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Blackbody Radiation and Plank's Hypothesis 

A blackbody is an ideal system that absorbs all radiation incident on it. The 

electromagnetic radiation emitted by the blackbody is called blackbody 

radiation. A good approximation of a blackbody is a small opening to the 

inside of a cavity object as shown in the figure.  

 

 

 

 

Any radiation incident on the opening from outside enters the cavity and is 

reflected a number times on the interior walls of the cavity; hence the 

blackbody acts as a perfect absorber. The nature of the radiation leaving 

the cavity depends only on the temperature of the cavity walls. The peak 

of the wavelength distribution shifts to shorter wavelength as the 

temperature increases this behavior described by the following 

relationship, called  Wien's displacement law:  3

max 2.898 10 m.KT          
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Example Find the peak wavelength of the blackbody radiation emitted by 

the human body when the skin temperature is: (A) 350C and (B) 2000K. 

Solution: 

 

Rayleigh-Jeans Law: 

The result of a calculation based on a classical theory of blackbody 

radiation known as the Rayleigh-Jeans Law, to describe the distribution 

of energy from a blackbody, we define ( , )I T  to be the intensity

4

2
( , ) Bck T

I T





 , where Bk is a Boltzmann's constant and c is the speed of 

light. In this equation, the average energy for each wavelength is assumed 

to be proportional to Bk T .  As experimental plot of the blackbody radiation 

spectrum, together with the theoretical prediction of the Rayleigh-Jeans 

Law, is shown in the below figure. 
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At long wavelengths, the Rayleigh-Jeans Law is reasonable agreement 

with experimental data, but at short wavelengths, major disagreement is 

apparent (infinite energy occurs as the wavelength approaches zero). This 

mismatch of theory and experiments was so disconcerting that scientists 

called it the ultraviolet catastrophe. 

 

Planck-Einstein's visualization of the quantum nature of radiation 

Photoelectric Effect 

 

How is the photoelectric effect related to quantum mechanics? 

According to Max Planck, the radiant energy can have only certain 

discrete values E h  where h is called Planck's constant           

(h=6.63x10-34 J.s) and υ is the frequency of the incident light. In the 19th 

century, experiments showed that light incident on certain metallic surfaces 

causes electrons to be emitted from those surfaces, this phenomena is 

known as the photoelectric effect and the emitted electrons are called the 

photoelectrons. In Einstein's model of the photoelectric effect, a photon 

of the incident light gives all its energy hυ to a single electron in the metal. 

Therefore, the absorption of energy by the electrons is not a continuous 

absorption process but it is a discontinuous process in which energy is 

delivered to the electrons in discrete bundles. Let ω be (the work function) 

i.e. the minimum energy with which an electron is bound in the metal and 

the photoelectron ejected from the surface with kinetic energy (Kmax=1/2 

mv2), then 21

2
mvh    . If υ0 is the threshold frequency which just ejects 

an electron from the metal without any velocity then ω=hυ0 : 
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Cutoff wavelength 

 

The cutoff frequency is related to the work function through the 

relationship υc=ω/h. The cutoff frequency corresponds to a cutoff 

wavelength  λc , where 

 

 

 

 

 

 where c is the speed of light= 3x108 m/s. 
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Example 1 : The photoelectric effect for Sodium: 

A Sodium surface is illuminated with light having a wavelength of 300nm. 

The work function for sodium metal is 2.46 eV. 

(A)  Find the maximum kinetic energy of ejected photoelectrons. 

(B)  Find the cutoff wavelength for Sodium.  

 

Solution: 

 

 

 

 

 

 

 

 

Example 2 : A photoelectric surface has a work function of 4 eV. What is 

the maximum velocity of the photoelectrons emitted by light of frequency 

10+15 Hz incident on the surface. Hint: mass of electron is 9x10-31gm.  

