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c h a p t e r one (Electric Fields) 
 

PROPERTIES OF ELECTRIC CHARGES: 

The electric charge has the following important properties (according to Franklin’s 
model of electricity): 
•Two kinds of electric charges occur in nature, with the property that unlike 
charges attract one another and like charges repel one another. 
 
• Electric charge is conserved(this means that, charge is not created in the 
process. The electric field state is due to a transfer of charge from one object to 
the other. One object gains some amount of negative charge while the other 
gains an equal amount of positive charge. For example ,when a glass rod is 
rubbed with silk, the silk obtains a negative charge that is equal in magnitude to 
the positive charge on the glass rod. 
 
• Electric charge is quantized (this means that the net charge in a closed region 
remains the same). 
 
Q:If you rub an inflated balloon against your hair, the two materials attract 
each other. Is the amount of charge present in the balloon and your hair after 
rubbing (a) less than, (b) the same as, or (c) more than the amount of charge 
present before rubbing? 
 

INSULATORS AND CONDUCTORS: 
 

It is convenient to classify substances in terms of their ability to conduct electric 
charge: 
1-Electrical conductors(materials in which electric charges move freely such as 
copper, aluminum, and silver) When such materials are charged in some small 
region, the charge readily distributes itself over the entire surface of the material. 
 
2-Electrical insulators(materials in which electric charges cannot 
move freely such as glass, rubber, and wood )When such materials are charged by 
rubbing, only the area rubbed becomes charged, and the charge is unable to 
move to other regions of the material. 
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3- Semiconductors are a third class of materials, and their electrical properties 
are somewhere between those of insulators and those of conductors such as 
silicon and germanium. 
 
(Note: When a conductor is connected to the Earth by means of a conducting 
wire orpipe, it is said to be grounded.) 
 
 

Charging by induction: 
To understand induction, consider a neutral (uncharged) conducting sphere 
insulated from ground, as shown in Fig.1a. When a negatively charged rubber rod 
is brought near the sphere, the region of the sphere nearest the rod obtainsan 
excess of positive charge while the region farthest from the rod obtains anequal 
excess of negative charge, as shown in Fig.1b. (That is, electrons inthe region 
nearest the rod migrate to the opposite side of the sphere. This occurseven if the 
rod never actually touches the sphere.) If the same experiment is performedwith 
a conducting wire connected from the sphere to ground (Fig. 1c),some of the 
electrons in the conductor are so strongly repelled by the presence ofthe negative 
charge in the rod that they move out of the sphere through theground wire and 
into the Earth. If the wire to ground is then removed (Fig.1d), the conducting 
sphere contains an excess of induced positive charge. Whenthe rubber rod is 
removed from the vicinity of the sphere (Fig. 1e), this inducedpositive charge 
remains on the ungrounded sphere. Note that the chargeremaining on the sphere 
is uniformly distributed over its surface because of the repulsive forces among the 
like charges. Also note that the rubber rod loses none ofits negative charge during 
this process. 
Charging an object by induction requires no contact with the body inducingthe 
charge. This is in contrast to charging an object by rubbing (that is, by 
conduction), which does require contact between the two objects.A process 
similar to induction in conductors takes place in insulators. 
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Figure 1Charging a metallic object by induction (that is, the two objects never touch eachother). (a) A 
neutral metallic sphere, with equal numbers of positive and negative charges.(b) The charge on the 
neutral sphere is redistributed when a charged rubber rod is placed nearthe sphere. (c) When the 
sphere is grounded, some of its electrons leave through the groundwire. (d) When the ground 
connection is removed, the sphere has excess positive charge that isnonuniformly distributed. (e) When 
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the rod is removed, the excess positive charge becomes uniformly distributed over the surface of the 
sphere. 
 
 
 

COULOMB’S LAW 
Coulomb’s experiments showed that the electric force between two stationary 
charged particles 
• is inversely proportional to the square of the separation r between the particles 
and directed along the line joining them; 
• is proportional to the product of the charges q1 and q2 on the two particles; 
• is attractive if the charges are of opposite sign and repulsive if the charges have 
the same sign. 
From these observations, we can express Coulomb’s law as an equation giving 
the magnitude of the electric force (sometimes called the Coulomb force) 
betweentwo point charges: 

Fe= ke|q1||q2|/r 2 
 

Where ke is a constant called the Coulomb constant.The value of the Coulomb 
constant depends on the choice of units. The SIunit of charge is the coulomb (C). 
The Coulomb constant kein SI units has the value: 

ke= 8.987 5 x109 N.m2/C2 

 
This constant is also written in the form 
 

ke=1/4π€0 
 

Where the constant €0 is known as the permittivity of free space and has the 
value 8.854 2 x10-12 C2/N.m2. 
 
The smallest unit of charge known in nature is the charge on an electron or 
proton, which has an absolute value of  
 

|e|=1.60219 x10-19 C 
 

Table 1 Charge and Mass of the Electron, Proton, and Neutron 
Particle Charge (C) Mass (kg) 

Electron (e) -1.60219 x10-19 9.109 5 x10-31 
Proton (p) +1.60219 x10-19 1.672 61 x10-27 
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Neutron (n) 0 1.674 92 x10-27 
 

 
EXAMPLE 1:-The electron and proton of a hydrogen atom are separated (on the 
average) by a distance of approximately 5.3 x10-11 m. Find the magnitudes of the 
electric force and the gravitational force between the two particles. 
 
Solution: From Coulomb’s law, we find that the attractive electric force has the 
magnitude 

Fe= ke|e2|/r 2 

Fe=(8.99 x109 N.m2/C2) (1.60 x10-19 C)2/(5.3 x 10-11 m)2 
Fe=8.2x10-8 N 
Using Newton’s law of gravitation and Table 1 for theparticle masses, we find that 
the gravitational force has the magnitude 

Fg= G memp/ r 2 
Fg=(6.7x10-11N.m2/kg2)x(9.11 x10-31kg)(1.67 x10-27kg)/(5.3 x10-11)2 

Fg= 3.6x10-47 N 
 
The ratio Thus, the gravitational force between charged atomic particles is 
negligible when compared with the electric force. Note the similarity of form of 
Newton’s law of gravitation and Coulomb’s law of electric forces. 
 *  * * 
 
The force is a vector quantity thus, the law expressed in vector form 

F12= keq1q2rˆ/r2  (1) 
 

Where rˆis a unit vector directed from q1 to q2 , as shown in Figure (2a) 
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from equation(1) , we see that if q1 and q2 have the same sign, as in Figure 2a, the 
product q1q2 is positive and the force is repulsive. If q1 and q2 are of opposite sign, 
as shown in Figure 2b, the product q1q2 is negative and the force is attractive. 
Noting the sign of the product q1q2 is an easy way of 
determining the direction of forces acting on the 
charges 
 
 
Figure 2Two point charges separated by a distance r exert a force 
on each other that is given by Coulomb’s law. The force F21 exerted 
by q2 on q1 is equal in magnitude and opposite in direction to the 
force F12 exerted by q1 on q2 . (a) When the charges are of the same 
sign, the force is repulsive. (b) When the charges are of opposite 
signs, the force is attractive. 

Q:Object A has a charge of +2µC, and object B has a charge of+6 µC. Which 
statement is true?      a) FAB=3FBA      b) FAB=-FBA   c) 3FAB=FBA 
 
When more than two charges are present, the force between any pair of them is 
given by Equation (1). Therefore, the resultant force on any one of them equals 
the vector sum of the forces exerted by the various individual charges. 
Forexample, if four charges are present, then the resultant force exerted by 
particles2, 3, and 4 on particle 1 is: 
 

F1=F21+F31+F41 

 
 EXAMPLE 2:-Consider three point charges located at the corners of a right 
triangle as shown in Figure 3, where q1=q3=5µc ,q2=-2 µc, and a=0.1m. Find the 
resultant force exerted on q3 . 

Solution :First, note the direction of the individual forces exerted by q1 and q2 on 
q3 . The force F23 exerted by q2 on q3is attractive because q2 and q3 have opposite 
signs. The forceF13 exerted by q1 on q3 is repulsive because both charges are 
positive.The magnitude of F23 is 

F23=ke |q2 ||q3| / a2 
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F23=(8.99 x109N.m2/C2)x(2.0 x10-6 C)(5.0 x10-6 C)/(0.10 m)2 

F23= 9.0N 
 
Note that because q3 and q2 have opposite signs, F23 is to the left, as shown in 
Figure 4. 
The magnitude of the force exerted by q1 on q3 is 

F13= ke |q1 ||q3| / (√2a)2 
F13=(8.99 x109 N.m2/C2 ) (5.0 x 10-6 C)(5.0 x10-6 C)/2(0.10 m)2 

F13= 11N 
 
The force F13 is repulsive and makes an angle of 45° with the x axis. Therefore, the 
x and y components of F13 are equal,with magnitude given by  

F13cos 45° =7.9 N. 
The force F23 is in the negative x direction. Hence, the xand y components of the 
resultant force acting on q3 are 
 

F3x=F13x+F23=7.9 N - 9.0 N =-1.1 N 
F3y=F13y=7.9 N 

 
We can also express the resultant force acting on q3 in unit vector form as 

F3=(-1.1i +7.9j) N 
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Figure 4:The force exerted by q1 on q3 is F13 The force exerted by q2 on q3 is F23 . The resultant 
force F3 exerted on q3 is the vector sum F13 +F23 . 

