
Lecture 1
chapter 1

Introduction

Numerical analysis is concerned with the development
and analysis of methods for the numerical solution of
practical problems. Traditionally, these methods have been
mainly used to solve problems in the physical sciences and
engineering. However, they are finding increasing relevance
in a much broader range of subjects including economics
and business studies.
The first stage in the solution of a particular problem is the
formulation of a mathematical model. Mathematical sym-
bols are introduced to represent the variables involved and
physical (or economic) principles are applied to derive equa-
tions which describe the behavior of these variables. Un-
fortunately, it is often impossible to find the exact solution
of the resulting mathematical problem using standard tech-
niques. In fact, there are very few problems for which an an-
alytical solution can be determined. For example, there are
formulas for solving quadratic, cubic and quartic polyno-
mial equations, but no such formula exists for polynomial
equations of degree greater than four or even for a simple
equation such as

x = cos(x)

Similarly, we can certainly evaluate the integral

A =

∫ b

a

exdx = ex|ba

as eb − ea, but we cannot find the exact value of

A =

∫ b

a

ex
2

dx

1

since no function exists which differentiates to ex
2

. Even
when an analytical solution can be found it may be of more
theoretical than practical use. For example, if the solution
of a differential equation

y′′ = f(x, y, y′)

is expressed as an infinite sum of Bessel functions, then it
is most unsuitable for calculating the numerical value of y
corresponding to some numerical value of x.

Errors

Computations generally yield approximations as their out-
put. This output may be an approximation to a true solu-
tion of an equation, or an approximation of a true value of
some quantity. Errors are commonly measured in one of
two ways: absolute error and relative error as the following
definition.

Definition 1. If xA is an approximation to xT , the error is
defined as

err(xA) = xT − xA (1)

The absolute error is defined as

Aerr(xA) = |err(xA)| = |xT − xA| (2)

And the relative error is given by

rel(xA) =
Absolute error

True value
=

|xT − xA|
|xT |

, xT ̸= 0 (3)

Note that if the true value happens to be zero, x = 0, the
relative error is regarded as undefined. The relative error is
generally of more significance than the absolute error.

2

Let xT = 19
7 ≈ 2.714285 and xA = 2.718281. Then

err (xA) = xT − xA =
19

7
− 2.718281 ≈ −0.003996

Aerr (xA) = |err (xA)| ≈ 0.003996

rel (xA) =
Aerr (xA)

xT
=

0.003996

2.7142857
≈ 0.00147

Example 0.1. Consider the following table

xT xA Absolute Error Relative Error
1 0.99 0.01 0.01
1 1.1 0.01 0.01

–1.5 –1.2 0.3 0.2
100 99.99 0.01 0.0001
100 99 1 0.01

Example 0.2. Consider two different computations. In the
first one, an estimate xA = 0.003 is obtained for the true value
xT = 0.004. In the second one, yA = 1238 for yT = 1258. There-
fore, the absolute errors are

Aerr(xA) = |xT − xA| = 0.001, Aerr(yA) = |yT − yA| = 20

The corresponding relative errors are

rel(xA) =
Aerr(xA)

xT
=

0.001

0.004
= 0.25,

rel(yA) =
Aerr(yA)

yT
=

20

1258
= 0.0159

We notice that the absolute errors of 0.001 and 20 can be rather
misleading, judging by their magnitudes. In other words, the
fact that 0.001 is much smaller than 20 does not make the first
error a smaller error relative to its corresponding computation.

3

In fact, looking at the relative errors, we see that 0.001 is as-
sociated with a 25% error, while 20 corresponds to 1.59% error,
much smaller than the first. Because they convey a more spe-
cific type of information, relative errors are considered more
significant than absolute errors.