Solution: 
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Example 3 : Calculate the threshold frequency and the corresponding 

wavelength of radiation incident on a certain metal whose workfunction 

is 3.31x10-19J. 

 

Solution: 

 

 

Home Work: Calculate the longest wavelength of the incident radiation 

which will eject electrons from a metal work function is 6 eV. 
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Compton effect 

 

What is the importance of Compton effect in quantum mechanics? 

When a photon, usually from the X-Ray spectrum, collides with an 

electron, or any other charged particle, the wavelength of the scattered X-

Ray increases. When the photon comes into contact with the electron, some 

of its initial energy and momentum are transferred to the charged particle. 
As such, the scattered photon has less energy than the incident photon and 

thus, a lower frequency and a higher wavelength, due to their inversely 

proportional relationship. This phenomenon is known as the Compton 

Effect.  
 

 

 

 

 

 

 

 

 

 

 

 

 

The greatest significance of the Compton effect is that is to provide final 

and deciding proof for Planck-Einstein's visualization of the quantum 

nature of radiation. The particle nature of light was established after the 

discovery of the Compton effect. 
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Example  

X-rays of wavelength λ0=0.200000 nm are scattered from a block of 

material. The scattered x-rays are observed at an angle of 450 to the incident 

beam. Calculate their wavelength. 

 

Solution: 
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Early Models of the Atom 

 

Thomson (in 1898) suggested a model that describes the atom as a region 

in which positive charge is spread out in space with electrons embedded 

throughout the region. The atom as a whole then be electrically neutral.  

 

 

 

 

 

 

 

 

In 1911, Ernest Rutherford performed a critical experiment that showed 

that Thomson's model could not be correct. In this experiment, a beam of 

positively charged alpha particles (Helium nuclei) was projected into a 

thin metallic foil. Most of the particles passed through the foil as if it 

were empty space, but some of the results of the experiment were 

astounding. Many of the particles deflected from their original direction 

of travel were scattered through large angles.  
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Some particles were even deflected backward completely reversing their 

direction of travel. When Geiger informed Rutherford that some alpha 

particles were scattered backward, Rutherford wrote, "It was quite the 

most incredible event that has ever happened to me in my life". Such 

large deflections were not expected on the basis of Thomson’s model. 

According to that model, the positive charge of an atom in the foil is 

spread out over such a great volume (the entire atom) that there is no 

concentration of positive charge strong enough to cause any large-angle 

deflections of the positively charged alpha particles. Furthermore, the 

electrons are so much less massive than the alpha particles that they 

would not cause large-angle scattering either. Rutherford explained his 

astonishing results by developing a new atomic model, one that assumed 

the positive charge in the atom was concentrated in a region that was 

small relative to the size of the atom. He called this concentration of 

positive charge the nucleus of the atom. Any electrons belonging to the 

atom were assumed to be in the relatively large volume outside the 

nucleus. To explain why these electrons were not pulled into the nucleus 

by the attractive electric force, Rutherford modeled them as moving in 

orbits around the nucleus in the same manner as the planets orbit the Sun. 

For this reason, this model is often referred to as the planetary model of 

the atom. 
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Basic difficulties exist with Rutherford’s planetary model. Rutherford’s 

electrons are described by the particle in uniform circular motion model; 

they have a centripetal acceleration. 

  

 

 

 

 

 

 

 

Bohr’s Model of the Hydrogen Atom 

Bohr applied Planck’s ideas of quantized energy levels (Section 40.1) to 

Rutherford’s orbiting atomic electrons. Bohr’s theory was historically 

important to the development of quantum physics. 

Bohr combined ideas from Planck’s original quantum theory, Einstein’s 

concept of the photon, Rutherford’s planetary model of the atom, and 

Newtonian mechanics to arrive at a semi-classical structural model based 

on some revolutionary ideas. The structural model of the Bohr theory as it 

applies to the hydrogen atom has the following properties: 

 

-The electron moves in circular orbits around the proton under the 

influence of the electric force of attraction.  