 
THE ELECTRIC FIELD 
the electric field E at a point in space is defined as the electric force Fe acting on a 
positive test charge q0 placed at that point divided by the magnitude of the test 
charge: 

E ≡Fe/q0 

 
Note that E is the field produced by some charge external to the test charge—it is 
not the field produced by the test charge itself. For example, every electron 
comes with its own electric field. The vector E has the SI units of newtons per 
coulomb (N/C). 
 
To determine the direction of an electric field, consider a point charge q located a 
distance r from a test charge q0 located at a point P, as shown in Figure (5) 
According to Coulomb’s law, the force exerted by q on the test charge is  

 
Fe= keq q0rˆ/r2 

where rˆ is a unit vector directed from q toward q0. Because the electric field at P, 
the position of the test charge, is defined by E ≡ Fe/q0 ,we find that at P, the 
electric field created by q is 

E= keqrˆ/r2 
If q is positive, as it is in Figure (5a), the electric field is directed radially out ward 
from it. If q is negative, as it is in Figure (5b), the field is directed toward it. 
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Figure 5: A test charge q0 at point P is a distance r from a point charge q. (a) If q is positive, then the 
electric field at P points radially outward from q. (b) If q is negative, then the electric field at P points 
radially inward toward q. 

 
- at any point P, the total electric field due to a group of charges equals the vector 
sum of the electric fields of the individual charges 

E= keΣiqiriˆ/ri2 

whereriis the distance from the ith charge qito the point P (the location of the test 
charge) and riˆ is a unit vector directed from qitoward P. 
 
Q:A charge of +3µC is at a point P where the electric field is directed to the right 
and has a magnitude of 4 X106 N/C. If the charge is replaced with a -3 µC charge, 
what happens to the electric field at P ? 
 
EXAMPLE 3:-A charge q1=7.0 µC is located at the origin, and a second 
chargeq2=5.0 µC is located on the x-axis, 0.30 m from the origin (Fig.6). zFind the 
electric field at the point P, which has coordinates (0, 0.40) m. 
 
 
Solution First, let us find the magnitude of the electric field at P due to each 
charge. The fields E1 due to the 7.0 µC charge and E2 due to the -5.0 µC charge are 
shown in Figure(6)their magnitudes are: 
 
E1= ke|q1| /r1

2=(8.99 x109 N.m2/C2 ) (7.0 x 10-6 C)/ (0.40 m)2 
E1=3.9x105N/C 
 
E2= ke|q2| /r2

2=(8.99 x109 N.m2/C2 ) (5.0 x 10-6 C)/ (0.50 m)2 
E2=1.8x105N/C 
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Figure 6The total electric field E atP equals the vector sum E1+E2 where E1 is the field due to the positive 
charge q 1 and E2 is the field due to the negative charge q2 

 
The vector E1 has only a y component. The vector E2 has an x component given by 
E2 cosθ=3/5E2 and a negative y component given by 
-E2 sin θ=-4/5E2Hence, we can express the vectors as: 
E1=3.9 x105j N/C 
E2=(1.1x105i-1.4 x105j) N/C 
The resultant field E at P is the superposition of E1 and E2 : 
E =E1+E2=(1.1 x105i+2.5 x105j) N/C 
 
EXAMPLE 4:- An electric dipoleis defined as a positive charge q and a negative 
charge -q separated by some distance. For the dipole shown in Figure 7, find the 
electric field E at P due to the charges, where P is a distance y>>a from the origin. 
 
Solution :At P, the fields E1 and E2 due to the two charges are equal in magnitude 
because P is equidistant from the charges. The total field is 
E= E1+ E2,where 
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E1= E2=keq/r 2=keq/(y2+ a2) 
The y components of E1 and E2 cancel each other, and the x components add 
because they are both in the positive x -direction. Therefore, E is  

  

Fig. 7 we see that cosθ =a/r=a/( y2+ a2 )1/2 Therefore, 
E=2E1cosθ=2keqa/(y2+ a2) ( y2+ a2 )1/2 

 E=2keqa/( y2+ a2 )3/2 
Because y>>awe can neglect a2 and write 

E≈2keqa/ y3 

 

 

 

 
Figure 7 The total electric field E atP due to two charges of equal magnitude and opposite sign (an 
electric dipole) equals the vector sum E1+ E2.The field E1 is due to the positive charge q, and E2 is the field 
due to the negative charge -q. 
 
 
ELECTRIC FIELD OF A CONTINUOUS CHARGE DISTRIBUTION 
To evaluate the electric field created by a continuous charge distribution, we use 
the following procedure: First, we divide the charge distribution into small 
elements, each of which contains a small charge ∆q, as shown in Figure 8. 
The electric field at P due to one element carrying charge ∆qis 

∆E= ke∆qrˆ/r2 
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wherer is the distance from the element to point P andrˆ is a unitvector 
directedfrom the charge element toward P. The total electric field at P due to all 
elementsin the charge distribution is approximately 
 

∆E≈keΣi∆qiriˆ/ri2 

 

where the index irefers to the ith element in the distribution. Because the 
chargedistribution is approximately continuous so: 
 

E= ke∫dqrˆ/r2(Electric field of a continuous charge distribution) 
 
 
 
 

 
 
 
 

Figure 8:The electric field at P due to a continuous charge distributionis the vector sum of the 
fields∆Edue to all the elements ∆qof the charge distribution. 
Note 
• If a charge Q is uniformly distributed throughout a volume V, the volume 
charge density ρ is defined by 

ρ≡Q/V 
where ρ has units of coulombs per cubic meter (C/m3). 
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• If a charge Q is uniformly distributed on a surface of area A, the surface charge 
density σ is defined by 

σ ≡Q/A 
where  σ has units of coulombs per square meter (C/m2). 
 
• If a charge Q is uniformly distributed along a line of length L, the linear charge 
density λ is defined by 

λ ≡Q/L 
where λ has units of coulombs per meter (C/m). 
 
• If the charge is no uniformly distributed over a volume, surface, or line, we 
have to express the charge densities as 

ρ=dQ/dV     σ=dQ/dA         λ=dQ/dL 
where dQ is the amount of charge in a small volume, surface, or length element. 
 
EXAMPLE 5:- A rod of lengthLhas a uniform positive charge per unit 
Length λ and a total charge Q. Calculate the electric field at apoint P that is 
located along the long axis of the rod and adistance a from one end  
(Fig. 9). 
 
Solution:Let us assume that the rod is lying along the x axis, that dx is the length 
of one small segment, and that dq is   the charge on that segment. Because the 
rod has a charge per unit length λ, the charge dq on the small segment is dq=λdx 
The field dEdue to this segment at P is in the negative xdirection (because the 
source of the field carries a positivecharge Q), and its magnitude is 

dE= kedq/x2=keλdx/x2 

 

The total field at Pdue to all segments of the rod, which are at different 
distancesfrom P, is given by  

E= ∫keλdx/x2 
 
 



14 
 

 
Figure 9The electric field at P due to a uniformly chargedrod lying along the x axis. The magnitude of 
the field at P due to thesegment of charge dqis kedq/x2. The total field at P is the vector sum over all 
segments of the rod. 

 
where the limits on the integral extend from one end of the rod (x=a) to the 
other(x=L+a). The constants ke and λ can be removed from the integral to yield 

E=keλ∫dx/x2=keλ[-1/x] 
 E=  keλ{(1/a)-(1/(L+a)} 
 E=ke Q/a(L+a) 
Where we have used the fact that the total charge Q =λL. If P is far from the rod 
(a>>L), then the l in the denominator can be neglected, and 
E=ke Q/a2.This is just the form you would expect for a point charge. 
 
EXAMPLE 6: 
A ring of radius a carries a uniformly distributed positive total charge Q. Calculate 
the electric field due to the ring at a point P lying a distance x from its center 
along the central axis perpendicular to the plane of the ring (Fig. 10). 
 
Solution The magnitude of the electric field at P due to the segment of charge 
dqis 

dE= kedq/r2 

 
This field has an x component dEx=dEcosθ along the axis and a component dE┴ 

perpendicular to the axis. As we see in Figure 10b, however, the resultant field at 
P must lie along the x axis because the perpendicular components of all the 
various charge segments sum to zero. That is, the perpendicular component of 
the field created by any charge element is canceled by the perpendicular 
component created by an element on the opposite side of the ring. Because and 
r=(x2+a2)1/2 and cosθ= x/r, we find that 
 

dEx=dEcosθ =(kedq/ r 2)x/r=kexdq/(x2 +a2 )3/2 
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Figure 10 A uniformly charged ring of radius a. (a) The field at P on the x axis due to an elementof 
charge dq. (b) The total electric field at P is along the x axis. The perpendicular component ofthe field at 
P due to segment 1 is canceled by the perpendicular component due to segment 2. 

 
All segments of the ring make the same contribution to the field at P because they 
are all equidistant from this point. Thus, we can integrate to obtain the total field 
at P : 

Ex=∫kexdq/ (x2 +a2 )3/2= {kex / (x2+a2 )3/2}∫dq 
 

Ex=kexQ / (x2+a2 )3/2 

This result shows that the field is zero at x =0 
 
HOME WORKE:- A disk of radius R has a uniform surface charge لا density σ 
.Calculate the electric field at a point P that lies along the central perpendicular 
axis of the disk and a distance x from the 
center of the disk . 
 