4

Lecture 2

Computational and Errors

Numerical methods are procedures that allow for effi-
cient solution of a mathematically formulated problem
in a finite number of steps to within an arbitrary preci-
sion. Computers are needed in most cases. A very impor-
tant issue here is the errors caused in computations.
A numerical algorithm consists of a sequence of arith-
metic and logical operations which produces an approx-
imate solution to within any prescribed accuracy. There
are often several different algorithms for the solution of any
one problem. The particular algorithm chosen depends on
the context from which the problem is taken. In economics,
for example, it may be that only the general behavior of a
variable is required, in which case a simple, low accuracy
method which uses only a few calculations is appropriate.
On the other hand, in precision engineering, it may be es-
sential to use a complex, highly accurate method, regard-
less of the total amount of computational effort involved.
Once a numerical algorithm has been selected, a computer
program is usually written for its implementation. The pro-
gram is run to obtain numerical results, although this may
not be the end of the story. The computed solution could
indicate that the original mathematical model needs mod-
ifying with a corresponding change in both the numerical
algorithm and the program.
Although the solution of ’real problems’ by numerical tech-
niques involves the use of a digital computer or calculator,
Determination of the eigenvalues of large matrices, for ex-

5

ample, did not become a realistic proposition until comput-
ers became available because of the amount of computation
involved. Nowadays any numerical technique can at least
be demonstrated on a microcomputer, although there are
some problems that can only be solved using the speed and
storage capacity of much larger machines.

There exist four possible sources of error:

1. Errors in the formulation of the problem to be solved.

(a) Errors in the mathematical model. For example,
when simplifying assumptions are made in the deriva-
tion of the mathematical model of a physical system.
(Simplifications).

(b) Error in input data. (Measurements).

2. Approximation errors

(a) Discretization error.

(b) Convergence error in iterative methods.

(c) Discretization/convergence errors may be estimated
by an analysis of the method used.

3. Roundoff errors: This error is caused by the computer
representation of numbers.

(a) Roundoff errors arise everywhere in numerical com-
putation because of the finite precision arithmetic.

(b) Roundoff errors behave quite unorganized.

4. Truncation error: Whenever an expression is approx-
imated by some type of a mathematical method. For

6

example, suppose we use the Maclaurin series repre-
sentation of the sine function:

sinα =
∞∑

n=odd

(−1)
(n−1)

2

n!
αn = α− 1

3!
α3+

1

5!
α5−· · ·+(−1)

(m−1)
2

3!
αm+Em

where Em is the tail end of the expansion, neglected in
the process, and known as the truncation error.

0.1 ERRORS AND STABILITY

The majority of numerical methods involve a large number
of calculations which are best performed on a computer or
calculator. Unfortunately, such machines are incapable of
working to infinite precision and so small errors occur in
nearly every arithmetic operation. Even an apparently sim-
ple number such as 2/3 cannot be represented exactly on
a computer. This number has a non-terminating decimal
expansion

0.66666666666666 · · ·
and if, for example, the machine uses ten-digit arithmetic,
then it is stored as

0.666 666 666 7

(In fact, computers use binary arithmetic. However, since
the substance of the argument is the same in either case, we
restrict our attention to decimal arithmetic for simplicity).
The difference between the exact and stored values is
called the rounding error which, for this example, is

−0.000 000 000 033 33...

Suppose that for a given real number α the digits after the
decimal point are

d1d2 · · · dndn+1 · · ·

7

To round α to n decimal places (abbreviated to nD) we pro-
ceed as follows. If dn+1 < 5, then α is rounded down; all
digits after the nth place are removed. If dn+1 ≥ 5, then α
is rounded up; dn is increased by one and all digits after
the nth place are removed. It should be clear that in either
case the magnitude of the rounding error does not exceed
0.5× 10−n.
In most situations the introduction of rounding errors into
the calculations does not significantly affect the final re-
sults. However, in certain cases it can lead to a serious loss
of accuracy so that computed results are very different from
those obtained using exact arithmetic. The term instability
is used to describe this phenomenon.
There are two fundamental types of instability in numeri-
cal analysis - inherent and induced. The first of these is a
fault of the problem, the second of the method of solution.