-Only certain electron orbits are stable. When in one of these stationary 

states, as Bohr called them, the electron does not emit energy in the form 

of radiation, even though it is accelerating. 
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-The atom emits radiation when the electron makes a transition from a 

more energetic initial stationary state to a lower-energy stationary state. 

This transition cannot be visualized or treated classically. In particular, 

the frequency f of the photon emitted in the transition is related to the 

change in the atom’s energy and is not equal to the frequency of the 

electron’s orbital motion. The frequency of the emitted radiation is found 

from the energy-conservation expression 

where Ei is the energy of the initial state, Ef is the energy of the final 

state, and Ei >Ef . 

We can obtain an expression for r, the radius of the allowed orbits, 

 

v is the electron’s speed and me is the electron mass. 

The orbit with the smallest radius, called the Bohr radius a0, corresponds 

to n= 1  and has the value 0.0529 nm. 

These relations give a general expression for the radius of any orbit in the 

hydrogen atom: 

 

 

To calculate the frequency of the photon emitted when the electron makes 

a transition from an outer orbit to an inner orbit: 

 
Because the quantity measured experimentally is wavelength, 

Remarkably, this expression, which is purely theoretical, is identical to 

the general form of the empirical relationships discovered by Balmer and 

Rydberg   
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(A) The electron in a hydrogen atom makes a transition from the 

n=2 energy level to the ground level n=1. Find the wavelength 

and frequency of the emitted photon. 

 

 

  

 

 

 

 

(B) In interstellar space, highly excited hydrogen atoms called 

Redberg atoms have been observed. Find the wavelength to 

which radio astronomers must turn to detect signals from 

electrons dropping from the n=273 level to the n=272 level.   

 

 

(C) What is the radius of the electron orbit for a Rydberg atom for 

which n=273? 
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(D) How fast is the electron moving in a Rydberg atom for which 

n=273? 

 

 

The de Broglie wavelength 

 

In his 1923 doctoral dissertation, Louis de Broglie postulated that because 

photons have both wave and particle characteristics, perhaps all forms of 

matter have both properties. This highly revolutionary idea had no 

experimental confirmation at the time. According to de Broglie, electrons, 

just like light, have a dual particle–wave nature. 

De Broglie suggested that material particles of momentum p have a 

characteristic wavelength that is given by the same expression. Because 

the magnitude of the momentum of a particle of mass m and speed u is p 

5 mu, the de Broglie wavelength of that particle is 

 

 

Furthermore, in analogy with photons, de Broglie postulated that particles 

obey the Einstein relation E 5 hf, where E is the total energy of the 

particle. The frequency of a particle is then 
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Example  

 

(A) Calculate the de Broglie wavelength for an electron     

(me=9.11x10-23 kg) moving at 1.00 x107 m/s. 

 

(B) A rock of mass 50 g is thrown with a speed of 40 m/s. What is its 

de Broglie wavelength? 

 

 

Example  

 

Find the de Broglie wavelength associated with 

(1) A 46gm golf ball with velocity 36 m/sec. 

 

 

(2) An electron with a velocity 107 m/sec. 

  

 

Home Work: from the results, do you expect there is a wave aspects in 

the two cases? Why? 
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Example 

Find the kinetic energy of a proton whose de Broglie wavelength is 1fm. 
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Example: 

If the de Broglie wavelength of an electron is 9x10-10 m. Calculate its 

kinetic energy. 

