 +a?
Figure 3.8 A uniformly charged ring of radius a lies in a plane al \\
perpendicular to the x axis. All segments dqg of the ring are the I." "~
same distance from any point P lying on the x axis B N

EXAMPLE 3.6:- Find (a) the electric potential and (b) the magnitude of the
electric field along the perpendicular central axis of a uniformly charged disk of
radius a and surface charge density o.

Solution (a) Again, we choose the point P to be at a distance x from the center of
the disk and take the plane of the disk to be perpendicular to the x axis. We can
simplify the problem by dividing the disk into a series of charged rings. The
electric potential of each ring is given by Equation 3.17. Consider one such ring of
radius r and width dr, .The surface area of the ring is dA =2nr dr ;and
dg=cdA=02nr dr

the potential at the point P due to this ring is

] k, dg k,o2mrdr
d’l = ™o o = 1':1‘—“_J
\rs + x° \re + x*

12



To find the total electric potential at P, we sum over all rings making up the disk.
That is, we integrate dVfromr=0tor=a

@ Qrdr i

- ] T 9 Fe

V=mkh,o0| —]—— — = wk,o| (r- + .r3] L2 9y dr
Joo yr? + 7 Jo

This integral is of the form u” du and has the value u™?/(n+1), where n=-1/2 and
u=r2+x? .This gives

V= 2mk,o[(x* + a®)V/? — x]

(b) As in Example 3.5, we can find the electric field at any axial point from

] dVv X
E,=——= 27k,o|l1 —

] ]
dx Va2 + a2

23
i h-H_:\' e+ x°
T H-H'H._H
—1 -H"-‘:
X

S\

A dA = 2mrdr
dr

Figure 3.9 A uniformly charged disk of radius a lies in a plane perpendicular to the x axis. The

calculation of the electric potential at any point P on the x axis is simplified by dividing the disk into
many rings each of area 2nr dr.

EXAMPLE 3.7:- A rod of length L located along the x axis has a total charge Q

and a uniform linear charge density A= Q/L . Find the electric potential at a point P
located on the y axis a distance a from the origin
(Fig. 3.10).

13



Solution The length element dx has a charge dqg = A dx. Because this element is a

distance r =Vx?2 + a? from point P, we can express the potential at point P due to
this element

i Ad
av=k~L=p——2
r Vx? + a?

To obtain the total potential at P, we integrate this expression over the limits x =0
to x=L . Noting that k. and A are constants, we find that

{
V="Fk,A [
J0

This integral has the following value

[ dx

dx — p Q r dx
Va2 + a2 “€ o a2+ a2

= In(x + "'\ilxz + az}

o3

Joalx? + 42

Evaluating V, we find that

¢ o [
s kQ (f + V2 + a2 y
f= n '
{ a
Fe
A
Y
5
N
Y
\x
Figure 3.10 A uniform line charge of length located along the x a “‘:'
axis. To calculate the electric potential at P, the line charge is “,\
divided into segments each of length dx and each carrying a N, dq
charge . l
dqg =\ dx. k!
0
x 4>| rf.*.'|—1—‘
- ¢ i

EXAMPLE 3.7:- An insulating solid sphere of radius R has a uniform positive
volume charge density and total charge Q. (a) Find the electric

potential at a point outside the sphere, that is, for r >R.Take the potential to be
zero at r =oo

14



Solution:- In Example 2.5, we found that the magnitude of the electric field
outside a uniformly charged sphere of radius R is

)
E, =k, !E; (forr= R)

where the field is directed radially outward when Q is positive. In this case, to
obtain the electric potential at an exterior point, such as B in Figure 3.11, we use
Equation 3.4 and the expression for E; given above:

r r 111
V= — [ E, dr = —m[ -
Joo J=o T™
)
Vg = ;,:F—{f (for r > R)

7

Because the potential must be continuous at r = R, we can use this expression to
obtain the potential at the surface of the sphere. That is, the potential at a point
such as C shown in Figure 3.12 is

0 .
Ve=k,— forr= R
c= ke ( )
Figure 25.11A uniformly charged insulating sphere of radius A

R and total charge Q. The electric potentials at points B and
C are equivalent to those produced by a point charge Q
located at the center of the sphere

ELECTRIC POTENTIAL DUE TO A CHARGED CONDUCTOR

15



every point on the surface of a charged conductor in equilibrium is at the same
electric potential. Consider two points A and B on the surface of a charged
conductor, as shown in Figure 3.12. Along a surface path

connecting these points, E is always perpendicular to the displacement ds;
therefore Using this result and Equation 3.3, we conclude that the potential
difference between A and B is necessarily zero:

B
Vg— Vy = —L E-ds =0

This result applies to any two points on the surface. Therefore, V is constant
everywhere on the surface of a charged conductor in equilibrium.

Figure 3.12 An arbitrarily shaped conductor

carrying a positive charge. i i
+ % %
+ A
+
i +
p 8
g =
= 4=
4 -
= e N
5 .
7. ¥
i o
s > .';‘1
o = A o F
Note:-

1-The surface of any charged conductor in electrostatic equilibrium is an
equipotential surface. Furthermore, because the electric field is zero inside the
conductor, we conclude from the relationship that the electric potential is
constant everywhere inside the conductor and equal to its value at the surface.
2-the electric field is large near convex points having small radii of

curvature and reaches very high values at sharp points.

16



SUMMARY
When a positive test charge qo is moved between points A and B in an electric
field E, the change in the potential energy is

B
JL = _Q{}J E - ds
A

The electric potential V=U/ qo is a scalar quantity and has units of joules per
coulomb (J/C), where 1J/C=1V.
The potential difference AV between points A and B in an electric field E is

defined as
AU B
AV=—= —j E - ds|
do A

The potential difference between two points A and B in a uniform electric
field Eis

AV= —Fd

where d is the magnitude of the displacement in the direction parallel to E.
An equipotential surface is one on which all points are at the same electric
potential. Equipotential surfaces are perpendicular to electric field lines.
If we define V=0 at ra=o< the electric potential due to a point charge at
any distance r from the charge is

17



=1L
r
We can obtain the electric potential associated with a group of point charges by
summing the potentials due to the individual charges.
The potential energy associated with a pair of point charges separated by

a distanceris

{.'T: ;I{F I'T] q?

T2
This energy represents the work required to bring the charges from an infinite

separation to the separation r1, . We obtain the potential energy of a distribution
of point charges by summing terms like Equation 3.12 over all pairs of particles.