Definition 2. A problem is said to be inherently unstable
(or ill - conditioned) if small changes in the data of the prob-
lem cause large changes in its solution.

This concept is important for two reasons. Firstly, the
data may be given as a set of readings from an analogue de-
vice such as a thermometer or voltmeter and as such cannot
be measured exactly. If the problem is ill-conditioned then
any numerical results, irrespective of the method used to
obtain them, will be highly inaccurate and may be worth-
less. The second reason is that even if the data is exact it
will not necessarily be stored exactly on a computer. Con-
sequently, the problem which the computer is attempting to
solve may differ slightly from the one originally posed. This
does not usually matter, but if the problem is ill-conditioned
then the computed results may differ wildly from those ex-
pected.

8

Figure 1: sketche of example 0.3

Example 0.3. Consider the simultaneous linear equations

x+ y = 2

x+ 1.01y = 2.01

which have solution x = y = 1. If the number 2.01 is changed
to 2.02, the corresponding solution is x = 0, y = 2. We see
that a 0.5% change in the data produces a 100% change in the
solution. It is instructive to give a geometrical interpretation
of this result. The solution of the system is the point of inter-
section of the two lines y = 2−x and y = (2.01−x)/1.01. These
lines are sketched in figure 1. It is clear that the point of in-
tersection is sensitive to small movements in either of these
lines since they are nearly parallel. In fact, if the coefficient
of y in the second equation is 1.00, the two lines are exactly
parallel and the system has no solution. This is fairly typical
of ill-conditioned problems. They are often close to ’critical’
problems which either possess infinitely many solutions or
no solution whatsoever.

9

Example 0.4. Consider the initial value problem

y′′ − 10y′ − 11y = 0; y(0) = 1, y′(0) = −1

defined on x ≥ 0. The corresponding auxiliary equation has
roots −1 and 11, so the general solution of the differential
equation is

y = Ae−x +Be11x

for arbitrary constants A and B. The particular solution which
satisfies the given initial conditions is

y = e−x

Now suppose that the initial conditions are replaced by

y(0) = 1 + δ, y′(0) = −1 + ϵ

for some small numbers δ and ϵ. The particular solution sat-
isfying these conditions is

y =

(
1 +

11δ

12
− ϵ

12

)
e−x +

(
δ

12
+

ϵ

12

)
e11x

and the change in the solution is therefore(
11δ

12
− ϵ

12

)
e−x +

(
δ

12
+

ϵ

12

)
e11x

The term
(δ + ϵ)e11x

12
is large compared with e−x for x > 0, indi-

cating that this problem is ill-conditioned.
To inherent stability depends on the size of the solution to
the original problem as well as on the size of any changes in
the data. Under these circumstances, one would say that the
problem is ill-conditioned.

We now consider a different type of instability which is
a consequence of the method of solution rather than the
problem itself.

10

Lecture 3

Definition 3. A method is said to suffer from induced in-
stability if small errors present at one stage of the method
lead to bad effect in subsequent stages to such final results
are totally inaccurate.

Nearly all numerical methods involve a repetitive sequence
of calculations and so it is inevitable that small individual
rounding errors accumulate as they proceed. However, the
actual growth of these errors can occur in different ways. If,
after n steps of the method, the total rounding error is ap-
proximately C nϵ, where C is a positive constant and ϵ is the
size of a typical rounding error, then the growth in round-
ing errors is usually acceptable. For example, if C = 1 and
ϵ = 10−11, it takes about 50000 steps before the sixth decimal
place is affected. On the other hand, if the total rounding
error is approximately Canϵ or Cn! ϵ, for some number a > 1,
then the growth in rounding errors is usually unacceptable.
For example, in the first case, if C = 1, ϵ = 10−11 and a = 10,
it only takes about five steps before the sixth decimal place
is affected. The second case is illustrated by the following
example.