 

 

 

Home Work: 

Calculate the de Broglie wavelength of a beam of electrons whose energy 

is 100eV. 
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Heisenberg Uncertainty Principle 

 

 

Example: 

A microscope, using photons, is employed to locate an electron in an 

atom to within a distance of 0.2x10-10 m. what is the uncertainty in the 

momentum of the electron located in this way? 
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Example: 

"Locating of electron" 

The speed of an electron is measured to be (5x103 m/sec) to an accuracy 

of 0.003%. Find the minimum uncertainty in determining the position of 

this electron. 
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Example: 

An electron is confined to a box of length 10-10 m. Calculate the 

minimum uncertainty in its velocity. 
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Commutator 

Why is the commutator important in quantum mechanics?  
Commutators are very important in Quantum Mechanics. As well as being 

how Heisenberg discovered the Uncertainty Principle. It is known that you 

cannot know the value of two physical values at the same time if they do not 

commute. 
 

 

 

 

 

 

 

 

 

 

 

It is impossible to know both the velocity 

and position of a particle at the same time. 
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Application: 

Show that  
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Application: 

Show that  
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  
 

  
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   

   

 

2

2

2
2 2

2

2

we know that -

, 2

- , 2 -

            , 2  2 - -

                        2 -

                        2

p i
x

x
x x

i x i
x x

p x i p i i
x

i i
x

i p






  
 

  

  
 

  


      


 



 

 

 

Application: 

 If x̂  and ŷ  are two operators, prove that  

   ˆ ˆ ˆ ˆ, ,x y y x   

……………………………………………………………………………………..... 

   

 

 

ˆ ˆ ˆ ˆ ˆ ˆ,  

ˆ ˆ ˆ ˆ        

ˆ ˆ        ,

x y xy yx

yx xy

y x

 

  

 
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Schrödinger Equation 

 

 

 

 

 

 

 

The Schrodinger equation gives us a detailed account of the form of the wave 

functions or probability waves that control the motion of some smaller 

particles.  

Application: 

Prove that: 

 
 2 1

,
,

k x t
x t x





 


 

……………………………………………………………………………………………………………………………………………………………….... 

 

   

 

 

 
 

( )

( )

2( )

2

2

,

,

               

               ,

1
,

,

i kx t

i kx t

i kx t

x t Ae

x t Ae ik
x

Ae ik

k x t

k x t
x t x































 




 


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Application: 

Prove that: 

 
 22

22

x
E x

m x








 

……………………………………………………………………………………..... 

 
 

   

 
 

 
 

 
 

2

2 2

2

2

2

22

2

2

2
.
2

2

we have:

1
,

,

Assume that:

,  ((time independent))

1

1

2

 
2

p
E

m

h
p

k
E

m

k x t
x t x

x t x

k x
x x

x
x x

E
m

x
E x

m x



 




 



















 








 



 
 

 







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Probability Density in Quantum Mechanics 

What is the significance of probability density in quantum mechanics? 

 

 

 

 

 

 

The probability density is given by taking the square of the absolute value of 

the wavefunction. It gives us the likelihood of finding an electron (or some 

other system) at some given point in space. 

Application: 

Let two functions   and   be defined for 0 x  . Explain why ( )x x    

cannot be a wavefunction but  
2

( ) xx e   could be a valid wavefunction. 

………………………………………………………………………………………. 

 

 

2

0

2

0

3

0

    

  

3

 which gives that the function  is not square integrable over this range. 

It cannot be a valid wavefunction 

x dx

x dx

x

x x















  




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 

2

2

2

2

0

2

0

2

0

2

2

0

0

1

2

0

1

0

0

    

  

 

let 

2
2

4

4 16 8
4

2 2

then

    

1

8

1

8

Hint: using Gamma Function

( )

1
( )
2

1
   

8

1
(

8

x

x

x

z

z

n z

z

x dx

e dx

e dx

z
x z x

dz x dx

dz dz dz dz
dx

x z z z

e dx

dz
e

z

z e dz

n z e dz

dz
e

z






























 









  



    





 

 



 

















1
)

2

8



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Normalization of the wavefuction 

 

The probability of finding the particle between -∞ to ∞ at the time t must equal     

to 1. 