ELECTRIC FIELD LINES 
Rules for drawing electric field lines 
• The lines must begin on a positive charge and terminate on a negative  charge. 
• The number of lines drawn leaving a positive charge or approaching a negative 
charge is proportional to the magnitude of the charge. 
• No two field lines can cross. 
 
MOTION OF CHARGED PARTICLES IN AUNIFORM ELECTRIC FIELD 
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When a particle of charge q and mass m is placed in an electric field E, the 
electric force exerted on the charge is qE. If this is the only force exerted on the 
particle, it must be the net force and so must cause the particle to accelerate. In 
this case, Newton’s second law applied to the particle gives 

Fe=qE=ma 
The acceleration of the particle is therefore 

a=qE /m 
If E is uniform (that is, constant in magnitude and direction), then the 
accelerationis constant. If the particle has a positive charge, then its acceleration 
is in thedirection of the electric field. If the particle has a negative charge, then its 
accelerationis in the direction opposite the electric field. 
 
EXAMPLE 23.11:-An electron enters the region of a uniform electric field 
(electric field in the positive y direction and the acceleration of the electron is in 
the negative direction), with vi =3x106m/s  and E=200N/C. The horizontal length of 
the plates is L=0.100 m. (a) Find the acceleration of the electron while it isin the 
electric field. 
 
Solution :The charge on the electron has an absolutevalue of  
1.60 x10-19C, and m=9.11x10 -31kg.Therefore, 
 

a= -eEj /m=-(1.60 x10 -19C)(200N/C)j/( 9.11x10 -31kg) 
a=-3.51 x1013j m/s2 

(b) Find the time it takes the electron to travel through 
the field. 
Solution:The horizontal distance across the field is l= 0.100 m. we find that 
thetime spent in the electric field is 
 
t =l/vi= 0.100 m/3.00x106 m/s=3.33 x10-8s 
 
 

******                        ******                              ******* 
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SUMMARY 
Electric charges have the following important properties: 
• Unlike charges attract one another, and like charges repel one another. 
• Charge is conserved. 
• Charge is quantized. 
 
Conductorsare materials in which charges move freely. Insulators are materials 
in which charges do not move freely. 
Coulomb’s lawstates that the electric force exerted by a charge q1 on a second 
chargeq2 is: 

F12= keq1q2rˆ/r2 
wherer is the distance between the two charges andrˆ is a unit vector directed 

fromq1 to q2 . The constant ke, called the Coulomb constant, has the value 
ke= 8.987 5 x109 N.m2/C2 

 
The smallest unit of charge known to exist in nature is the charge on an electron 
or proton: 

|e|=1.60219 x10-19 C 
 
The electric field E at some point in space is defined as the electric force Fe 
that acts on a small positive test charge placed at that point divided by the magnitudeof the 
test charge q0 : 

E ≡ Fe/q0 

 
At a distance r from a point charge q, the electric field due to the charge is given 
by: 

E= keqrˆ/r2 
whereˆr is a unit vector directed from the charge to the point in question. The 
electric field is directed radially outward from a positive charge and radially inward toward a 
negative charge 
 
The electric field due to a group of point charges can be obtained by using 
the superposition principle. That is, the total electric field at some point equals the vector 
sum of the electric fields of all the charges: 

E= keΣiqiriˆ/ri2 

The electric field at some point of a continuous charge distribution is 
E= ke∫dqrˆ/r2 

wheredqis the charge on one element of the charge distribution and r is the distancefrom the 
element to the point in question. 
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Electric field lines describe an electric field in any region of space. The numberof lines per unit 
area through a surface perpendicular to the lines is proportionalto the magnitude of E in that 
region. 
A charged particle of mass m and charge q moving in an electric field E has acceleration 

a=qE /m 
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C H A P T E R TWO (GAUSS’S LAW) 
 

In the preceding chapter we showed how to use Coulomb’s law to calculate the 
electric field generated by a given charge distribution. In this chapter, we describe 
Gauss’s law and an alternative procedure for calculating electric fields. 
ELECTRIC FLUX 
Consider an electric field that is uniform in both magnitude and direction, as 
shown in Figure 2.1.The product of the magnitude of the electric field E and 
surface area A perpendicular to the field is called the electric fluxΦE 

 ΦE=EA(2.1) 
From the SI units of E and A, we see that ΦE has units of (N.m2/C).Electric flux is 
proportional to the number of electricfield lines penetrating some surface. 
 
 
 
 
 
Figure 2.1 Field lines representing 
a uniform electric field penetrating a plane of 
area A perpendicular to the field. The electric 
flux ΦE through this area is equal 
toEA. 
 
 
 
 
EXAMPLE1: 
What is the electric flux through a sphere that has a radius of 1.00 m and carries a 
charge of +1.00 µC at its center? 
 
Solution The magnitude of the electric field 1.00 m from this charge is given by 
equation  

E=
ke |q| 
𝑟𝑟2

= (8.99 x109 N.m2/C2 ) (1.0 x 10-6 C)/ (1.00 m)2 

E1=8.9x103N/C 
The field points radially outward and is therefore everywhereperpendicular to the 
surface of the sphere. The flux through the sphere (whose surface  
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areaA=4πr2=(12.6m2) is thus 
ΦE=EA= (8.9x103N/C)  (12.6m2) 

 =1.13 x105 N.m2/C 
 
Home work:What would be the (a)electric field and (b) flux 
through the sphere if it had a radius of 0.500 m? 

 
***        ***           *** 

 
If the surface under consideration is not perpendicular to the field, the flux 
through it must be less than that given by Equation 2.1.From Figure 2.2 we see 
that the two areas are related by Ả= A cosθ. Because the flux through A equals 
the flux through Ả, weconclude that the flux through A is 
ΦE=E Ả =EA cosθ 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2 Field lines representing auniform electric field penetrating an area Athat is at an angle θ to 
the field. Because the  number of lines that go through the area Ả is the same as the number that go 
through A, the flux through Ảis equal to the flux through A and is given by  
ΦE = EA cosθ  
 

From this result, we see that the flux through a surface of fixed area A has a 
maximum value EA when the surface is perpendicular to the field (in other words, 

when the normal to the surface is parallel to the field, that is,  
θ=0 in Figure 2.2); the flux is zero when the surface is parallel to the field (in other 
words, when the normal to the surface is perpendicular to the field, that is, θ=90. 
In more general consider a surface divided up into a large number of small 
elements (Figure 2.3) 
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ΦE =∫surface E.dA       (Definition of electric flux) 

 
The net flux through the surface is proportional to the net number of lines leaving 
the surface.If more lines are leaving than entering, the net flux is positive. If more 
lines are entering than leaving, the net flux is negative.  
we can write the net flux ΦEthrough a closed surface as 
 

ΦE=∫E.dA=∫EndA                    (2.2) 
 

Where Enrepresents the component of the electric field normal to the surface. 
 
 
 
 
Figure 2.3 a small element of surface area ∆Ai. The electric field 
makes an angle θwith the vector ∆Ai , defined as being normal to 
the surface element, and the flux 
through the element is equal to Ei∆Ai cos . 

EXAMPLE 2:-Consider a uniform electric field E oriented in the x direction.Find 
the net electric flux through the surface of a cubeof edgesL, oriented as shown in 
Figure 2.4. 
 
Solution :The net flux is the sum of the fluxes through allfaces of the cube. First, 
note that the flux through four of the faces (3),(4), and the unnumbered ones) is 
zero because E is perpendicular to dAon these faces. 
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Figure 2.4A closed surface inthe shape of a cube in a uniform electric field oriented parallel to the x 
axis.  
The net flux through faces 1and2 is 

ΦE = ∫1E.dA+∫2E.dA 
 
For face(1),E is constant and directed inward but dA1 is directed 
Outward(θ=180); thus, the flux through this face is 

∫1 E.dA=∫1  E.(cos180)dA=-E∫1dA=-EA=-EL2 

 
Because L2 the area of each face isA=L2 

 
For face(2) ,E is constant and outward and in the same direction 
asdA2(θ=0); hence, the flux through this face is 

∫2 E.dA=∫2 E.(cos0)dA=-E∫2 dA=+EA=EL2 

 
Therefore, the net flux over all six faces is 

ΦE =-EL2+EL2+0 +0 + 0 +0=0 
 

GAUSS’S LAW 
Consider a positive point charge q located at the center of a sphere of radius r, as 
shown in Figure 2.5. From Equation (E= ke|q| /r 2) we know that themagnitude of 
the electric field everywhere on the surface of the sphere  
As noted in Example 2.1, the field lines are directed radially outward and hence 
perpendicular to the surface at every point on the surface. That is, at 
each surface point, E is parallel to the vector ∆Airepresenting a local element of 
area ∆Aisurrounding the surface point. Therefore, 

Ei.∆Ai =Ei∆Ai 

and from Equation 2.2 we find that the net flux through the gaussian surface is  
ΦE = ∫E.dA =∫EdA=E∫dA 
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Figure 2.5A spherical Gaussian surface of radius r surrounding 
apoint charge q. When the charge is 
at the center of the sphere, theelectric field is everywhere 
normalto the surface and constant in magnitude 

where we have moved E outside of the integral because, by symmetry, E is 
constant over the surface and given by E= keq/r 2.Furthermore, because the 
surface is spherical, Hence, the net flux through the gaussian surface is 

ΦE =
ke q (4π𝑟𝑟2) 

𝑟𝑟2 =4 π keq=
q
€0

→(because ke=1/4π€0) 

 
We can verify that this expression for the net flux gives the same result as 
Example 1: 
 
 
Home work:  
Suppose that the charge in Example 24.1 is just outside the sphere, 1.01 m from 
its center. What is the total flux through the sphere? 
 