Example 0.5. Many successful algorithms are available for
calculating individual real roots of polynomial equations of
the form

pn(x) = anx
n + an−1x

n−1 + · · ·+ a0 = 0

Some of these are described later. An attractive idea would
be to use these methods to estimate one of the real roots, α
say, and then to divide Pn(x) by x − α to produce a polyno-
mial of degree n− 1 which contains the remaining roots. This
process can then be repeated until all of the roots have been

11

located. This is usually referred to as the method of defla-
tion. If α were an exact root of Pn(x) = 0, then the remaining
n− 1 roots would, of course, be the zeros of the deflated poly-
nomial of degree n − 1. However, in practice α might only be
an approximate root and in this case the zeros of the deflated
polynomial can be very different from those of Pn(x). For ex-
ample, consider the cubic

p3(x) = x3 − 13x2 + 32x− 20 = (x− 1)(x− 2)(x− 10)

and suppose that an estimate of its largest zero is taken as
10.1. If we divide p3(x) by x−10.1, the quotient is x2−2.9x+2.71
which has zeros 1.45 ± 0.78i. Clearly an error of 0.1 in the
largest zero of p3(x) has induced a large error into the calcu-
lation of the remaining zeros.
It is interesting to note that if we divide p3(x) by x − 1.1, the
corresponding quadratic has zeros 1.9 and 10.0 which are per-
fectly acceptable. The deflation process can be applied suc-
cessfully provided that certain precautions are taken. In par-
ticular, the roots should be eliminated in increasing order of
magnitude.

Of the two types of instability discussed, that of inherent
instability is the most serious. Induced instability is a fault
of the method and can be avoided either by modifying the
existing method, as we did for some examples given in this
section, or by using a completely different solution proce-
dure. Inherent instability, however, is a fault of the problem
so there is relatively little that we can do about it. The ex-
tent to which this property is potentially disastrous depends
not only on the degree of ill-conditioning involved but also
on the context from which the problem is taken.

12

Lecture 4
chapter 2

Solutions of Equations in One Variable

One of the fundamental problems of mathematics is that
of solving equations of the form

f(x) = 0 (4)

where f is a real valued function of a real variable x. Any
number α satisfying equation (4) is called a root of the equa-
tion or a zero of f .
Most equations arising in practice are non-linear and are
rarely of a form which allows the roots to be determined ex-
actly. Consequently, numerical techniques must be used to
find them.
Graphically, a solution, or a root, of Equation (4) refers to
the point of intersection of f(x) and the x−axis. Therefore,
depending on the nature of the curve of f(x) in relation to
the x−axis, Equation (4) may have a unique solution, mul-
tiple solutions, or no solution. A root of an equation can
sometimes be determined analytically resulting in an exact
solution. For instance, the equation e2x−3 = 0 can be solved
analytically to obtain a unique solution x = 1

2 ln 3. In most
situations, however, this is not possible and the root(s) must
be found using a numerical procedure.

Bisection Technique

This technique based on the Intermediate Value Theorem.
Suppose f is a continuous function defined on the interval
[a, b], with f(a) and f(b) of opposite sign. The Intermediate
Value Theorem implies that a number p exists in (a, b) with

13

f(p) = 0. The method calls for a repeated halving of subin-
tervals of [a, b] and, at each step, locating the half containing
p. To begin, set a1 = a and b1 = b, and let p1 be the midpoint
of [a, b]; that is,

p1 = a1 +
b1 − a1

2
=

a1 + b1
2

1. If f(p1) = 0, then p = p1, and we are done.

2. If f(p1) ̸= 0, then f(p1) has the same sign as either f(a1)
or f(b1).

• If f(p1) and f(a1) have the same sign, p ∈ (p1, b1). Set
a2 = p1 and b2 = b1.

• If f(p1) and f(a1) have opposite signs, p ∈ (a1, p1). Set
a2 = a1 and b2 = p1.