  

Application: 

The wavefunction of the particle at a given time is given by 

 

1. Is  x  normalized? 

2. If not, find the normalization constant? 

3. Find the probability of finding the particle in the region between  

 

 

   * 1             Normalization Conditionx x dx 






 
2 2

      ,   and  are constant
ikxe

x k a
x a

 


 to .
3 3

a a
x


  
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   

 

 

 

 

 

*

2 2 2 2

2 2

2

2 2

2

22 2 2

2

2

2 2 2 2

2

2

2 2 2

2

2 2 2

(1) 

  

1
  

let:  tan

cos

1
   

1
  .

costan

  
cos tan

  
cos tan 1

1
  

cos tan co

ikx ikx

x x dx

e e
dx

x a x a

dx
x a

x a

a
dx d

dx
x a

a
d

a a

a
d

a a

a
d

a

a

a













 










 


 

 





 


















 





































2

2

2

2

22
2 2

22

2

2 2

2

2

2

2

2

s

1
  

sin
cos cos

cos

1 1
  

sin cos

1
  1  ............................**

1
   

1
      not normalized 

2 2

d

a
d

a

d
a

d
a

a

a a



























 



 





  






















  
     

  








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 

   

 

2 2

*

2 2 2 2

2

2 2

2

(2) let the normalized wavefunction 

1             Normalization Condition

  .

1
  1

  1

the normalized wavefunction is

ikx

ikx ikx

e
x N

x a

x x dx

e e
N N dx

x a x a

N dx
x a

N
a

a
N



 











 













 

 


 
  

 

 









 
2 2

ikxa e
x

x a




 

3

2 2 2 2

3

2 2

6

6

(3) .

1
  

1
   ... return to page 2 to the step with ** to see the details

let: tan

3

tan
3

1
tan

3

1
tan

63

1
  

1

a

ikx ikx

a

a e a e
dx

x a x a

a
dx

x a

a
d

a

x a

a
x

a
a

a
d

a









 



































 




 
  

 









  

 
  

 











6

6

1 1

6 6 3





 



  
     

  
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Home Work 1:  

Let  

    2x b
x Ae




 
  

Find the normalization constant A. λ and b are a real constant. 

Hint: let  
22 2z x b   and,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

0

1

2

n tn t e dt

n 



  

 
    

 


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Application: 

The wavefunction for a particle confines to 0 x a   was found to be 

  sin
x

x A
a




 
  

 
 where A is the normalization constant. Find A and determine the 

probability that the particle is found in the interval
3

2 4

a a
x  . 

   

 

 

2

0

2

0

2 2

0

2

0

2

0 0

2

0

0

2

1 1

 sin 1

 sin 1

2
1 cos

 1
2

1 2
 cos 1

2

1 2
sin 1

2 2

1
0 1

2

2

2
sin

a

a

a

a

a a

a

a

x dx

x
A dx

a

x
A dx

a

x

a
A dx

x
A dx dx

a

a x
A x

a

A a

A
a

x
x

a a




















 
  

 

 
  

 

  
   

   
 
 
 

  
    

  

  
    

   

  

 


 









 


 
 
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   

3

4
2

2

3
2

4

2

3

4
2

2

3

4

2

3 3

4 4

2 2

3
3 4
4

2
2

2

2
 sin

2
 sin

2
1 cos

2
 

2

2 1 2
.  cos
2

1 2
sin

2

1 3

4 2

a

a

a

a

a

a

a

a

a a

a a

a
a

a
a

x dx

x
dx

a a

x
dx

a a

x

a
dx

a

x
dx dx

a a

a x
x

a a

a a

a















 
  

 

 
  

 

  
   

  
 
 
 

 
  

     
  

 
       

 


 











 

3
2 2

4 2sin sin
2

1 1 1

4 2

0.41

a a
a

a a

a
a

a a

 





 
 

  
  

 

 



 

 

Home Work 2:  

Normalize the wavefunction: 

   2    for   0x A ax x x a      
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Example: 

 

consider a particle whose wavefunction is given by: 

 
2axx Ae   

What is the value of the A, if this wavefunction is normalized? 