TABLE 25.1 Electric Potential Due to Various Charge Distributions

Charge Distribution Electric Potential Location
Uniformly charged V= k Q Along perpendicular central
ring of radius a e Va2 + 42 axis of ring, distance x

from ring center
Uniformly charged V=2mk,al(x* + a®)"/? — x] Along perpendicular central
disk of radius a axis of disk, distance x
from disk center
Uniformly charged, [ ] Q
insulating solid V= ka r=R
sphere of radius R kO [ 72 )
and total charge Q V= oR ( T RZ ) r< R
Isolated conducting [ _ Q -
sphere of radius R V= €y r=R
and total charge Q ) Q
V= ’%7 r=R

If we know the electric potential as a function of coordinates x, y, z, we can obtain
the components of the electric field by taking the negative derivative of the

electric potential with respect to the coordinates. For example, the x component
of the electric field is

dv
E,=—
' dx

18



The electric potential due to a continuous charge distribution is

d
ver | 4
;

Every point on the surface of a charged conductor in electrostatic equilibrium is at
the same electric potential. The potential is constant everywhere inside the
conductor and equal to its value at the surface.
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CHAPTERFOUR (CAPACITANCE AND DIELECTRICS)

DEFINITION OF CAPACITANCE

*Consider two conductor’s carrying charges of equal magnitude but of opposite
sign. Such a combination of two conductors is called a capacitor. The conductors
are called plates.

*The capacitance C of a capacitor is the ratio of the magnitude of the charge on
either conductor to the magnitude of the potential difference between them:

__Q

AV
Note that by definition capacitance is always a positive quantity

*we see that capacitance has Sl units of coulombs per volt.The Sl unit of

capacitance is the farad (F), which was named in honor of MichaelFaraday:
1F=1C/V

The farad is a very large unit of capacitance. In practice, typical devices have

capacitances ranging from microfarads (10° F) to picofarads (102 F).

CALCULATING CAPACITANCE

*We can calculate the capacitance of a pair of oppositely charged conductors, We
assume a charge of magnitude Q, and we calculate the potential difference, We
then use the expression C=Q/AVto evaluate the capacitance

*We can calculate the capacitance of an isolated spherical conductor of radiusR
and charge Q if we assume that the second conductor making up the capacitor isa
concentric hollow sphere of infinite radius. The electric potential of the sphereof
radius R is simply keQ/R, and setting V=0 at infinity as usual, we have

R
c=X2 __8 _ = 47€yR
AV  kQ/R kK,

This expression shows that the capacitance of an isolated charged sphere is
proportional to its radius and is independent of both the charge on the sphere
and the potential difference.



*The capacitance of a pair of conductors depends on the geometry of the
conductors. Let us illustrate this with three familiar geometries, namely, parallel
plates, concentric cylinders, and concentric spheres. In these examples, we
assume that the charged conductors are separated by a vacuum.

Parallel-Plate Capacitors
The value of the electric field between the plates is

E:n‘_ Q

€ EDA

Because the field between the plates is uniform, the magnitude of the potential
difference between the plates equals Ed; therefore,

d
AV=FEd= Q
ngl

Therefore the capacitance is

L Q0
AV Qd/e)A
C= EﬂA
d

> (4.1)

The capacitance of a parallel-plate capacitor is proportional to the area of its
plates and inversely proportional to the plate separation

EXAMPLE 4.1:-A parallel-plate capacitor has an area A =2.00 X10™® m?and a
plate separation d=1.00 mm. Find its capacitance.

Solution from Equation 4.1, we find that

A - o (2.00 X 10" m*’
C=e = = (8.85 x 10712 (:EJN-mJ}( - —
d 100 X 10 °m ,




= 1.77 x 107" F = 1.77 pF

Exercise What is the capacitance for a plate separation of 3.00 mm?

EXAMPLE 4.2:- A solid cylindrical conductor of radius a and charge Q is
Coaxial with a cylindrical shell of negligible thickness, radius b>a and charge -Q
(Fig. 4.1a). Find the capacitance of this cylindrical capacitor if its length is L.

Solution:- If we assume that Lis much greater than a and b, we can

Neglect end effects. In this case, the electric field is perpendicular to the long axis
of the cylinders and is confined to the region between them (Fig. 4.1b). We must
first calculate the potential difference between the two cylinders, which is given
in general by

b
Vi— V,=— [ E-ds

o il

where E is the electric field in the region a <r< b In Chapter2, we showed using
Gauss’s law that the magnitude of theelectric field of a cylindrical charge
distribution having linearcharge densityA is E.=2ke\/r.

) b _ b dr b
Vi— Vo= —| E;dr=—-2kA | — = —2kAIn|—

Ja Ja 7 L0

using the factthat we obtainA=Q\L

o Q Q ¢
AV 9r0 ( b ( b
In 2k, In —)
¢ . a, a,

we see that the capacitance per unit length ofa combination of concentric
cylindrical conductors is



\_ / Gaussian

— . surface

Figure 4.1(a) A cylindrical capacitor consists of a solid cylindricalconductor of radius a and length
Lsurrounded by a coaxial cylindricalshell of radius b. (b) End view. The dashed line represents theend of
the cylindrical Gaussian surface of radius r and length L.

EXAMPLE 4.3:-A spherical capacitor consists of a spherical conducting shell of
radius b and charge-Q concentric with a smaller conducting
Sphere of radius a and charge Q (Fig. 4.2). Find the capacitance of this device.

Solution As we showed in Chapter 2, the field outside a spherically symmetric
charge distribution is given by the expressionk.Q/r 2. In this case, this result
applies to the field between the spheres (a <r <b). From Gauss’s law we see that
only the inner sphere contributes to this field. Thus, the potential difference
between the spheres is



b b [
d |
i a T r

nal3- |

The magnitude of the potential difference 1s

. ) (b— a)
AV=|V, = V,| = ke Q———

Substituting this value for AV into Equation 4.1, we obtain

C= Q_ _ ab
T AV k(b — a)

Figure 4.2A spherical capacitor consists of an inner sphere of
radiusa surrounded by a concentric spherical shell of radius b.
Theelectric field between the spheres is directed radially outward
whenthe inner sphere is positively charged.

COMBINATIONS OF CAPACITORS:

-Parallel Combination

Two capacitors connected as shown in Figure 4.3a are known as a parallel
combination of capacitors. The individual potential differences across capacitors
connected in parallel are all the same and are equal to the potential difference
applied across the combination.




(b) (c)

Figure 4.3(a) A parallel combination of two capacitors in an electric circuit in which the
potentialdifference across the battery terminals is AV. (b) The circuit diagram for the parallel
combination.(c) The equivalent capacitance is Ceq=C1+C: .

The total charge Q stored by the two capacitors is:
Q=T Qg
That is, the total charge on capacitors connected in parallel is the sum of the

charges on the individual capacitors. Because the voltages across the capacitors
are the same, the charges that they carry are

0,= C AV Qo= Co AV
Suppose that we wish to replace these two capacitors by one equivalent
capacitorhaving a capacitance Ceq, as shown in Figure 4.3c. The effect this

equivalent capacitorhas on the circuit must be exactly the same as the effect of
the combinationof the two individual capacitors.

Q= CeqAV

Substituting these three relationships for charge into Equation 4.2, we have

Ceq AV = C; AV + C3 AV



o
f] (parallel combination)

If we extend this treatment to three or more capacitors connected in parallel,we
find the equivalent capacitance to be

Ceq=Cy + Cg + C3 + - (parallel combination)

Thus, the equivalent capacitance of a parallel combination of capacitors is
Greater than any of the individual capacitances.