 
Notes:- 
1- the net flux through any closed surface is 

ΦE = ∫E.dA= = q
€0

          (Gauss’s law ) 
2-the net electric flux through a closed surface thatsurrounds no charge is zero. 
3-the electric field due to many charges is the vector sum of the electric fields 
produced by the individual charges 
 

∫E.dA =∫(E1+E2+………).dA 
5-Gauss’s law is useful for evaluating E when the charge distribution has high 
symmetry 
6-The net electric fluxthrough any closed surface depends 
only on the charge insidethat surface(see figure 2.6). 
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Figure 2.6The net flux throughsurface S is q1/ €0         , 
the net fluxthrough surface S\isq1+q2/ €0 and the net flux 
through surfaceS\\is zero. 
 
 

 
 
 
 
 
Home work:  
For a gaussian surface through which the net flux is zero, the following four 
statements could be true. Which of the statements must be true? (a) There are 
no charges inside the surface. (b) The net charge inside the surface is zero. (c) 
The electric field is zero everywhere on the surface. (d) The number of electric 
field lines entering the surface equals the numberleaving the surface 
 
 
EXAMPLE 2.3 :A spherical gaussian surface surrounds a point charge q. 
Describewhat happens to the total flux through the surface if(a) the charge is 
tripled, (b) the radius of the sphere is doubled,(c) the surface is changed to a 
cube, and (d) the chargeis moved to another location inside the surface. 
Solution (a)The flux through the surface is tripledbecause flux is proportional to 
the amount of charge insidethe surface. 
(b) The flux does not change because all electric field lines from the charge pass 
through the sphere, regardless ofits radius. 
(c) The flux does not change when the shape of the Gaussian surface changes 
because all electric field lines from thecharge pass through the surface, regardless 
of its shape. 
(d) The flux does not change when the charge is moved 
to another location inside that surface because Gauss’s law 
refers to the total charge enclosed, regardless of where the 
charge is located inside the surface. 
 
EXAMPLE 2.4:- Starting with Gauss’s law, calculate the electric field due to 
anisolated point charge q. 
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Solution :We choose aspherical gaussian surface of radius r centered on the 
pointcharge, as shown in Figure 2.7 .The electric field due to apositive point 
charge is directed radially outward by symmetryand is therefore normal to the 
surface at every point(E is parallel to dAat each point). Therefore,E.dA= EAand 
Gauss’s law gives 

ΦE = ∫E.dA =∫EdA= q
€0

 
 
 

Figure 2.7The point charge q is at the center of the 
sphericalgaussian surface, and E is parallel to dAat every 
point on thesurface. 

By symmetry, E is constant everywhere on the surface, so it can be removed from 
the integral.Therefore, 
∫EdA =E∫dA=E(4π r 2)= q

€0
 

 
E= 

q
(4π𝑟𝑟2) €0 

 
E=keq/r 2 

 

This is the familiar electric field due to a point charge that wedeveloped from 
Coulomb’s law in Chapter 1. 
 
EXAMPLE 2.5:-An insulating solid sphere of radius a has a uniform volume 
charge density ρ and carries a total positive charge Q (Fig. 2.8).  
(a) Calculate the magnitude of the electric field at a point outside the sphere. 
 
Solution :Because the charge distribution is spherically symmetric, we again select 
a spherical gaussian surface of radius r, concentric with the sphere, as shown in 
Figure 2.7a.for the point charge in Example 2.4. we find that 

E=keQ/r 2→(for r>a) 
 

Note that this result is identical to the one we obtained for apoint charge. 
Therefore, we conclude that, for a uniformly charged sphere, the field in the 
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region external to the sphereis equivalent to that of a point charge located at the 
center ofthe sphere. 
 
(b) Find the magnitude of the electric field at a point inside the sphere. 
Solution: In this case we select a spherical gaussian surface having radius (r <a), 
concentric with the insulated sphere(Fig. 2.8b). Let us denote the volume of this 
smaller sphere by V\. To apply Gauss’s law in this situation, it is importantto 
recognize that the charge qin within the Gaussian surface of volume V\is less than 
Q. To calculate qin , we usethe fact thatqin=ρV\ 
 

qin=ρ V\= ρ (4
3
π r 3) 

By symmetry, the magnitude of the electric field is constant everywhere on the 
spherical gaussian surface and is normalto the surface at each point. Therefore, 
Gauss’s law in the region r <a gives 

∫EdA =E∫dA=E(4π r 2)=
𝑞𝑞in
€0

 
 
Solving for E gives 

E=
𝑞𝑞in

4𝜋𝜋𝑟𝑟2€0
= 
ρ (43π𝑟𝑟

3)

4𝜋𝜋𝑟𝑟2€0
 = ρ r
3€0

 
 
Because ρ=Q/ (4

3
πa3)by definition and since ke=1/4π€0, this expression for E can 

be written as 

E=
𝑄𝑄𝑄𝑄

4𝜋𝜋𝑎𝑎3€0
= k Q r

𝑎𝑎3
→(for r<a) 
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Figure 2.8A uniformly charged insulating sphere of radius aand total charge Q. (a) The 
magnitude of the electric field at a pointexterior to the sphere is keQ/r 2 (b) The magnitude of 
the electricfield inside the insulating sphere is due only to the charge within thegaussian sphere 
is keQr/a3. 

 
 
EXAMPLE 2.6:- A thin spherical shell of radius a has a total charge Q 
distributed uniformly over its surface (Fig. 2.9). Find the electric field at points 
(a) outside and (b) inside the shell. 

 
Solution:(a) The calculation for the field outside the shellis identical to  
 
that for the solid sphere shown in Example2.5a. Therefore,  
 

E=keQ/r 2→(for r>a) 
 
(b) The electric field inside the spherical shell is zero.Because of the spherical 
symmetry of the charge distribution and because the net charge inside the 
surface is zero. 
Shows that E =0 in the region r <a. We obtain the same results using Equation (E= 
ke∫dq/r2) from chapter one and integrating over the charge distribution( Gauss’s 
law allows us to determine these results in a much simpler way). 
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Figure 2.9(a) The electric field inside a uniformly charged spherical shell is zero. The 
fieldoutside is the same as that due to a point charge Q located at the center of the shell. (b) 
Gaussiansurface for r >a. (c) Gaussian surface for r <a. 

 
 
 

EXAMPLE 2.7:- Find the electric field a distance r from a line of positive charge 
of infinite length and constant charge per unit lengthλ(Fig. 2.10). 
 
Solution :we select a cylindrical gaussian surface of radius r and length Lthat is 
coaxialwith the line charge. For the curved part of this surface, E is 
constant in magnitude and perpendicular to the surface at each point.  
Furthermore,the flux through the ends of the gaussian cylinder is 
zero because E is parallel to these surfaces. 
The total charge inside our gaussian surface is λL. ApplyingGauss’s law we find 
that forthe curved surface 

ΦE = ∫E.dA =E∫dA=EA=qin/€0 = λL
€0

 
 
The area of the curved surface A=2 πrL; is therefore, 
 

E= λ
2 π€0r

 =2k λ
r
 

 
Thus, we see that the electric field due to a cylindrically symmetriccharge 
distribution varies as 1/r, whereas the field externalto a spherically symmetric 
charge distribution varies as1/r 2. 
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Figure 2.10An infinite line of charge surrounded by a cylindricalgaussian surface concentric 
with the line. 

 
 

 
EXAMPLE 2.8:- Find the electric field due to a nonconducting, infinite plane of 
positive charge with uniform surface charge density σ. 

 
Solution :By symmetry, E must be perpendicular to theplane and must have the 
same magnitude at all pointsequidistant from the plane. The fact that the 
direction of E isaway from positive charges indicates that the direction of Eon one 
side of the plane must be opposite its direction on the 
other side, as shown in Figure 2.11. The flux through each end of the cylinder is 
EA;hence, the total flux through the entire gaussian surface isjust that through 
the ends,ΦE=2EA. 
Noting that the total charge inside the surface is qin=σA,we use Gauss’s law and 
find that 
 
ΦE=2EA=qin/€0=σA /€0 
E=σ / 2€0                 →(*) 
Because the distance from each flat end of the cylinder tothe plane does not 
appear in Equation (*), we conclude thatE=σ / 2€0 at any distance from the 
plane. That is, the field isuniform everywhere 
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Figure 2.11 A cylindrical gaussian surface penetrating an infiniteplane of charge. The flux is EA 
through each end of the gaussiansurface and zero through its curved surface. 

 
 

EXAMPLE 2.9:-Explain why Gauss’s law cannot be used to calculate the electric 
field near an electric dipole,a charged disk, or a triangle with a point charge at 
each corner. 

 
Solution The charge distributions of all these configurations do not have 
sufficient symmetry to make the use of Gauss’s law practical. We cannot find a 
closed surface surroundingany of these distributions. 
 
CONDUCTORS IN ELECTROSTATIC EQUILIBRIUM 
When there is no net motion of charge within a conductor, the conductor 
is in electrostatic equilibrium. As we shall see, a conductor in electrostatic 
equilibrium has the following properties: 
1. The electric field is zero everywhere inside the conductor. 
2. If an isolated conductor carries a charge, the charge resides on its surface. 
3. The electric field just outside a charged conductor is perpendicular to the 
surfaceof the conductor and has a magnitude σ /€0 , whereσis the surface 

chargedensity at that point(ΦE = ∫E.dA=EA=qin/€0=σA /€0where we have used 
the fact that qin=σA. Solving for E gives E=σ /€0). 
 