  1

0

1
Hint :              ; 

2

n tn t e dt 


   
    

 
   

……………………………………………………………………….. 

  

 

 

2

2

2 2

2 2

2 2

2 2

2

2

2

2 2

0

2 2 2

0

0

2 2 2

0

2 2 2

0 0

2 2 2

0 0

2 2

0

    1

1

1

1

( ) 1

( ) 1

( ) 1

2

ax

ax

ax ax

ax ax

ax ax

ax ax

ax

dx

Ae dx

A e dx

A e dx e dx

A e dx e dx

A e dx e dx

A e dx e dx

A e




















 





 



 

 

 

 











 
  

 

 
   

 

 
    

 

 
  

 







 

 

 

 

 1dx
 

 
 
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2

2

2 2

2

0

2

1

2

2

0

12

2

0

12

2

0

2

1

4

    let

z 2

2

2

2

2 1
2

z

1

2

the equation 2 1 , will be:
2

2 1
1

22

1
2

1
2

2

z

z

t

t

ax

z a x

dz a dx

dz
dx

a

dz
A e

a

t

z t

dz t dt

dz
A e

a

A
e t dt

a

A
e t dt

a

A

a

a
A











































 







 
   

 









 

  

 

 

 

 

 

 

 

 

https://quantummechanics.ucsd.edu/ph130a/130_notes/node108.html
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Dirac Bra-ket Notation 

  

Orthonormality of the wavefunction 

 

What is the physical significance of orthonormality? 

The physical meaning of their orthogonality is that, when energy is 

measured while the system is in one such state, it has no chance of 

instead being found to be in another.  

 

 

 

  

 

 

  

 

 

 

 

 

 

https://quantummechanics.ucsd.edu/ph130a/130_notes/node108.html
https://quantummechanics.ucsd.edu/ph130a/130_notes/node108.html
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Example: 

1 2 33 2 4i i        

where   are the orthonormal basis. Normalized  . 

…………………………………………………………… 

  

 

 

 

 

  

     

     

        

1 2 3

1 2 3 1 2 3

1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

3 2 4

3 2 4 3 2 4

3 3 2 3 3 4

          2 3 2 2 2 4

          4 3 4 2 4 4

where

0       if        m n

1       if      
m n mn

i i

i i i i

i i i i i

i i

i i i i i

   

       

       

     

     

  

   

     

   

   

      


 

      1 1 2 2 3 3

1 2 3

  m n

3 3 2 2 4 4

          9 4 16 29

the normalization constant is the reciprocal of the root of 29 

so the normalized wavefunction is

3 2 4

29 29 29

i i i i

i i

       

   








    

   

  

1 2 33 2 4i i     
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so what is the expectation value in quantum mechanics? 

The expectation value of the position operator is the average of 

the position measurements performed on a large number of identical 

systems. The expectation value of the Hamiltonian (i.e. energy) 

operator is the average of the energy measurements performed on a 

large number of identical systems. 

 

 

 

 

 

 

 

 

 

https://www.quora.com/What-is-the-expectation-value-in-quantum-mechanics
https://www.quora.com/What-is-the-expectation-value-in-quantum-mechanics
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Tunneling effect in quantum mechanics 

Tunneling is a quantum mechanical phenomenon when a particle is 

able to penetrate through a potential energy barrier that is higher in 

energy than the particle's kinetic energy and this amazing property of 

microscopic particles. 
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Application: 

A 2eV electroms a barrier 5eV high. What is the probability that it 

will tunnel through the barrier if the barrier width is (a) 1nm and (b) 

0.50nm? 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Home Work:  

If we take arbitrary an equivalent rectangular barrier of high V0=15MeV 

and take the energy of α is E=5MeV then we get for L=2*10-14m. Find T. 