-Series Combination:-
Two capacitors connected as shown in Figure 4.4a are known as a series
combinationof capacitors.

Figure 4.4 (a) A series combination of two capacitors. The charges on the two capacitors are
the same. (b) The capacitors replaced by a single equivalent capacitor.

the charges on capacitors connected in series are the same.

From Figure 26.9a, we see that the voltage AV across the battery terminals issplit
between the two capacitors:



AV= AV, + AV,

whereAV:and AV, are the potential differences across capacitors C1and C;,
respectively.In general, the total potential difference across any number of
capacitors connected in series is the sum of the potential differences across the
individual capacitors.

0O
AV= —~
C"_-q

Because we can apply the expression Q =C AVto each capacitor shown in
Figure4.4a, the potential difference across each is

. Q . Q
AV =—== AV =—
T TG

Therefore AV=Q /Ceq,

Q _0 . 0
Ceq C1 Gy

Canceling Q, we arrive at the relationship

1 1 1
Ceq €1 Co

When this analysis is applied to three or more capacitors connected in series,
therelationship for the equivalent capacitance is

1 1 1 1 . (aeries )
C. combination

v £

N

EXAMPLE 4.4:-Find the equivalent capacitance between a and b for the
combination of capacitors shown in Figure 4.5a. All capacitances are in
microfarads.



Solution:-The 1.0uF and 3.0uF capacitors are in parallel and combine according to
the expressionCeq= C1+C>=4.0F. The 2.0uF and 6.0uF capacitors also are in parallel
and have an equivalent capacitance of 8.0 uF. Thus, the upper branch in Figure
4.5b consists of two 4.0uF capacitors in series, which combine as follows:

1 1 1 1 1 1
+—= - =
Coq €1 Co  40pF  40uF 20 puF

=20 uF

e, =—--
4 1/2.0 uF

2.0

b a b a g b
4.0
(c) (d)

Figure 4.5To find the equivalent capacitance of the capacitors in part (a),
wereduce the various combinations in steps as indicated in parts (b), (c), and (d),
usingthe series and parallel rules described in the text.

The lower branch in Figure 4.5b consists of two 8.0 uF capacitors in series, which
combine to yield an equivalent capacitance of 4. pF. Finally, the 2.0 uF and 4.0 uF
capacitors in Figure 26.10c are in parallel and thus have an equivalent capacitance
of 6.0 uF.

Note:-



Q-
U= o= SQAV=35C(AV)?
1-Energy stored in a charged capacitor is '

2-Energy stored in a parallel-plate capacitor is
1 eA |, |
U=— E?d?) = — (g Ad)E?
5 4 ( ) 5 (€pAd)
3- Energy density in an electric field is

_ 1
Up — EEG.EE

CAPACITORS WITH DIELECTRICS
A dielectric is a no conducting material, such as rubber and glass.When a
dielectric is inserted between the plates of a capacitor, the capacitance increases
If the dielectric completely fills the space between the plates, the capacitance
increases by a dimensionless factor (k), which is called the dielectric constant. The
dielectric constant is a property of a material and varies from one material to
another.

Consider a parallel-plate capacitor that without a dielectric has a charge Qo and a
capacitance Co . The potential difference across the capacitor is
AVo=Q o/Co

The voltages with and without the dielectric are related by the factor (k)as
follows:

AV,

K

AV =

Because AV < AV, we see that k > 1.
Because the charge @, on the capacitor does not change, we conclude that
the capacitance must change to the value

10



C— Qo  Qp

AV AVy/k AV,

C:KGD

€ A
— K

A/dwe can express the capacitance when the capacitor is filled with a dielectric as
d

That is, the capacitance increases by the factor (k)when the dielectric completely

fillsthe region between the plates. For a parallel-plate capacitor, whereCo= €n
C

Types of Capacitors

Metal foil
4
/
P Plates ]
~ y / Case
VS \ !
- ] 1
- ' \ -~/ -T-
" : ! e e el
P / \ l n T Electrolyte
o= G | 4 \
W il - -2 — —
~ > —_—
~ [~ =
|I -
|
|
Paper

L il
(a)

.

Contacts
Metallic foil + oxide layer
(b) (c)
Figure 4.6Three commercial capacitor designs. (a) A tubular capacitor, whose plates are separated by
paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of many parallel plates
separated by insulating oil. (c) An electrolytic capacitor.

EXAMPLE 4.5:- A parallel-plate capacitor has plates of dimensions 2.0 cm by3.0
cm separated by a 1.0-mm thickness of paper. (a) Find its capacitance.

11



Solution:-Because k=3.7 for paper, we have

L) A
d

2

= 3.7(8.85 X 1072 C%/N-m?)

\ ( 6.0 X 10"+ m?* "
=k

10X 10 m
=20 X 10712F = 20 pF

(b) What is the maximum charge that can be placed on the capacitor?

Solution: -Because the thickness of the paper is 1.0 mm, the maximum voltage
that can be applied before breakdown is
AV = Epaxd = (16 % 10°V,/m) (1.0 X 1079 m)
=16 x 10°V

Hence, the maximum charge is

Qmax = CAVipax = (20 X 1072 F)(16 X 10°V) = 0.32 pC

EXAMPLE 4.6:-A parallel-plate capacitor is charged with a battery to a charge
Qo, as shown in Figure 4.6a. The battery is then removed, and a slab of material
that has a dielectric constant (K)is inserted between the plates, as shown in Figure
4.6b. Find the energy stored in the capacitor before and after the dielectric is
inserted.

Solution:-The energy stored in the absence of the dielectric is

o = o
2C,
After the battery is removed and the dielectric inserted, the charge on the
capacitor remains the same. Hence, the energy stored in the presence of the

dielectric is

0?
==L
2C

But the capacitance in the presence of the dielectric isC =kCo, so U becomes

12



@ T
v= Qo _ U
?.K(.:[J K

Because k>1, the final energy is less than the initial energy

INielecoriac

Lo I

/
|
|

=

(Figure 4.6)
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SUMMARY

A capacitor consists of two conductors carrying charges of equal magnitude but
opposite sign. The capacitance C of any capacitor is the ratio of the charge Q on
either conductor to the potential difference AV between them:

__Q
AV

This relationship can be used in situations in which any two of the three variables
are known. It is important to remember that this ratio is constant for a given
configurationof conductors because the capacitance depends only on the
geometryof the conductors and not on an external source of charge or potential
difference.

The Sl unit of capacitance is coulombs per volt, or the farad (F), and

1F=1C/V.

If two or more capacitors are connected in parallel, then the potential differenceis
the same across all of them. The equivalent capacitance of a parallel
combinationof capacitors is

Ceq:CI‘FCQ"—Cg"—'**

If two or more capacitors are connected in series, the charge is the same on all of
them, and the equivalent capacitance of the series combination is given by

1 1 1 1
+— +
Ce Gy Co Cs

q

The work done in charging the capacitor to a charge Q equals the electric
potential energy U stored in the capacitor, where

14



QfZ
U=—o= $QAV=3C(AV)?