4. On an irregularly shaped conductor, the surface charge density is greatest at 
locationswhere the radius of curvature of the surface is smallest. 

 
EXAMPLE 2.10:-A solid conducting sphere of radius a carries a net 
positivecharge 2Q. A conducting spherical shell of inner radius band outer radius 
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cis concentric with the solid sphere and carriesa net charge -Q. Using Gauss’s law, 
find the electricfield in the regions labeled (1),(2),(3) and(4) in Figure 2.12and the 
charge distribution on the shell when the entire systemis in electrostatic 
equilibrium. 
 
Solution : To determine the electricfield at various distances r from this center, 
we construct aspherical gaussian surface for each of the four regions of interest. 
 
To find E inside the solid sphere (region (1)), consider a gaussian surface of radius 
r <a. Because there can be nocharge inside a conductor in electrostatic 
equilibrium, we seethat qin=0; thus, on the basis of Gauss’s law and symmetry 
E1=0,forr<a. 
In region (2)between the surface of the solid sphere andthe inner surface of the 
shell—we construct a sphericalgaussian surface of radius r where  
a <r <b and note that thecharge inside this surface is +2Q. Because of the 
spherical symmetry, the electric field lines must be directed radially outward and 
be constant inmagnitude on the gaussian surface. Following Example 2.4and using 
Gauss’s law, we find that : 

E2A=E2(4πr2)=qin/€0=2Q/€0    (fora <r <b) 
 
(In region(4), where r >c, the spherical gaussian surfacewe construct surrounds a 
total charge ofqin =2Q+(-Q)=Q. Therefore, application of Gauss’s law tothis 
surface gives 
 

E4=kQ/r2    (for r>c) 
 

In region (3), the electric field must be zero because thespherical shell is also a 
conductor in equilibrium. If we constructa gaussian surface of radius r where b<r 
<c, we seethat qin must be zero because E3=0 From this argument, weconclude 
that the charge on the inner surface of the sphericalshell must be -2Q to cancel 
the charge +2Q on the solid 
sphere. Because the net charge on the shell is -Q, we concludethat its outer 
surface must carry a charge+Q. 
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Figure 2.12A solid conducting sphere of radius a and carrying acharge 2Q surrounded by a 
conducting spherical shell carrying acharge -Q. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SUMMARY 
Electric flux is proportional to the number of electric field lines that penetrate a 
surface. If the electric field is uniform and makes an angle θwith the normal to a 
surface of area A, the electric flux through the surface is 
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ΦE=EAcosθ(1) 
In general, the electric flux through a surface is 

ΦE = ∫E.dA    (2) 
You need to be able to apply Equations 1 and 2 in a variety of situations, particularlythose in 
which symmetry simplifies the calculation. 
Gauss’s law says that the net electric flux ΦEthrough any closed gaussian surfaceis equal to 

the net charge inside the surface divided by €𝟎𝟎: 

ΦE = ∫E.dA =qin/€𝟎𝟎 
Using Gauss’s law, you can calculate the electric field due to various symmetric 

charge distributions. Table 24.1 lists some typical results. 
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C H A P T E R THREE (Electric Potential) 
 

POTENTIAL DIFFERENCE AND ELECTRIC POTENTIAL 
The potential energy of the charge–field system is decreased by an amount  
(dU = -q0E.ds).  For a finite displacement of the charge from a point A to a point B, 
the change in potential energy of the system ∆U =UB - UA is 

       (3.1)   
Because the force q0E is conservative, this line integral does not depend on the 
path taken from A to B. 
 
The potential energy per unit charge U/q0 is independent of the value of q0 
and has a unique value at every point in an electric field. This quantity U/q0 is 
called the electric potential (or simply the potential) V. Thus, the electric potential 
at any point in an electric field is 

V =U/q0                    (3.2) 
 

The potential difference ∆V = VB -VA between any two points A and B in an electric 
field is defined as the change in potential energy of the system divided by the test 
charge q0 : 

               (3.3) 
the potential difference is proportional to the change in potential energy, and we 
see from Equation 3.3  

∆U =q0∆V 
 

-Electric potential is a scalar characteristic of an electric field, independent of 
the charges that may be placed in the field.  
 
-The electric potential at an arbitrary point in an electric field equals the work 
required per unit charge to bring a positive test charge from infinity to that 
point.  
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Thus, if we take point A in Equation 3.3 to be at infinity, the electric potential at 
any point P is 

Vp = - ∫  E. ds               (3.4) 
 
In reality, Vp represents the potential difference ∆V between the point P and a 
point at infinity. Because electric potential is a measure of potential energy per 
unit charge, the SI unit of both electric potential and potential difference is joules 
per coulomb, which is defined as a volt (V): 
That is, 1 J of work must be done to move a 1-C charge through a potential 
difference of 1 V. 

1 V= 1 J 
C

 

Equation 3.3 shows that potential difference also has units of electric field 
times distance. From this, it follows that the SI unit of electric field (N/C) can also 
be expressed in volts per meter: 

1 
N
C

 =1 
V 
m

 

 
Because 1 V =1 J/C and because the fundamental charge is approximately1.6 x10-

19 C the electron volt is related to the joule as follows: 
 

1 eV =1.60 x10-19 C.V =1.60 x10-19 J 
 
 
POTENTIAL DIFFERENCES IN A UNIFORM ELECTRIC FIELD 
Consider a uniform electric field directed along the negative y axis, as shown in 
Figure 3.1. Let us calculate the potential difference between two points A and B 
separated by a distance d, where d is measured parallel to the field lines. 
Equation 3.3 gives  
 

 
 
Because E is constant, we can remove it from the integral sign; this gives 
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→(3.6) (Potential difference in a uniform electric field) 
 

The minus sign indicates that point B is at a lower electric potential than point A; 
that is VB < VA. 
 Electric field lines always point in the direction of decreasing electric potential, 
as shown in Figure 3.1a.  
 
Now suppose that a test charge q0 moves from A to B. We can calculate the 
change in its potential energy from Equations 3.3 and 3.6: 
 

∆U = q0∆V = - q0E d  →(3.7)         
 

 
 
 
Figure 3.1 When the electric field E is directed downward, point B is at a lower electric potential than 
point A. Apositive test charge that moves from point A to point B loses electric potential energy.  
 
Note 
1- A positive charge loses electric potential energy when it moves in the 
direction of the electric field 



4 
 

2- As the charged particle gains kinetic energy, it loses an equal amount of 
potential energy. 
3- A negative charge gains electric potential energy when it moves in the 
direction of the electric field 
4- The name equipotential surface is given to any surface consisting of a 
continuous distribution of points having the same electric potential.   
EXAMPLE 3.1:- A 12-V battery is connected between two parallel plates, as 
shown in Figure 3.2. The separation between the plates is d = 0.30 cm, and we 
assume the electric field between the plates to be uniform. Find the magnitude of 
the electric field between the plates. 
 
Solution: The magnitude of the electric field between the plates is, from Equation 
3.6, 
 
E= |𝑉𝑉𝑉𝑉 − 𝑉𝑉𝑉𝑉 |  

d
= 12V  
0.3𝑥𝑥10−2

= 4.0x103 V/m 
 
This configuration, which is shown in Figure  3.2 and called a parallel-plate 
capacitor. 
 
 
 
 
Figure 3.2 A 12-V battery connected to two parallel plates. The 
electric field between the plates has a magnitude given by the 
potential difference ∆V divided by the plate separation d. 
 

 
 
 
EXAMPLE 3.2:- A proton is released from rest in a uniform electric field that has 
a magnitude of 8.0 X104 V/m and is directed along the positive x axis (Fig. 3.3). 
The proton undergoes a displacement of 0.50 m in the direction of E. (a) Find the 
change in electric potential between points A and B. 
Solution Because the proton (which, as you remember, carries a positive charge) 
moves in the direction of the field, we expect it to move to a position of lower 
electric potential. From Equation 3.6, we have 
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∆V =-Ed =-(8.0 x104 V/m)(0.50 m) 
 =-4x104V 
 
 
 
 
(b) Find the change in potential energy of the proton for this displacement. 
 
Solution:- 
 

∆U = q0∆V =e∆V 
     =(1.6x10-19C)(- 4X104V) 
     = -6.4X10-15J 
 
The negative sign means the potential energy of the proton decreases as it moves 
in the direction of the electric field.  
 
 
 
 
 
 
Figure 3.3 A proton accelerates from A to  B in the 
direction of the electric field.        
 
 

 
 
 
 
ELECTRIC POTENTIAL AND POTENTIAL ENERGY DUE TO POINT CHARGES 
Consider an isolated positive point charge q. To find the electric potential at a 
point located a distance r from the charge 
 

VB -VA = - ∫  E.ds 
where A and B are the two arbitrary points .At any field point, the electric field 
due to the point charge is E = ke qrˆ/r2 where rˆ is a unit vector directed from the 
charge toward the field point. The quantity E.ds can be expressed as  
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E.ds =ke  
q 
𝑟𝑟2

 rˆ.ds 

Because the magnitude of rˆ is 1, the dot product  rˆ.ds=ds cosθ  where θ  is the 
angle between  rˆ and ds. thus, ds cosθ =dr. That is, any displacement ds along the 
path from point A to point B produces a change dr in the magnitude of r. Making 
these substitutions, we find that hence, the expression for the potential 
difference becomes 

→(3.10) 
 

The integral of E.ds is independent of the path between points A and B—as it 
must be because the electric field of a point charge is conservative.  
 