Then reapply the process to the interval [a2, b2]. See Figure
2.

We can select a tolerance ϵ > 0 and generate p1, p2, · · · , pN
until one of the following conditions is met:

• |pN − pN−1| < ϵ,

• |pN−pN−1|
|pN | < ϵ, pN ̸= 0, or

• f(pN) < ϵ,

When using a computer to generate approximations, it is
good practice to set an upper bound on the number of iter-
ations. This eliminates the possibility of entering an infinite
loop, a situation that can arise when the sequence diverges
(and also when the program is incorrectly coded).

Example 0.6. The function f(x) = x3 + 4x2 − 10 has a root in
[1, 2], because f(1) = −5 and and f(2) = 14 the Intermediate

14

Figure 2: Produces of Bisection Technique

Value Theorem ensures that this continuous function has a
root in [1, 2].
Using Bisection method with the Matlab code to determine an
approximation to the root.

Example 0.7. The function f(x) = (x+1)2e(x
2−2)− 1 has a root

in [0, 1] because f(0) < 0 and f(1) > 0. Use Bisection method
to find the approximate root with ϵ = 0.00001.

MaTlab built-In Function fzero

The fzero function in MATLAB finds the roots of f(x) = 0 for
a real function f(x). FZERO Scalar nonlinear zero finding.

15

X = FZERO(FUN,X0) tries to find a zero of the function
FUN near X0, if X0 is a scalar.
For example 0.6 use the following Matlab code:

1 clc
2 clear
3 fun = @(x) x.ˆ3+4*x.ˆ2-10; % function
4 x0 = 1; % initial point
5 x = fzero(fun,x0)

the resulte is:
x = 1.365230013414097

Theorem 0.8. Suppose that f ∈ C[a, b] and f(a)f(b) < 0. The
Bisection method generates a sequence {pn}∞n=1 approximat-
ing a zero p of f with

|pn − p| < b− a

2n
, n ≥ 1

Proof. For each n ≥ 1, we have

b1 − a1 =
1

2
(b− a), and p1 ∈ (a1, b1)

b2 − a2 =
1

2

[
1

2
(b− a)

]
=

1

22
(b− a), and p2 ∈ (a2, b2)

b3 − a3 =
1

2
(b2 − a2) =

1

23
(b− a), and p3 ∈ (a3, b3)

and so for the n step we can get

bn − an =
1

2n
(b− a), and pn ∈ (an, bn)

Since pn ∈ (an, bn) and |(an, bn)| = bn−an for all n ≥ 1, it follows
that

|pn − p| < bn − an =
b− a

2n

16

the sequence {pn}∞n=1 converges to p with rate of conver-
gence of order 1

2n ; that is

pn = p+O

(
1

2n

)

It is important to realize that Theorem 0.8 gives only a
bound for approximation error and that this bound might
be quite conservative. For example, this bound applied to
the problem in Example 0.6 ensures only that

|p− p9| <
2− 1

29
= 0.001953125 ≈ 2× 10−3

but the actual error is much smaller:

|p− p9| ≤ |1.365230013414097− 1.365234375|
≈ −0.000004361585903

≈ 4.4× 10−6

Example 0.9. Determine the number of iterations necessary
to solve f(x) = x3+4x2−10 = 0 with accuracy 10−3 using a1 = 1
and b1 = 2.

Solution: We we will use logarithms to find an integer N that
satisfies

|p− pn| < 2−N(b1 − a1)

= 2−N(2− 1)

= 2−N < 10−3

One can use logarithms to any base, but we will use base−10
logarithms because the tolerance is given as a power of 10.
Since 2−N < 10−3 implies that log10 2

−N < log10 10
−3 = −3, we

have

17

−N log10 2 < −3 and N >
3

log10 2
≈ 9.96

Hence, 10 iterations will ensure an approximation accurate
to within 10−3.

18

Lecture 5

Fixed-Point Iteration

A fixed point for a function is a number at which the value of
the function does not change when the function is applied.