TABLE 26.2 Capacitance and Geometry

Geometry Capacitance Equation

Isolated charged sphere of radius
R (second charged conductor C = 4meyR 26.2
assumed at infinity)

Parallel-plate capacitor of plate

_ . 6.3
area A and plate separation d =g F 2

Cylindrical capacitor of length {
{ and inner and outer radii b 26.4
a and b, respectively 2k, l“(_)

Spherical capacitor with inner
and outer radii @ and b, C=—— 26.6
respectively ke (b — a)

When a dielectric material is inserted between the plates of a capacitor, the
capacitance increases by a dimensionless factor (k), called the dielectric constant:

C= KGD

Where(ois the capacitance in the absence of the dielectric
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chapterfive (Current and Resistance)

ELECTRIC CURRENT

consider a system of electric charges in motion. Whenever there is a net flow of charge
through some region, a current is said to exist. To define current more precisely, suppose
that the charges are moving perpendicular to a surface of area A, as shown in Figure 3.1.
(This area could be the cross-sectional area of a wire, for example.) The current is the rate
at which charge flows through this surface. If AQis the amount of charge that passes
through this area in a time interval At, the average current lav is equal to the charge that

passes through Aper unit time:

Iav=AQ/At (31)

Figure 3.1 Charges in motion through an area A. The time rate at which charge flows through the area is defined as the
current [. The direction of the current is the direction in which positive charges flow when free to do so.

If the rate at which charge flows varies in time, then the current varies in time; we
define the instantaneous current [ as the differential limit of average current:

_dQ
= dt (27.2)

The SI unit of current is the ampere (A):

1A =— (27.3)

That is, 1 A of current is equivalent to 1 C of charge passing through the surface
arcain 1s.

The charges passing through the surface in Figure 27.1 can be positive or neg-
ative, or both. It is conventional to assign to the current the same direction
as the flow of positive charge. In electrical conductors, such as copper or alu-

Electrie current

The direction of the current



minum, the current is due to the motion of negatively charged electrons. Therefore, when
we speak of current in an ordinary conductor, the direction of the current is opposite the
direction of flow of electrons. However, if we are considering a beam of positively
charged protons in an accelerator, the current is in the direction of motion of the protons.
In some cases—such as those involving gases and electrolytes, for instance-the current
is the result of the flow of both positive and negative charges. If the ends of a conducting
wire are connected to form a loop, all points on the loop are at the same electric potential,
and hence the electric field is zero within and at the surface of the conductor. Because the
electric field is zero, there is no net transport of charge through the wire, and therefore
there is no current. The current in the conductor is zero even if the conductor has an
excess of charge on it. However, if the ends of the conducting wire are connected to a
battery, all points on the loop are not at the same potential. The battery sets up a potential
difference between the ends of the loop, creating an electric field within the wire. The
electric field exerts forces on the conduction electrons in the wire, causing them to move
around the loop and thus creating a current. It is common to refer to a moving charge
(positive or negative) as a mobile charge carrier. For example, the mobile charge carriers
in a metal are electrons.

|-— f\xA—‘
Fd rd
[ Vil

—

o '

Microscopic Model of Current

We can relate current to the motion of the charge carriers by describing a micro-
f . scopic model of conduction in a metal. Consider the current in a conductor of
: A crosssectional area A (Fig. 27.2). The volume of a section of the conductor of
A 10— . ' length Ax (the gray region shown in Fig. 27.2) is A Ax. If # represents the number
y : of mobile charge carriers per unit volume (in other words, the charge carrier den-
|'_“.r’“ __‘ sity), the number of carriers in the gray section is nA Ax. Therefore, the charge

i
|
1
.I "

A)in this section is
Figure 27.2 A section of a uni-
form conductor ol cross-sectional
arca A, The mobile charge carriers
move with a specd oy, and the dis-
tance they travel in a time Al is
Ax = oy AL The number of carviers
in the section of length Ax is
Aoy At where nois the number ol
carriers per unit volume,

Average current in a conducior

(nA Ax)q

A Q) = number of carriers in section X charge per carrier
where ¢ is the charge on each carrier. Il the carriers move with a speed gy, the dis-
tance they move in a time Afis Ax = g AL Therefore, we can write A() in the
form

A = (nAv,Al) g

If we divide both sides of this equation by At, we see that the average current in
the conductor is

(27.4)

Ly = — = ngu A

The speed of the charge carriers vy is an average speed called the drift speed.
To understand the meaning of drift speed, consider a conductor in which the

The speed of the charge carriers vd is an average speed called the drift speed. To understand the meaning of
drift speed, consider a conductor in which the charge carriers are free electrons. If the conductor is isolated-
that is, the potential difference across it is zero-then these electrons undergo random motion that is
analogous to the motion of gas molecules. As we discussed earlier, when a potential difference is applied
across the conductor (for example, by means of a battery), an electric field is set up in the conductor; this field
exerts an electric force on the electrons, producing a current. However, the electrons do not move in straight
lines along the conductor. Instead, they collide repeatedly with the metal atoms, and their resultant motion is
complicated and zigzag (Fig. 27.3). Despite the collisions, the electrons move slowly along the conductor (in
adirection opposite that of E) at the drift velocity vd.



Figure 27.3 A schematic representation of the zigeag
maotion of an electron in a conductor. The changes in di-
rection are the result of collisions between the electron
and atoms in the conductor: Note that the net motion of

the electron is opposite the direction of the electric field.
Each section of the zigeag path is a parabolic segment.

We can think of the atom—electron collisions in a conductor as an effective inter-
nal friction (or drag force) similar to that experienced by the molecules of a liquid
flowing through a pipe stuffed with steel wool. The energy transferred from the elec-
trons to the metal atoms during collision causes an increase in the vibrational energy
of the atoms and a corresponding increase in the temperature of the conductor.

[Quick Quiz 27.1 g

Consider positive and negative charges moving horizontally through the four regions shown
in Figure 27.4. Rank the current in these four regions, from lowest to highest.

I \.. f ‘... I X .Y <

i | — 1 f \ \ f \ \ f \ L]

[ | & 9-- | [ |-l | | @ | | 'I (=T
[ > ) | | | ()=

-— -t ()
I-, | .’+EI- / I', | () I-I | | - | II, .'l o /
v J A / A AW s
() (b () (el Figure 27.4

EXAMPLE 27.1 Drift Speed in a Copper Wire

The 12-gauge copper wire in a typical residential building has
a crosssectional area of .31 % 107 % m” If it carries a current
of 10.0 A, what is the drift speed of the electrons? Assume
that each copper atom contributes one free electron to the
current. The density of copper is 8.95 g/cm”,

Solution From the periodic table of the elements in
Appendix C, we find that the molar mass of copper is
63.5 g/mol. Recall that 1 mol of any substance contains Avo-
gadro's number of atoms (6.02 x 10%). Knowing the density
of copper, we can caleulate the volume occupied by 63.5 g
(=1 mol) of copper:

m 65.5 g

BT Ty = 7.09 em®

Because each copper atom contributes one free electron
tor the current, we have

6.02 % 10% electrons ' .
= 100 % 100 3
n = ( em?/m?)