-The electric potential created by a point charge at any distance r from the charge 
is 

V= keq/r   →(3.11) 
For a group of point charges, we can write the total electric potential at P in the 
form ( Electric potential due to several point charges) 

  →(3.12) 
where the potential is again taken to be zero at infinity and ri is the distance from 
the point P to the charge qi . 
 
 
we can express the potential energy or Electric potential energy due to two 
charges as 

 
the total potential energy of the system of three charges shown in Figure 3.4 is 

          →(3.13) 
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Figure 3.4Three point charges are fixed at the positions shown. The potential energy of this 
system of charges is given by Equation 3.13.  
 
 
EXAMPLE 3.3:-A charge q1=2.00 µC is located at the origin, and a charge q2=-
6.00 C is located at (0, 3.00) m, as shown in Figure 3.5a. (a) Find the total electric 
potential due to these charges at the point P, whose coordinates are (4.00, 0) m. 
 
Solution For two charges, the sum in Equation 3.12 gives 
 
 

 
(b) Find the change in potential energy of a 3.00µC charge as it moves from 
infinity to point P (Fig. 3.6b). 
 
Solution When the charge is at infinity,Ui=0 , and when the charge is at P, Uf=q3Vp; 
therefore, 
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Figure 3.5  (a) The electric potential at P due to the two charges is the algebraic sum of the potentials 
due to the individual charges. (b) What is the potential energy of the three-charge system? 
 
 
 
 
OBTAINING THE VALUE OF THE ELECTRIC FIELD FROM THE ELECTRIC POTENTIAL 
From Equation 3.3 we can express the potential difference dV between two 
points a distance ds apart as  

→(3.14) 
If the electric field has only one component Ex , then E. ds =  Ex dx 

 Therefore, Equation 3.14 becomes dV= - Ex dx or 

_ _ (3.15) 
 
If the charge distribution creating an electric field has spherical symmetry 
such that the volume charge density depends only on the radial distance r, then 
the electric field is radial. In this case, E. ds =  Er dr ,and thus we can express dV in 
the form dV=- Er dr ,Therefore, 
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_ _ (3.16) 
 
 
(Note:- equipotential surfaces are perpendicular to field lines) 
When a test charge undergoes a displacement  ds along an equipotential 
surface, then dv=0 because the potential is constant along an equipotential 
surface. From Equation 3.14, then, dV= - E. ds  ; thus, E must be perpendicular 
to the displacement along the equipotential surface .This shows that the 
equipotential surfaces must always be perpendicular to the electric field lines.  
 
  In general, the electric potential is a function of all three spatial coordinates. If 
V(r) is given in terms of the cartesian coordinates, the electric field components Ex 
, Ey , and Ez can readily be found from V(x, y, z) as the partial derivatives 
 

 
 
EXAMPLE 3.4:- An electric dipole consists of two charges of equal magnitude 
and opposite sign separated by a distance 2a, as shown in Figure 3.6. The dipole is 
along the x axis and is centered at the origin. (a) Calculate the electric potential at 
point P. 
Solution:- For point P in Figure 3.7 

 
(b) Calculate V and Ex at a point far from the dipole. 
Solution If point P is far from the dipole, such that x>>a then a2 can be neglected 
in the term x2- a2  and V becomes   
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Using Equation 3.15 and this result, we can calculate the electric field at a point 
far from the dipole: 

 
 (c) Calculate V and Ex if point P is located anywhere between the two charges. 
Solution:- 

 
 

  

 
Figure 3.6 An electric dipole located on the x axis 

 
ELECTRIC POTENTIAL DUE TO CONTINUOUS CHARGE 
DISTRIBUTIONS 
The electric potential dV at some point P due to the charge element dq is 

 
 where r is the distance from the charge element to point P. in general, a 
different distance from point P and because ke is constant, we can express V as 
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Figure 3.7 The electric potential at the point P due to a continuous 
charge distribution can be calculated by dividing the charged body 
into segments of charge dq and summing the electric potential 
contributions over all segments. 
 
EXAMPLE 3.5:- (a) Find an expression for the electric potential at a point P located 
on the perpendicular central axis of a uniformly charged ring of radius a and total 
charge Q. 
Solution Let us orient the ring so that its plane is perpendicular 
to an x axis and its center is at the origin. We can then take point P to be at a 
distance x from the center of the ring, as shown in Figure 3.8. The charge element 
dq is at a distance  from point P. Hence, we can express V as: 

 
Because each element dq is at the same distance from point P, we can remove 

 from the integral, and V reduces to 

     (3.17) 
The only variable in this expression for V is x. This is not surprising because our 
calculation is valid only for points along the x axis, where y and z are both zero. 
(b) Find an expression for the magnitude of the electric field at point P. 

 
Solution From symmetry, we see that along the x axis E can have only an x 
component. Therefore, we can use Equation 3.15: 
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Figure 3.8  A uniformly charged ring of radius a lies in a plane 
perpendicular to the x axis. All segments dq of the ring are the 
same distance from any point P lying on the x axis 

 
 
 

EXAMPLE 3.6:- Find (a) the electric potential and (b) the magnitude of the 
electric field along the perpendicular central axis of a uniformly charged disk of 
radius a and surface charge density σ. 

 
 

Solution (a) Again, we choose the point P to be at a distance x from the center of 
the disk and take the plane of the disk to be perpendicular to the x axis. We can 
simplify the problem by dividing the disk into a series of charged rings. The 
electric potential of each ring is given by Equation 3.17. Consider one such ring of 
radius r and width dr, .The surface area of the ring is dA =2πr dr ;and  
dq=σdA=σ2πr dr 

 
the potential at the point P due to this ring is 
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To find the total electric potential at P, we sum over all rings making up the disk. 
That is, we integrate dV from r = 0 to r = a 

 
This integral is of the form un du and has the value un+1/(n+1), where n=-1/2 and 
u=r2+x2 .This gives 

 

 
 

(b) As in Example 3.5, we can find the electric field at any axial point from 

 
 

 
 

Figure 3.9  A uniformly charged disk of radius a lies in a plane perpendicular to the x axis. The 
calculation of the electric potential at any point P on the x axis is simplified by dividing the disk into 
many rings each of area 2πr dr. 
 
EXAMPLE 3.7:- A rod of length L located along the x axis has a total charge Q 
and a uniform linear charge density λ= Q/L . Find the electric potential at a point P 
located on the y axis a distance a from the origin  
(Fig. 3.10). 
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Solution The length element dx has a charge dq = λ dx. Because this element is a 
distance r =√𝑥𝑥2 + 𝑎𝑎2 from point P, we can express the potential at point P due to 
this element 

 

 
To obtain the total potential at P, we integrate this expression over the limits x = 0 
to x=L . Noting that ke and λ are constants, we find that 

 

 
This integral has the following value 

 

 
 

Evaluating V, we find that 

 
 
 
 
 
Figure 3.10 A uniform line charge of length located along the x 
axis. To calculate the electric potential at P, the line charge is 
divided into segments each of length dx and each carrying a 
charge 
dq =λ dx. 

 
 
EXAMPLE 3.7:- An insulating solid sphere of radius R has a uniform positive 
volume charge density and total charge Q. (a) Find the electric 
potential at a point outside the sphere, that is, for r >R.Take the potential to be 
zero at r =∞ 
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Solution:- In Example 2.5, we found that the magnitude of the electric field 
outside a uniformly charged sphere of radius R is 

 
 
where the field is directed radially outward when Q is positive. In this case, to 
obtain the electric potential at an exterior point, such as B in Figure 3.11, we use 
Equation 3.4 and the expression for Er given above: 
 

 
 
Because the potential must be continuous at r = R, we can use this expression to 
obtain the potential at the surface of the sphere. That is, the potential at a point 
such as C shown in Figure 3.12 is  

 
 
 
Figure 25.11A uniformly charged insulating sphere of radius 
R and total charge Q. The electric potentials at points B and 
C are  equivalent to those produced by a point charge Q 
located at the center of the sphere 

 
 
 
ELECTRIC POTENTIAL DUE TO A CHARGED CONDUCTOR 
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every point on the surface of a charged conductor in equilibrium is at the same 
electric potential. Consider two points A and B on the surface of a charged 
conductor, as shown in Figure 3.12. Along a surface path 
connecting these points, E is always perpendicular to the displacement ds; 
therefore Using this result and Equation 3.3, we conclude that the potential 
difference between A and B is necessarily zero: 

 
 

This result applies to any two points on the surface. Therefore, V is constant 
everywhere on the surface of a charged conductor in equilibrium.  
 
 
 
Figure 3.12 An arbitrarily shaped conductor 
carrying a positive charge. 