Definition 4. The number p is a fixed point for a given func-
tion g if g(p) = p.

Suppose that the equation f(x) = 0 can be rearranged as

x = g(x) (5)

Any solution of this equation is called a fixed point of g. An
obvious iteration to try for the calculation of fixed points is

xn+1 = g(xn) n = 0, 1, 2, · · · (6)

The value of x0 is chosen arbitrarily and the hope is that the
sequence x0, x1, x2, · · · converges to a number α which will
automatically satisfy equation (5).
Moreover, since equation (5) is a rearrangement of (4), α is
guaranteed to be a zero of f .
In general, there are many different ways of rearranging
f(x) = 0 in the form (5). However, only some of these are
likely to give rise to successful iterations, as the following
example demonstrates.

Example 0.10. Consider the quadratic equation

x2 − 2x− 8 = 0

with roots −2 and 4. Three possible rearrangements of this
equation are

(a) xn+1 =
√
2xn + 8

19

(b) xn+1 =
2xn+8

x

(c) xn+1 =
x2
n−8
2

Numerical results for the corresponding iterations, starting
with x0 = 5, are given in Matlab code 0.16 with the Table.

Solution:

1 k Xa Xb Xc
2 --- --------- --------- --------
3 1 4.24264069 3.60000000 8.50000000
4 2 4.06020706 4.22222222 32.12500000
5 3 4.01502355 3.89473684 512.0078125
6 4 4.00375413 4.05405405 131072.0000
7 5 4.00093842 3.97333333 8589934592.0
8 6 4.00023460 4.01342282 3.6893e+19

Consider that the sequence converges for (a) and (b), but
diverges for (c).
This example highlights the need for a mathematical analy-
sis of the method. Sufficient conditions for the convergence
of the fixed point iteration are given in the following (without
proof) theorem.
Theorem 0.11. If g′ exists on an interval I = [α − A,α + A]
containing the starting value x0 and fixed point α, then xn
converges to α provided

|g′(x)| < 1 on I

We can now explain the results of Example 0.10

(a) If g(x) = (2x + 8)
1
2 then g′(x) = (2x + 8)−1/2 Theorem 0.11

guarantees convergence to the positive root α = 4, be-
cause |g′(x)| < 1 on the interval I = [3, 5] = [α − 1, α + 1]
containing the starting value x0 = 5. which is in agree-
ment with the results of column Xa in the Table.

20

(b) If g(x) = (2x+8)
x then g′(x) = −8

x2 Theorem 0.11 guarantees
convergence to the positive root α = 4, because |g′(x)| < 1
as (a), which is in agreement with the results of column
Xb in the Table.

(c) If g(x) = (x2−8)
2 then g′(x) = x Theorem 0.11 cannot be

used to guarantee convergence, which is in agreement
with the results of column Xc in the Table.

Example 0.12. Find the approximate solution for the equa-
tion

f(x) = x4 − x− 10 = 0

by fixed point iteration method starting with x0 = 1.5 with
|xn − xn−1| < 0.009

Solution

The function f(x) has a root in the interval (1, 2), Why ?,
rearrange the equation as

xn+1 = g(xn) =
√
xn + 10

then

g′(x) =
(x+ 10)

−3
4

4
Achieving the condition

|g′(x)| ≤ 0.04139 on (1, 2)

then we get the solution sequence {1.5, 1.8415, 1.85503, 1.8556, · · · }.
consider that |1.85503− 1.8556| = 0.00057 < 0.009.

21

Lecture 6

Newton-Raphson method

Newton-Raphson method is one of the most popular tech-
niques for finding roots of non-linear equations.

Figure 3: sketch of the Newton Raphson method

Newton-Raphson Formula:

Now Suppose that x0 is a known approximation to a root of
the function y = f(x), as shown in Fig. 3.
The next approximation, x2 is taken to be the point where
tangent graph of y = f(x) at x = x0 intersects the x−axis.
From Taylor series we have

f(x1) = f(x0) + f ′(x0)(x1 − x0) + f ′′(x0)
(x1 − x0)

2

2!
+ f ′′′(x0)

(x1 − x0)
3

3!