8.49 » 10 electrons,/m®

From Equation 27.4, we find that the drift speed is

!
ngA

g =

where ¢ is the absolute value of the charge on each electron,
Thus,

Wy = I
4 ngA
- 10L0 s
C (B9 3 108 m F)(1.60 x 10 " C) (331 x 10 T m?)
= 292 %10 *m/s
Exercise If a copper wire carries a current of 80.0 mA, how

many electrons flow past a given crosssection of the wire in
10.0 min?

Answer 3.0 x 102 electrons.

Example 27.1 shows that typical drift speeds are very low. For instance, electrons traveling with a speed of
2.46 x 10 m/s would take about 68 min to travel 1 m! In view of this, you might wonder why a light turns on
almost instantaneously when a switch is thrown. In a conductor, the electric field that drives the free
electrons travels through the conductor with a speed close to that of light. Thus, when you flip on a light



switch, the message for the electrons to start moving through the wire (the electric field) reaches them at a
speed on the order of 108 m/s.

RESISTANCE AND OHM’S LAW

In Chapter 24 we found that no electric field can exist inside a conductor. However, this
statement is true only if the conductor is in static equilibrium. The purpose of this section is to
describe what happens when the charges in the conductor are allowed to move.

Charges moving in a conductor produce a current under the action of an elec-
tric field, which is maintained by the connection of a battery across the conductor,
An electric field can exist in the conductor because the charges in this situation
are in motion —that is, this is a nonelectrostatic sitnation,

Consider a conductor of cross-sectional area A carrying a current /. The cur-
rent density /in the conductor is defined as the current per unit area. Because
the current I = ngquv,A, the current density is

= — = ngqu, (27.5)
' A
where /[ has SI units of A/m?. This expression is valid only if the current density is
uniform and only if the surface of cross-sectional area A is perpendicular to the di-
rection of the current. In general, the current density is a vector quantity:

J = ngvy (27.6)

'

From this equation, we see that current density, like current, is in the direction of
charge motion for positive charge carriers and opposite the direction of motion
for negative charge carriers.

A current density J and an electric field E are established in a conductor
whenever a potential difference is maintained across the conductor. If the
potential difference is constant, then the current also is constant. In some materi-
als, the current density is proportional to the electric field:

J = oE (27.7)

where the constant of proportionality ¢ is called the conductivity of the con-
ductor.! Materials that obey Equation 27.7 are said to follow Ohm’s law, named af-
ter Georg Simon Ohm (1787~ 1854). More specifically, Ohm's law states that

for many materials (including most metals), the ratio of the current density o
the electric field is a constant o that is independent of the electric field produc-
ing the current.



We can obtain a form ol Ohm’s law useful in practical applications by consid-
ering a segment of straight wire of uniform cross-sectional area A and length €, as
shown in Figure 27.5. A potential difference AV = V, — V, is maintained across
the wire, creating in the wire an electric field and a current. If the field is assumed
to be uniform, the potential difference is related to the field through the relation-
ship?

AV =FEt
Therefore, we can express the magnitude of the current density in the wire as
AV

J=ok=0—

€

Because J = I/A, we can write the potential difference as

£ 4
V:— =
A ﬂ__)f (a’/l)!

The quantity € /@A is called the resistance R of the conductor. We can define the
resistance as the ratio of the potential difference across a conductor to the current
through the conductor:

_t
aA

AV
R = (27.8)
I
From this result we see that resistance has SI units of volts per ampere. One volt
per ampere is defined to be 1 ohm ({}):

1V

10 =
1

(27.9)

>

dilference.

2 This result follows from the definition of potential difference:

[ £
V, =V, —J E-ds f:'f dx = I
i (1]

Figure 27.5 A uniform conductor of length €
and crosssectional area A. A potential difference
AV =V, = V, maintained across the conductor
sets up an eleceric field E, and this field produces
a current f that is proportional to the potential

Resistance of a conductor

This expression shows that if a potential difference of 1 V across a conductor
causes a current of 1 A, the resistance of the conductor is 1 Q.



The inverse of conductivity is resistivity® P

1
Resistivity p=— (27.10)
where p has the units ohm-meters (£}- m). We can use this definition and Equation
27.8 1o express the resistance of a uniform block of material as

R=p (27.11)

Resistance of a uniform conductor

Every ohmic material has a characteristic resistivity that depends on the properties
of the material and on temperature. Additionally, as you can see from Equation
27.11, the resistance of a sample depends on geometry as well as on resistivity.
Table 27.1 gives the resistivities of a variety of materials at 20°C. Note the enor-
mous range, from very low values for good conductors such as copper and silver,
to very high values for good insulators such as glass and rubber. An ideal conduc-
tor would have zero resistivity, and an ideal insulator would have infinite resistivity.

Most electric circuits use devices called resistors to control the current level in the
various parts of the circuit. Two common types of resistors are the composition
resistor, which contains carbon, and the wire-wound resistor, which consists of a
coil of wire. Resistors’ values in ohms are normally indicated by color-coding, as
shown in Figure 27.6 and Table 27.2. Ohmic materials have a linear current—
potential difference relationship over a broad range of applied potential differences
(Fig. 27.7a). The slope of the I-versus-AV curve in the linear region yields a value
for 1/R. Nonohmic materials

Figure 27.6 'The colored bands on a re-
sistor represent a code for determining re-
sistance. The first two colors give the first
two digits in the resistance value. The third
color represents the power of ten for the
multiplier of the resistance value. The last
color is the tolerance of the resistance
value. As an example, the four colors on
the circled resistors are red (= 2), black
(=0), orange (= 10%), and gold (=5%),
and so the resistance value is 20 x 10% () =
20 kL) with a tolerance value of 5% = 1 k{}.
{"The values for the colors are from Table
27.2.)




TABLE 27.2 Color Coding for Resistors

Color Number Multiplier Tolerance
Black 0 1
Brown I 10!
Red 2 102
Orange 3 107
Yellow 4 104
Green 5 lﬂ"f
Blue 6 10"
Violet 7 107
Gray & 10®
White 9 107
Gold 10! 5%
Silver 102 10%,
Colorless 20%
!
AV AV
(a) (b}
Figure 27.7  (a) The current—potential difference curve for an ohmic material. The curve is

linear, and the slope is equal to the inverse of the resistance of the conductor. (b) A nonlinear
current— potential difference curve for a semiconducting diode. This device does not obey

Ohm's law,




EXAMPLE 27.2

Calculate the resistance of an aluminum cylinder that is
10.0 em long and has a crosssectional area of 2.00 % 1074 m?,
Repeat the caleulation for a eylinder of the same dimensions
and made of glass having a resistivity of 8.0 X 10" 0+ m,

The Resistance of a Conductor

Solution From Equation 27.11 and Table 27.1, we can cal-
culate the resistance of the aluminum cylinder as follows:

0.100 m )

[
=p— = (282 x 10 %()- —_—
k=p A (282 x1 0 nl)(?.ﬂ(l % 104 m?
= 141 x 10750

Similarly, for glass we find that

0,100 m )

{
P= p = (3.0 % 1010 Q- (—
f=pr =1 107 0-m) {550 % 10T m?