 
 
 
 
Note:- 
1-The surface of any charged conductor in electrostatic equilibrium is an 
equipotential surface. Furthermore, because the electric field is zero inside the 
conductor, we conclude from the relationship that the electric potential is 
constant everywhere inside the conductor and equal to its value at the surface. 
2- the electric field is large near convex points having small radii of 
curvature and reaches very high values at sharp points. 
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SUMMARY 
When a positive test charge q0 is moved between points A and B in an electric 
field E, the change in the potential energy is 

 
The electric potential V=U/ q0 is a scalar quantity and has units of joules per 
coulomb ( J/C), where 1 J/C=1 V. 
The potential difference ∆V between points A and B in an electric field E is 
defined as 

 
The potential difference between two points A and B in a uniform electric 
field E is 

 
 
where d is the magnitude of the displacement in the direction parallel to E. 
  An equipotential surface is one on which all points are at the same electric 
potential. Equipotential surfaces are perpendicular to electric field lines. 
  If we define V=0 at rA=∞ the electric potential due to a point charge at 
any distance r from the charge is 
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We can obtain the electric potential associated with a group of point charges by 
summing the potentials due to the individual charges. 
  The potential energy associated with a pair of point charges separated by 
a distance r 12 is 

 
 
This energy represents the work required to bring the charges from an infinite 
separation to the separation r12 . We obtain the potential energy of a distribution 
of point charges by summing terms like Equation 3.12 over all pairs of particles. 

 
If we know the electric potential as a function of coordinates x, y, z, we can obtain 
the components of the electric field by taking the negative derivative of the 
electric potential with respect to the coordinates. For example, the x component 
of the electric field is 
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The electric potential due to a continuous charge distribution is 

  

Every point on the surface of a charged conductor in electrostatic equilibrium is at 
the same electric potential. The potential is constant everywhere inside the 
conductor and equal to its value at the surface. 
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C H A P T E R FOUR (CAPACITANCE AND DIELECTRICS) 
DEFINITION OF CAPACITANCE 
 
*Consider two conductor’s carrying charges of equal magnitude but of opposite 
sign. Such a combination of two conductors is called a capacitor. The conductors 
are called plates. 
 
*The capacitance C of a capacitor is the ratio of the magnitude of the charge on 
either conductor to the magnitude of the potential difference between them: 

 
Note that by definition capacitance is always a positive quantity 
 
*we see that capacitance has SI units of coulombs per volt.The SI unit of 
capacitance is the farad (F), which was named in honor of MichaelFaraday: 

 
The farad is a very large unit of capacitance. In practice, typical devices have 
capacitances ranging from microfarads (10-6 F) to picofarads (10-12 F). 
 
CALCULATING CAPACITANCE 
*We can calculate the capacitance of a pair of oppositely charged conductors, We 
assume a charge of magnitude Q , and we calculate the potential difference, We 
then use the expression C=Q/∆Vto evaluate the capacitance 
 
*We can calculate the capacitance of an isolated spherical conductor of radiusR 
and charge Q if we assume that the second conductor making up the capacitor isa 
concentric hollow sphere of infinite radius. The electric potential of the sphereof 
radius R is simply keQ/R, and setting V=0 at infinity as usual, we have 
 

 
 
This expression shows that the capacitance of an isolated charged sphere is 
proportional to its radius and is independent of both the charge on the sphere 
and the potential difference. 
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*The capacitance of a pair of conductors depends on the geometry of the 
conductors. Let us illustrate this with three familiar geometries, namely, parallel 
plates, concentric cylinders, and concentric spheres. In these examples, we 
assume that the charged conductors are separated by a vacuum. 
 
Parallel-Plate Capacitors 
The value of the electric field between the plates is 

 
Because the field between the plates is uniform, the magnitude of the potential 
difference between the plates equals Ed; therefore, 

 

 
Therefore the capacitance is 

 

            → (4.1) 
 

The capacitance of a parallel-plate capacitor is proportional to the area of its 
plates and inversely proportional to the plate separation 
 
EXAMPLE 4.1:-A parallel-plate capacitor has an area A =2.00 X10-4 m2and a 
plate separation d=1.00 mm. Find its capacitance.  
 
Solution from Equation 4.1, we find that 
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Exercise What is the capacitance for a plate separation of 3.00 mm? 
 
EXAMPLE 4.2:- A solid cylindrical conductor of radius a and charge Q is 
Coaxial with a cylindrical shell of negligible thickness, radius b >a and charge -Q 
(Fig. 4.1a). Find the capacitance of this cylindrical capacitor if its length is L. 
 
Solution:- If we assume that Lis much greater than a and b, we can 
Neglect end effects. In this case, the electric field is perpendicular to the long axis 
of the cylinders and is confined to the region between them (Fig. 4.1b). We must 
first calculate the potential difference between the two cylinders, which is given 
in general by 
 

 
where E is the electric field in the region  a <r< b In Chapter2, we showed using 
Gauss’s law that the magnitude of theelectric field of a cylindrical charge 
distribution having linearcharge densityλ is Er=2keλ/r. 
 
 

 
using the factthat we obtainλ=Q\L 
 

 
 

we see that the capacitance per unit length ofa combination of concentric 
cylindrical conductors is 
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Figure 4.1(a) A cylindrical capacitor consists of a solid cylindricalconductor of radius a and length 
Lsurrounded by a coaxial cylindricalshell of radius b. (b) End view. The dashed line represents theend of 
the cylindrical Gaussian surface of radius r and length L. 
 
 
EXAMPLE 4.3:-A spherical capacitor consists of a spherical conducting shell of 
radius b and charge-Q concentric with a smaller conducting 
Sphere of radius a and charge Q (Fig. 4.2). Find the capacitance of this device. 
 
Solution As we showed in Chapter 2, the field outside a spherically symmetric 
charge distribution is given by the expressionkeQ/r 2. In this case, this result 
applies to the field between the spheres (a <r <b). From Gauss’s law we see that 
only the inner sphere contributes to this field. Thus, the potential difference 
between the spheres is 
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Substituting this value for ∆V into Equation 4.1, we obtain 

 
 
 
Figure 4.2A spherical capacitor consists of an inner sphere of 
radiusa surrounded by a concentric spherical shell of radius b. 
Theelectric field between the spheres is directed radially outward 
whenthe inner sphere is positively charged. 

 
 
COMBINATIONS OF CAPACITORS: 
-Parallel Combination 
Two capacitors connected as shown in Figure 4.3a are known as a parallel 
combination of capacitors. The individual potential differences across capacitors 
connected in parallel are all the same and are equal to the potential difference 
applied across the combination. 
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Figure 4.3(a) A parallel combination of two capacitors in an electric circuit in which the 
potentialdifference across the battery terminals is ∆V. (b) The circuit diagram for the parallel 
combination.(c) The equivalent capacitance is Ceq=C1+C2 . 
 

 
The total charge Q stored by the two capacitors is: 

(4.2) 
That is, the total charge on capacitors connected in parallel is the sum of the 
charges on the individual capacitors. Because the voltages across the capacitors 
are the same, the charges that they carry are 

 

 
Suppose that we wish to replace these two capacitors by one equivalent 
capacitorhaving a capacitance Ceq , as shown in Figure 4.3c. The effect this 
equivalent capacitorhas on the circuit must be exactly the same as the effect of 
the combinationof the two individual capacitors.  

 

 
Substituting these three relationships for charge into Equation 4.2, we have 
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 (parallel combination) 
 

If we extend this treatment to three or more capacitors connected in parallel,we 
find the equivalent capacitance to be 

 

 
 

Thus, the equivalent capacitance of a parallel combination of capacitors is 
Greater than any of the individual capacitances. 
 
-Series Combination:- 

Two capacitors connected as shown in Figure 4.4a are known as a series 
combinationof capacitors. 

 
 
 

Figure 4.4 (a) A series combination of two capacitors. The charges on the two capacitors are 
the same. (b) The capacitors replaced by a single equivalent capacitor.  

 
 
 

the charges on capacitors connected in series are the same. 
 

From Figure 26.9a, we see that the voltage ∆V across the battery terminals issplit 
between the two capacitors: 
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where∆V1 and ∆V2 are the potential differences across capacitors C1 and C2 , 
respectively.In general, the total potential difference across any number of 
capacitors connected in series is the sum of the potential differences across the 
individual capacitors. 

 
Because we can apply the expression Q =C ∆Vto each capacitor shown in 
Figure4.4a, the potential difference across each is 
 
 

 
 
Therefore ∆V=Q /Ceq , 
 

 
Canceling Q , we arrive at the relationship 
 

 
 
When this analysis is applied to three or more capacitors connected in series, 
therelationship for the equivalent capacitance is 
 

 
 
EXAMPLE 4.4:-Find the equivalent capacitance between a and b for the 
combination of capacitors shown in Figure 4.5a. All capacitances are in 
microfarads. 
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Solution:-The 1.0µF and 3.0µF capacitors are in parallel and combine according to 
the expressionCeq= C1+C2=4.0F. The 2.0µF and 6.0µF capacitors also are in parallel 
and have an equivalent capacitance of 8.0 µF. Thus, the upper branch in Figure 
4.5b consists of two 4.0µF capacitors in series, which combine as follows: 
 

 
 

 

 
 

Figure 4.5To find the equivalent capacitance of the capacitors in part (a), 
wereduce the various combinations in steps as indicated in parts (b), (c), and (d), 
usingthe series and parallel rules described in the text. 

 
 
 

The lower branch in Figure 4.5b consists of two 8.0 µF capacitors in series, which 
combine to yield an equivalent capacitance of 4. µF. Finally, the 2.0 µF and 4.0 µF 
capacitors in Figure 26.10c are in parallel and thus have an equivalent capacitance 
of 6.0 µF. 
 