+ · · ·+ f (n)(a)
(x1 − x0)

n

n!
+ · · ·

22

consider x1 as a root and take only the first two terms as an
approximation:

0 = f(x0) + f ′(x0)(x1 − x0)

(x1 − x0) = − f(x0)

f ′(x0)

x1 = x0 −
f(x0)

f ′(x0)

So, we can find the new approximation x1. Now we can re-
peat the whole process to find an even better approximation.

x2 = x1 −
f(x1)

f ′(x1)

we will arrive at the following formula.

xn+1 = xn −
f(xn)

f ′(xn)
n = 0, 1, 2, · · · (7)

Note that when f ′(xn) = 0 the calculation of xn+1 fails. This
is because the tangent at xn is horizontal.

Example 0.13. Newton’s method for calculating the zeros of

f(x) = ex − x− 2

is given by

xn+1 = xn −
exn − xn − 2

exn − 1

=
exn(xn − 1) + 2

exn − 1

The graph of f , sketched in Fig. 4, shows that it has two
zeros. It is clear from this graph that xn converges to the
negative root if x0 < 0 and to the positive root if x0 > 0, and
that it breaks down if x0 = 0. The results obtained with x0 =
−10 and x0 = 10 are listed in next table.

23

Figure 4: sketch of the Newton Raphson method for example 0.13

Sufficient conditions for the convergence of Newton’s method
are given in the following theorem.

Theorem 0.14. If f ′′is continuous on an interval [α−A,α+A],
then xn converges to α provided f ′(α) ̸= 0 and x0 is sufficiently
close to α.

Proof. Comparison of equation

xn+1 = g(xn) n = 0, 1, 2, · · ·

and the equation

xn+1 = xn −
f(xn)

f ′(xn)

shows that Newton’s method is a fixed point iteration with

g(x) = x− f(x)

f ′(x)

By the quotient rule,

g′(x) = 1− f ′(x)f ′(x)− f(x)f ′′(x)

(f ′(x))2
=

f(x)f ′′(x)

(f ′(x))2

let x = α then

g′(α) =
f(α)f ′′(α)

(f ′(α))2

24

This implies that g′(α) = 0, because f(α) = 0 and f ′(α) ̸= 0.
Hence by the continuity of f ′′, there exists an interval I =
[α−δ, α+δ], for some δ > 0, on which |g′(x)| < 1. Theorem 0.11
then guarantees convergence provided x0 ∈ I, i.e. provided
x0 is sufficiently close to α.

0.2 EXERCISE

1. Use the Bisection method and fixed point method to find
p3 for f(x) =

√
x− cos x on [0, 1].

2. Let f(x) = 3(x+1)(x− 1
2)(x− 1) Use the Bisection method

and fixed point method on the intervals [−2, 1.5] and
[−1.25, 2.5] to find p3.

3. Use the Bisection method on the solutions accurate to
within 10−2 for f(x) = x3 − 7x2 + 14x − 6 = 0 on each
intervals: [0, 1], [1, 3.2] and [3.2, 4].

4. Find an approximation to
√
3 correct to within 10−4 us-

ing the Bisection Algorithm. Hint: Consider f(x) = x2 − 3.

5. Use an appropriate fixed point iteration to find the root
of

(a) x− cos x = 0

(b) x2 + ln x = 0

starting in each case with x0 = 1. Stop when |xn+1−xn| <
0.5× 10−2.

6. Find the first nine terms of the sequence generated by
xn+1 = e−xn starting with x0 = 1.

7. Use Newton’s method to find the roots of

25

(a) x− cos x = 0

(b) x2 + ln x = 0

starting in each case with x0 = 1. Stop when |xn+1−xn| <
10−6.