= 1A% 10%0

As you might guess from the large difference in resistivi-

ties, the resistance of identically shaped cylinders of alu-
minum and glass differ widely. The resistance of the glass
cylinder is 18 orders of magnitude greater than that of the
aluminum cylinder.

Electrical insulators on telephone poles are olien made of glass because
ol its low electrical conductivity.

EXAMPLE 27.3

(a) Calculate the resistance per unit length of a 22-gauge
Nichrome wire, which has a radius of 0,321 mm,

The Resistance of Nichrome Wire

Solution The crosssectional area of this wire is
A== w0820 % 107 m)? = 824 % 1077 m?

The resistivity of Nichrome is 1.5 X 10 0 (em (see Table
27.1). Thus, we can use Equation 27.11 to find the resistance
per unit length:

R p  15x10"Q:m

TRV ET S P 1.60/m
¢t A 324 % 107" m* /

(b) Ifa potential difference of 10V is maintained across a
[.0-m length of the Nichrome wire, what is the current in the
wire?

Solution Because a 1.0-m length of this wire has a resis-
tance of 4.6 (), Equation 27.8 gives

Note from Table 27,1 that the resistivity of Nichrome wire
is about 100 times that of copper. A copper wire of the same
radius would have a resistance per unit length of only
0.052 (1/m. A L0-m length of copper wire of the same radius
would carry the same current (2.2 A) with an applied poten-
tial difference of only 0,11 ¥,

Because of its high resistivity and its resistance to oxida-
tion, Nichrome is often used for heating elements in toasters,
irons, and electric heaters,

Exercise  What is the resistance of a 6.0-m length of 22-
gauge Nichrome wire? How much current does the wire carry
when connected o a 120:V source of potential difference?

Answer 28101 4.5A.

Exercise Calculate the current density and electric field in
the wire when it carries a current of 2.2 A,

AV _10V _oan Answer 6.8 % 10°A/m® 10 N/C.
R 460 ’
EXAMPLE 27.4  The Radial Resistance of a Coaxial Cable

Coaxial cables are used extensively for cable television and
other electronic applications. A coaxial cable consists of two
cylindrical conductors, The gap between the conductors is

completely filled with silicon, as shown in Figure 27.8a, and
current leakage through the silicon is unwanted, (The cable
is designed to conduct current along its length.) The radius




dr

outer one i b= 175 cm, and the length of the cable is 2arel.
I = 150 cm. Caleulawe the resistance of the silicon between
the two conducioers.

of the inner conductor is a = 050 cm, the radius of the AR P

Because we wish to know the wial resistance across the entire
thickness of the silicon, we muost integrawe this expression

Solution 1n this tvpe of problem, we must divide the ob- from v = ator = b:

ject whose resistance we are calculating into concentric ele- J"' iR I J*‘ dy P I ( .i,)
i = — = il
i A

ments of infinitesimal thickness dr (Fig, 27.8b). We siart by k= Dl
using the differental form of Equadon 27.11, replacing £

with r for the distance variable: d = p dr/A, where ditis the  Substituting in the values given, and using p = 640 {-m for
resistance of an element of silicon of thickness drand surface  Slicon, we obiain

area A. In this example, we @ke 45 our represen@adve concen- 640 0 -m

tric element a hollow silicon cylinder of radius r, thickness dy, (
and length L, as shown in Figure 27.8. Any current that
passes from the inner conductor o the outer one must pass
radially through this concenwric element, and the area
through which this current passes is A = 2l (This is the
curved surface area—circumference muliplied by length—
of our hollow silicon cylinder of thickness dr.) Hence, we can
write the resistance of our hollow cylinder of silicon as

¥ 27l d

1.75 cm
.5IHh cm

- ) — 8510
24(0.150 m )

Exercise 1f a powential difference of 120V is applied be-
ween the inner and outer conductors, what is the value of

the total current that passes beiween them?

Answer 14.1 mA.

dr Current
- - direction
Silicon
|
Inner (hner
conductor  conducior End view

(a) D]

Figure 27.8 A coaxial cable. (@) Silicon fills the gap between the two conductors.
(b} End view, showing current leakage.

ELECTROMOTIVE FORCE

In Section 27.6 we found that a constant current can be maintained in a closed circuit through the
use of a source of emf, which is a device (such as a battery or generator) that produces an electric
field and thus may cause charges to move around a circuit. One can think of a source of emf as a
“charge pump.” When an electric potential difference exists between two points, the source moves
charges “uphill” from the lower potential to the higher. The emfe describes the work done per unit
charge, and hence the SI unit of emf is the volt. Consider the circuit shown in Figure 28.1,
consisting of a battery connected to a resistor. We assume that the connecting wires have no
resistance. The positive terminal of the battery is at a higher potential than the negative terminal.
If we neglect the internal resistance of the battery, the potential difference across it (called the
terminal voltage) equals its emf. However, because a real battery always has some internal
resistance 1, the terminal voltage is not equal to the emf for a battery in a circuit in which there is
a current. To understand why this is so, consider the circuit diagram in Figure 28.2a, where the

9



battery of Figure 28.1 is represented by the dashed rectangle containing an emfe in series with an
internal resistance r. Now imagine moving through the battery clockwise from a to b and measuring
the electric potential at various locations. As we pass from the negative terminal to the positive
terminal, the potential increases by an amount €. However, as we move through the resistance r,
the potential decreases by an amount Ir, where I is the current in the circuit. Thus, the terminal
voltage of the battery isl

Battery

| Figure 28.1 A circuit consisting of a resistor con-
Resistor nected to the terminals of a battery.

) :"Ei"""r"“: ) AV=E - Ir (28.1)
: =| AWy : From this expression, note that &€ is equivalent to the open-circunit voltage —that
I : is, the terminal voltage when the current is zero. The emf is the voltage labeled on a
IT l" battery—for example, the emf of a D cell is 1.5 V. The actual potential difference
R between the terminals of the battery depends on the current through the battery,

d Ay & as described by Equation 28.1.