Note:- 
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1-Energy stored in a charged capacitor is   
2-Energy stored in a parallel-plate capacitor is 

 
3- Energy density in an electric field is 
 

 
 
 
 
CAPACITORS WITH DIELECTRICS 

A dielectric is a no conducting material, such as rubber and glass.When a 
dielectric is inserted between the plates of a capacitor, the capacitance increases 
.If the dielectric completely fills the space between the plates, the capacitance 
increases by a dimensionless factor (k), which is called the dielectric constant. The 
dielectric constant is a property of a material and varies from one material to 
another. 

 
Consider a parallel-plate capacitor that without a dielectric has a charge Q 0 and a 
capacitance C0 . The potential difference across the capacitor is 
∆V0=Q 0/C0 

 
The voltages with and without the dielectric are related by the factor (k)as 
follows: 
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That is, the capacitance increases by the factor (k)when the dielectric completely 

fillsthe region between the plates. For a parallel-plate capacitor, whereC0=
A/dwe can express the capacitance when the capacitor is filled with a dielectric as 

 
Types of Capacitors 
 
 
 
 

 
Figure 4.6Three commercial capacitor designs. (a) A tubular capacitor, whose plates are separated by 
paper and then rolled into a cylinder. (b) A high-voltage capacitor consisting of many parallel plates 
separated by insulating oil. (c) An electrolytic capacitor. 

 
 
 
 

EXAMPLE 4.5:- A parallel-plate capacitor has plates of dimensions 2.0 cm by3.0 
cm separated by a 1.0-mm thickness of paper. (a) Find its capacitance. 
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Solution:-Because k=3.7 for paper, we have 

 

 
(b) What is the maximum charge that can be placed on the capacitor? 

 
Solution: -Because the thickness of the paper is 1.0 mm, the maximum voltage 
that can be applied before breakdown is 

 
 

 
EXAMPLE 4.6:-A parallel-plate capacitor is charged with a battery to a charge 
Q0 , as shown in Figure 4.6a. The battery is then removed, and a slab of material 
that has a dielectric constant (K)is inserted between the plates, as shown in Figure 
4.6b. Find the energy stored in the capacitor before and after the dielectric is 
inserted. 
 
Solution:-The energy stored in the absence of the dielectric is  

 
After the battery is removed and the dielectric inserted, the charge on the 
capacitor remains the same. Hence, the energy stored in the presence of the 
dielectric is 

 
But the capacitance in the presence of the dielectric isC =kC0, so U becomes 
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Because k>1, the final energy is less than the initial energy 
 
 

 

 

 

 
 

  
 
 

(Figure 4.6) 
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SUMMARY 
A capacitor consists of two conductors carrying charges of equal magnitude but 
opposite sign. The capacitance C of any capacitor is the ratio of the charge Q on 
either conductor to the potential difference ∆V between them: 

 
This relationship can be used in situations in which any two of the three variables 
are known. It is important to remember that this ratio is constant for a given 
configurationof conductors because the capacitance depends only on the 
geometryof the conductors and not on an external source of charge or potential 
difference. 
The SI unit of capacitance is coulombs per volt, or the farad (F), and 
1 F =1 C/V. 
 
If two or more capacitors are connected in parallel, then the potential differenceis 
the same across all of them. The equivalent capacitance of a parallel 
combinationof capacitors is 

 
 

 
If two or more capacitors are connected in series, the charge is the same on all of 
them, and the equivalent capacitance of the series combination is given by 

 
 
 
 

The work done in charging the capacitor to a charge Q equals the electric 
potential energy U stored in the capacitor, where 
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When a dielectric material is inserted between the plates of a capacitor, the 
capacitance increases by a dimensionless factor (k), called the dielectric constant: 

 
WhereC0 is the capacitance in the absence of the dielectric 
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c h a p t e r five (Current and Resistance) 
 

ELECTRIC CURRENT 
consider a system of electric charges in motion. Whenever there is a net flow of charge 
through some region, a current is said to exist. To define current more precisely, suppose 
that the charges are moving perpendicular to a surface of area A, as shown in Figure 3.1. 
(This area could be the cross-sectional area of a wire, for example.) The current is the rate 
at which charge flows through this surface. If △Qis the amount of charge that passes 
through this area in a time interval △t, the average current Iav is equal to the charge that 
passes through Aper unit time: 

 
Iav=△Q/△t             (3.1) 

 

Figure 3.1 Charges in motion through an area A. The time rate at which charge flows through the area is defined as the 
current I. The direction of the current is the direction in which positive charges flow when free to do so. 
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minum, the current is due to the motion of negatively charged electrons. Therefore, when 
we speak of current in an ordinary conductor, the direction of the current is opposite the 
direction of flow of electrons. However, if we are considering a beam of positively 
charged protons in an accelerator, the current is in the direction of motion of the protons. 
In some cases—such as those involving gases and electrolytes, for instance-the current 
is the result of the flow of both positive and negative charges. If the ends of a conducting 
wire are connected to form a loop, all points on the loop are at the same electric potential, 
and hence the electric field is zero within and at the surface of the conductor. Because the 
electric field is zero, there is no net transport of charge through the wire, and therefore 
there is no current. The current in the conductor is zero even if the conductor has an 
excess of charge on it. However, if the ends of the conducting wire are connected to a 
battery, all points on the loop are not at the same potential. The battery sets up a potential 
difference between the ends of the loop, creating an electric field within the wire. The 
electric field exerts forces on the conduction electrons in the wire, causing them to move 
around the loop and thus creating a current. It is common to refer to a moving charge 
(positive or negative) as a mobile charge carrier. For example, the mobile charge carriers 
in a metal are electrons. 

 
The speed of the charge carriers vd is an average speed called the drift speed. To understand the meaning of 
drift speed, consider a conductor in which the charge carriers are free electrons. If the conductor is isolated-
that is, the potential difference across it is zero-then these electrons undergo random motion that is 
analogous to the motion of gas molecules. As we discussed earlier, when a potential difference is applied 
across the conductor (for example, by means of a battery), an electric field is set up in the conductor; this field 
exerts an electric force on the electrons, producing a current. However, the electrons do not move in straight 
lines along the conductor. Instead, they collide repeatedly with the metal atoms, and their resultant motion is 
complicated and zigzag (Fig. 27.3). Despite the collisions, the electrons move slowly along the conductor (in 
adirection opposite that of E) at the drift velocity vd. 
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Example 27.1 shows that typical drift speeds are very low. For instance, electrons traveling with a speed of 
2.46 x 10-4 m/s would take about 68 min to travel 1 m! In view of this, you might wonder why a light turns on 
almost instantaneously when a switch is thrown. In a conductor, the electric field that drives the free 
electrons travels through the conductor with a speed close to that of light. Thus, when you flip on a light 
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switch, the message for the electrons to start moving through the wire (the electric field) reaches them at a 
speed on the order of 108 m/s. 
 
RESISTANCE AND OHM’S LAW 
In Chapter 24 we found that no electric field can exist inside a conductor. However, this 
statement is true only if the conductor is in static equilibrium. The purpose of this section is to 
describe what happens when the charges in the conductor are allowed to move. 
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This expression shows that if a potential difference of 1 V across a conductor 
causes a current of 1 A, the resistance of the conductor is 1 Ω. 
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Most electric circuits use devices called resistors to control the current level in the 
various parts of the circuit. Two common types of resistors are the composition 
resistor, which contains carbon, and the wire-wound resistor, which consists of a 
coil of wire. Resistors’ values in ohms are normally indicated by color-coding, as 
shown in Figure 27.6 and Table 27.2. Ohmic materials have a linear current–
potential difference relationship over a broad range of applied potential differences 
(Fig. 27.7a). The slope of the I-versus-△V curve in the linear region yields a value 
for 1/R. Nonohmic materials 
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ELECTROMOTIVE FORCE 
In Section 27.6 we found that a constant current can be maintained in a closed circuit through the 
use of a source of emf, which is a device (such as a battery or generator) that produces an electric 
field and thus may cause charges to move around a circuit. One can think of a source of emf as a 
“charge pump.” When an electric potential difference exists between two points, the source moves 
charges “uphill” from the lower potential to the higher. The emfɛ describes the work done per unit 
charge, and hence the SI unit of emf is the volt. Consider the circuit shown in Figure 28.1, 
consisting of a battery connected to a resistor. We assume that the connecting wires have no 
resistance. The positive terminal of the battery is at a higher potential than the negative terminal. 
If we neglect the internal resistance of the battery, the potential difference across it (called the 
terminal voltage) equals its emf. However, because a real battery always has some internal 
resistance r, the terminal voltage is not equal to the emf for a battery in a circuit in which there is 
a current. To understand why this is so, consider the circuit diagram in Figure 28.2a, where the 
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battery of Figure 28.1 is represented by the dashed rectangle containing an emfɛ in series with an 
internal resistance r. Now imagine moving through the battery clockwise from a to b and measuring 
the electric potential at various locations. As we pass from the negative terminal to the positive 
terminal, the potential increases by an amount ɛ. However, as we move through the resistance r, 
the potential decreases by an amount Ir, where I is the current in the circuit. Thus, the terminal 
voltage of the battery is1 

 
 

 
This equation indicates that, because power , the total power output Iɛ of the battery is 
delivered to the external load resistance in the amount I2R and to the internal resistance in the 
amount I2r. Again, if then most of the power delivered by the battery is transferred to the 
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loadresistance. 

 
 
RC CIRCUITS 
So far we have been analyzing steady-state circuits, in which the current is constant. In circuits 
containing capacitors, the current may vary in time. A circuit containing a series combination of a 
resistor and a capacitor is called an RC circuit. 
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