8. Find the roots of x2− 3x− 7 using Newton’s method with
ϵ = 10−4 or maximum 20 iterations.

26

Matlab Code 0.15. Bisection method
1 % ***
2 % ************* bisection method ************
3 % **** to find a root of the function f(x) ***
4 % ***
5 clc
6 clear
7 close all
8 f=@(x) x.ˆ3+4*x.ˆ2-10 ;
9 % f=@(x) (x+1)ˆ2*exp(xˆ2-2)-1;

10 a=1;
11 b=2;
12 c=(a+b)/2;
13 e=0.00001;
14 k=1;
15 fprintf(’ k a b f(c) \n’);
16 fprintf(’ --- --------- --------- -------- \n’);
17

18 while abs(f(c)) > e
19 c=(a+b)/2;
20 if f(c)*f(a)<0
21 b=c;
22 else
23 a=c;
24 end
25 fprintf(’%6.f %10.8f %10.8f %10.8f \n’, k,a,b,f(c));
26 k=k+1;
27 end
28 fprintf(’ The approximated root is c= %10.10f \n’, c);

The result as the following table:

1 k a b f(c)
2 --- --------- --------- --------
3 1 1.00000000 1.50000000 2.37500000
4 2 1.25000000 1.50000000 -1.79687500
5 3 1.25000000 1.37500000 0.16210938
6 4 1.31250000 1.37500000 -0.84838867
7 ---------------------------------------
8 18 1.36522675 1.36523056 0.00000903
9 The approximated root is c= 1.3652305603

27

Matlab Code 0.16. Fixed Point Iteration
1

2 clc
3 clear
4 close all
5

6 xa =5; % Initial value of root
7 xb =5;
8 xc =5;
9 fprintf(’ k Xa Xb Xc \n’);

10 fprintf(’ --- --------- --------- -------- \n’);
11

12 for k=1:1:6
13 xa=sqrt(2*xa+8);
14 xb =(2*xb +8)/xb;
15 xc =(xcˆ2-8)/2;
16 fprintf(’%6.f %10.8f %10.8f %10.8f \n’, k, xa , xb , xc);
17 end

The result as the following table:

1 k Xa Xb Xc
2 --- --------- --------- --------
3 1 4.24264069 3.60000000 8.50000000
4 2 4.06020706 4.22222222 32.12500000
5 3 4.01502355 3.89473684 512.0078125
6 4 4.00375413 4.05405405 131072.0000
7 5 4.00093842 3.97333333 8589934592.0
8 6 4.00023460 4.01342282 3.6893e+19

28

Matlab Code 0.17. Newton Raphson method
1 % ******** Newton Raphson method ************
2 % **** to find a root of the function f(x) ***
3 clc
4 clear
5 close all
6 f=@(x) exp(x)-x-2 ; % the function f(x)
7 fp=@(x) exp(x)-1 ; % the derivative f’(x) of f(x)
8 xa=-10; % Initial value of first root
9 xb=10; % Initial value of second root

10 r = ’failure’;
11 fprintf(’ k Xa Xb \n’);
12 fprintf(’ --- --------- --------- \n’);
13 fprintf(’%6.f %10.8f %10.8f \n’, 0, xa , xb);
14 for k=1:1:14
15 if fp(xa)==0; r
16 return
17 elseif fp(xb)==0; r
18 return
19 end
20 xa=xa-f(xa)/fp(xa);
21 xb=xb-f(xb)/fp(xb);
22 fprintf(’%6.f %10.8f %10.8f \n’, k, xa , xb);
23 end

The result as the following table:

1 k Xa Xb
2 --- --------- ---------
3 1 -1.99959138 9.00049942
4 2 -1.84347236 8.00173312
5 3 -1.84140606 7.00474864
6 -- ---------- ----------
7 13 -1.84140566 1.14619325
8 14 -1.84140566 1.14619322
9 >>

29