Figure 28.2b is a graphical representation of the changes in electric potential
as the circuit is traversed in the clockwise direction. By inspecting Figure 28.2a, we
see that the terminal voltage AV must equal the potential difference across the ex-
ternal resistance R, often called the load resistance, The load resistor might be a
simple resistive circuit element, as in Figure 28.1, or it could be the resistance of
some electrical device (such as a toaster, an electric heater, or a lightbulb) con-
nected to the battery (or, in the case of household devices, to the wall outlet). The
resistor represents a load on the battery because the battery must supply energy to
operate the device. The potential difference across the load resistance is AV= IR,
Combining this expression with Equation 28.1, we see that

E=IR+1Ir (28.2)
Solving for the current gives
(b)
e
Figure 28.2 (a) Circuit diagram I= R+ r (28.3)
of a source of emf € (in this case, a
battery), of internal resistance 7, This equation shows that the current in this simple circuit depends on both the

connected to an "’ft”"“fl resistorof 1 resistance R external to the battery and the internal resistance = If R is much
resistance K. (b) Graphical repre- cater the P eal-world circuits . lec

sentation showing how the dlectzic grt.au_.l than r,'db it ‘15 in {ndny real-world circuits, we can I{Lg ecLr

potential changes as the circuit in If we multiply Equation 28.2 by the current /, we obtain

part (a) is traversed clockwise, 1€ = I'R + I (28.4)

This equation indicates that, because power # = AV the total power output I€ of the battery is
delivered to the external load resistance in the amount I’R and to the internal resistance in the
amount I’r. Again, if then most of the power delivered by the battery is transferred to the

10



loadresistance.

This equation indicates that, because power % = AV (see Eq. 27.22), the total
power output I€ of the battery is delivered to the external load resistance in the
amount [%R and to the internal resistance in the amount [2r. Again, if r<=< R, then
most of the power delivered by the battery is transferred to the load resistance.

EXAMPLE 28.1 Terminal Voltage of a Battery

A battery has an emf of 12.0 V and an internal resistance of (b) Calculate the power delivered to the load resistor, the
0.05 €. Its terminals are connected to a load resistance of  power delivered to the internal resistance of the battery, and
.00 £). (a) Find the current in the circuit and the terminal the power delivered by the battery.
voltage of the battery.

Solution The power delivered to the load resistor is
Solution Using first Equation 283 and then Equation
28.1, we obtain Pp=1"R=(395A)* (3.000) = 463 W

& 120V

= ——= = 393 A iv i al resistance is
Rtr 3.05 Q0 The power delivered to the internal resistance is

P,= 1% = (3.93A)2 (005Q) = 0.77¢
AV=E = =120V = (393 A)(0.05()) = 11.8V ' r=A{ )= (0.054) 2w
Hence, the power delivered by the battery is the sum of these
quantities, or 47.1 W. You should check this result, using the
expression P = JE&.

To check this result, we can calculate the voltage across the
load resistance R:

AV=[R= (393 A)(3.000) =118V

RC CIRCUITS

So far we have been analyzing steady-state circuits, in which the current is constant. In circuits
containing capacitors, the current may vary in time. A circuit containing a series combination of a
resistor and a capacitor is called an RC circuit.

11



Charging a Capacitor

Let us assume that the capacitor in Figure 28,16 is initially uncharged. There is no
current while switch S is open (Fig. 28.16b). If the switch is closed at ¢ = 0, how-
ever, charge begins to flow, setting up a current in the circuit, and the capacitor
begins to chargc.”‘ Note that during charging, charges do not jump across the ca-
pacitor plates because the gap between the plates represents an open circuit. In-
stead, charge is transferred between each plate and its connecting wire due to the
electric field established in the wires by the battery, until the capacitor is fully
charged. As the plates become charged, the potential difference across the capaci-
tor increases. The value of the maximum charge depends on the voltage of the
battery. Once the maximum charge is reached, the current in the circuit is zero
because the potential difference across the capacitor matches that supplied by the
battery.

To analyze this circuit quantitatively, let us apply Kirchhoff’s loop rule to the
circuit after the switch is closed. Traversing the loop clockwise gives

e —%— IR=0 (28.11)

where ¢/ Cis the potential difference across the capacitor and /R is the potential

Resistor

-
—af) ) ) o—of
<) ))))

/;/ Capacitor R R
4 A MW
+ _ -4 l
k [ p— — i
=== _ g
Switch
S | s
Bauery £ £
(a} (b) t<0 () =0

Fl"g‘l.l.l'ﬁ' 28.16 (a) A capacitor in series with a resistor, switch, and battery, (b) Circuit diagram
representing this system at time ¢ << 0, before the switch is closed. (¢) Circuit diagram at time
t = (), after the switch has been closed.

12



difference across the resistor. We have used the sign conventions discussed carlier
for the signs on £ and [R. For the capacitor, notice that we are traveling in the di-
rection from the positive plate to the negative plate; this represenis a decrease in
potential. Thus, we use a negative sign for this voltage in Equation 28.11. Note that
q and [are instanianesus values that depend on time (as opposed (o steady-state val-
ues) as the capacitor is being charged.

We can use Equation 28.11 to find the initial current in the circuit and the
maximum charge on the capacitor. At the instant the switch is closed (f = 0), the
charge on the capacitor is zero, and from Equation 28.11 we find that the initial
current in the circuit fi is a maximum and is equal

£

j'—_
"R

{currentai { = () (28.12)

At this time, the potential difference from the battery wrminals appears entirely
across the resistor, Later, when the capacitor is charged o is maximum value §7,
charges cease to flow, the current in the circuit is zero, and the potential differ-
ence [rom the battery terminals appears entrely across the capacitor. Substtuting
§ = Uinto Equation 28.11 gives the charge on the capacitor at this tme:

()= LE {maximum charge) (28.13)

To determine analytical expressions [or the tume dependence of the charge
and current, we must solve Equation 28,11 —a single equation containing two vari-
ables, g and £ The current in all parts of the series circuit must be the same. Thus,
the current in the resistance R must be the same as the current flowing oot of and
inte the capacitor plates, This current is equal to the tme rate of change ol the
charge on the capacitor plates. Thus, we substitute [ = dy /dl into Equation 28.11
and rearrange the equation:

dg _E 9
d R RC

To find an expression for g, we first combine the terms on the right-hand side:

dg  CE g g CE

dl e RC R

13
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Charge versus time for a capacitor

besing charged

Current versus time for a charging

GpRRCilonr

Now we muliiply by df and divide by g4 — C& 1o obiain
1 1
4 _ 1,
qg— C& RC
Integrating this expression, using the fact that g = 0 att = 0, we obtain

T dg ;fn‘,ﬂ

b g CE RC
1n(‘f_ (.’B) o
cE RC

From the definition of the natural logarithm, we can write this expression as
gt} = CGE (1 — ¢ VRO = g1 — o #/RC) (28.14)

where ¢ is the base of the natural logarithm and we have made the substitution
CE = ) from Equation 28.13.

We can find an expression for the charging current by differentiating Fqua-
tion 28.14 with respect to time. Using I = dg /df, we find that

&

i) = R s (28.15)

Plots of capacitor charge and circuit current versus time are shown in Figure
28.17. Note that the charge is zero at ¢ = 0 and approaches the maximum value
CE as { — =, The current has its maximum value [y = E/R at i = 0 and decays ex-
ponentially to zero as {— ®. The quantity RC, which appears in the exponents of
Equatons 28.14 and 28.15, is called the time constant 7 of the circuit It repre-
senis the ume it takes the current o decrease o 1/# of 1s inital value; that is, ina
time 7, [ = ¢ "Iy = 0.3681;. In a time 27, [ = ¢ ?f“ = (L1354, and so forth. Like-
wise, in a ime T, the charge increases from zerowo CE (1 — & Iy = 063208,

The following dimensional analysis shows that 7has the units of tme:

ey = | A B LAy -
[1] = [RC] L X.M’J L&Ms [Af =T

CE

LGS2CE

01,3681,

{a) {b)

Figure 28.17 (a) Plot of capacitor charge versus iime Tor the cirenit shown in Figure 28.16. AR
ter a time interval equal to one time constant 7 has passed, the charge iz G3.2% of the maxinum
value CE. The charge approaches is maxamuom value as fapproaches infimicy (B Plot of curremt

versus time for the drouit shown in Figure 2816 T

current has its maximum value f = &/ R

at ¢ = (0 and decays wo zero exponentially as ¢ approaches infinity. After a tme interval equal 1o
orie e constant T has passed, the carrent s 36.8% of s imal valoe,
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Because = RO has units of dme, the combinadon § /RC is dimensionless, as it
musi be in order to be an exponent of ¢in Equations 28.14 and 28.15.

The energy output of the battery as the capacitor is fully charged is
e = CE2 After the capacitor is fully charged, the energy siored in the capacitor
is éQS = ﬁ(.’ﬁﬂ, which is just half the energy output of the battery. It is lefi as a
problem {Problem 60} 1o show that the remaining halfl of the energy supplied by
the battery appears as internal energy in the resistor.

Discharging a Capacitor

Now let us consider the circuit shown in Figure 28,18, which consists of a capaci-
tor carrying an initial charge 1, a resistor, and a switch. The initial charge (0 is
not the same as the maximum charge Q in the previous discussion, unless the dis-
charge ocours afier the capacitor is fully charged (as described carlier). When the
switch is open, a potential difference @ /€ exists across the capacitor and there is
zero potential difference across the resistor because 1= 0. If the switch is closed
at ¢ = 0, the capacitor begins to discharge through the resistor. At some time ¢
during the discharge, the current in the circuit is Jand the charge on the capaci-
tor is g (Fig. 28.18b). The circuit in Figure 28.18 is the same as the circuit in Fig-
ure 28.16 except for the absence of the batery. Thus, we eliminate the emf £
from Equation 28.11 1o obtain the appropriate loop equation for the circuit in
Figure 28.18;

——:}, —IR=0 (28.16)

When we substiiuie I = dy /di into this expression, it becomes

pt_ g
R~ ¢

ﬂ_ ;I’H

q R

Integrating this expression, using the fact that g = () at 4 = 0, gives

q [
-l
0 oq R Jo

_*L) ot
ln( Q RC

i=0
(b)

Figure 28.18 (a) A charged ca-
pacitor connected (o a resistor and
a switch, which is open a =< (),

{b) After the switch 1z closed, a cur
rent that decreases in magnitude
with time is et up in the direction
shiown, and the charge on the ca-
pacitor decreases exponentially
with time

q(t) = Qe V/RC (28.17)

Charge versus time for a
discharging capacitor

Differentiating this expression with respect to time gives the instantaneous current
as a function of time:

= Lirf. = f_t /ARGy — _ﬁ_ i/ Re
(1) T al (Qe ) RC ¢ (28.18)

where Q/RC = I is the initial current. The negative sign indicates that the cur-
rent direction now that the capacitor is discharging is opposite the current direc-
tion when the capacitor was being charged. (Compare the current directions in
Figs. 28.16c and 28.18b.) We see that both the charge on the capacitor and the
current decay exponentially at a rate characterized by the time constant 7 = RC.

Current versus time for a
discharging capacitor
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ExampLe 28.11

An uncharged capacitor and a resistor are connected in se-
ries Woa battery, as shown in Figure 2819, IF £ = 120V,
€= 5.00 pF, and &= 800 x 104}, find the time constant
of the circwit, the maximum charge on the capacitor, the
maximum current in the circwit, and the charge and current
as funcrions of time.

time consant of the circoic is ¢~ B
The  maximum

Solution The
(.00 3 10° 1) (5.00 % 10 "F) = 4.00 5,
charge on the capacitor is Q= CE = (500 uF) (12.0V) =
B0 . The maximum  current in the  circoic s
Ig=E/R= (120V)/({8.00 x 107 £3) = 150 pA. Using these
values and Equations 28,14 and 28.15, we hind that

l-"i.m:}

gir) (60,0 wCH1 — &

i) = (150 gA) ¢ V100

Graphs of these funciions are provided in Figure 28,20,

ng'l.l’.l‘d' 28.1% The switch of this series RC circuit, open for times
1= ), i closed at @ = 0.

Charging a Capacitor in an AC Circuit

Exercise Calculate the charge on the capacior and the cur-
rentin the circuit alter one tme constant has elapsed.

Answer 379 pl, 552 pA

?1(3]'

TI{.‘I}

Figure 28.20 Plos of (3} charge versus me and (b) current ver-
sus time for the RCcircwit shown in Figure 2819, with £ = 120V,
= R00 3 107 L8, and €= 5.00 uk.

ExAMPLE 28.12

Consider a capacitor of capaciance © that is being dis-
charged through a resistor of resistance i, a5 shown in Figure
28,18, (a) After how many time constanis is the charge on the
capaciwor onedourth is inidal value?

Discharging a Capacitor in an BC Circuit

Solution The charge on the capacitor varies with time ac-
cording o Equation 2817, git) = Q¢ ™ To find the time
it takes g o drop o one-fourth i inidal value, we substituee
g(r) = (/4 inw this expression and solve for &

'TQ = w t/Re

1 —i/RC
Kl [

Taking logarithms of both sides, we find

In4=——
" RC

= RC(In4) = 1.39RC = 1.897

(b) The energy stored in the capacitor decreases with
time as the capacitor discharges. After how many time con-
stants is this stored energy one-fourth is initial valuer

Solution Using Equations 26.11 (U = Q*/2C) and 28.17,
we can express the energy stored in the capacitor at any time
I as

2 1/RCY 2 2
U= i _ (Qe > Q. e 2RE = [~ 2/RE

20 20 20
where Uy = 0*/2C is the initial energy stored in the capaci-

tor. As in part (a), we now set U = Uy/4 and solve for i

Uy — Lr“é, PR
A
41 = p—2/RC

Again, taking logarithms of both sides and solving for | gives
= §RC(INA) = 0.698RC =  0.6987

Exercise After how many time constants is the current in

the circuit one-half its initial value?

Answer (0.6931C = 0.693T.
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