Lecture 4
chapter 2
Solutions of Equations in One Variable

One of the fundamental problems of mathematics is that
of solving equations of the form

flz) =0 (4)

where f is a real valued function of a real variable x. Any
number « satisfying equation (4) is called a root of the equa-
tion or a zero of f.

Most equations arising in practice are non-linear and are
rarely of a form which allows the roots to be determined ex-
actly. Consequently, numerical techniques must be used to
find them.

Graphically, a solution, or a root, of Equation (4) refers to
the point of intersection of f(z) and the r—axis. Therefore,
depending on the nature of the curve of f(x) in relation to
the r—axis, Equation (4) may have a unique solution, mul-
tiple solutions, or no solution. A root of an equation can
sometimes be determined analytically resulting in an exact
solution. For instance, the equation ¢** —3 = 0 can be solved
analytically to obtain a unique solution z = 1In3. In most
situations, however, this is not possible and the root(s) must
be found using a numerical procedure.

Bisection Technique

This technique based on the Intermediate Value Theorem.
Suppose f is a continuous function defined on the interval
[a,b], with f(a) and f(b) of opposite sign. The Intermediate
Value Theorem implies that a number p exists in (a,b) with
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f(p) = 0. The method calls for a repeated halving of subin-
tervals of [a,b] and, at each step, locating the half containing
p. To begin, set a; = a and b; = b, and let p; be the midpoint
of [a, b]; that is,

by — ay _a+ by
2 2
1. If f(p1) =0, then p = p;, and we are done.

p1=a1;+

2. If f(p1) # 0, then f(p;) has the same sign as either f(a,)
or f(b1).

* If f(p1) and f(ay) have the same sign, p € (p1,b;). Set
a9 = P1 and b2 = bl.

* If f(p1) and f(a;) have opposite signs, p € (a1, p1). Set
as = aq and b2 = p1.

Then reapply the process to the interval [as, by]. See Figure
2.

We can select a tolerance ¢ > 0 and generate py,ps, -+ ,pN
until one of the following conditions is met:

* |pn —pn-1| <,

PN —pPN-1]
@ LAy rAv—Tol
onl - <6 PN #0, or

* f(pn) <e,

When using a computer to generate approximations, it is
good practice to set an upper bound on the number of iter-
ations. This eliminates the possibility of entering an infinite
loop, a situation that can arise when the sequence diverges
(and also when the program is incorrectly coded).

Example 0.6. The function f(z) = 2* + 42® — 10 has a root in
[1,2], because f(1) = —5 and and f(2) = 14 the Intermediate
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Figure 2: Produces of Bisection Technique

MaTlab built-In Function fzero
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Value Theorem ensures that this continuous function has a
root in [1,2].
Using Bisection method with the Matlab code to determine an
approximation to the root.

Example 0.7. The function f(z) = (z+1)%e* 2 — 1 has a root
in [0, 1] because f(0) < 0 and f(1) > 0. Use Bisection method
to find the approximate root with ¢ = 0.00001.

The fzero function in MATLAB finds the roots of f(z) = 0 for
a real function f(x). FZERO Scalar nonlinear zero finding.



X = FZERO(FUN, X,) tries to find a zero of the function
FUN near X,, if X, is a scalar.
For example 0.6 use the following Matlab code:

1 clc

2 clear

3 fun = @(x) x. 3+4xx.72-10; % function
4 x0 = 1; % initial point

5 X = fzero(fun,x0)

the resulte is:
r = 1.365230013414097

Theorem 0.8. Suppose that f € Cla,b] and f(a)f(b) < 0. The
Bisection method generates a sequence {p,}>° , approximat-
ing a zero p of f with

b—a
\pn—p|<2—n, n=>1

Proof. For each n > 1, we have

1
by —a; = 5(5_ a), and pi € (a1, br)

111 1
by —ag = 2 [5(5— a)} = ﬁ(b— a), and p; € (az,bs)
1 1
by — a3 = 5(52 —as) = g(b —a), and p3 € (as,bs)

and so for the n step we can get
1
b, — a, = 2—n(b —a), and p, € (ap,by)

Since p, € (a,,b,) and |(ay, b,)| = b, —a, for all n > 1, it follows

that
b—a

2n

pn —p| < by —a, =
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the sequence {p,}°°, converges to p with rate of conver-
gence of order 7-; that is

277.,
1
n — O|—
p=0+05)

It is important to realize that Theorem 0.8 gives only a
bound for approximation error and that this bound might
be quite conservative. For example, this bound applied to
the problem in Example 0.6 ensures only that

[]

21 f3
[p—pol < =55~ = 0.001953125 ~ 2 x 10

but the actual error is much smaller:

lp — po| < |1.365230013414097 — 1.365234375|
~ —0.000004361585903
~4.4x107°

Example 0.9. Determine the number of iterations necessary
to solve f(z) = 23 +42*—10 = 0 with accuracy 1073 using a; = 1
and b; = 2.

Solution: We we will use logarithmes to find an integer N that
satisfies

p—pal <27Y(b1 — ar)
=27M(2-1)
=2V <107°
One can use logarithms to any base, but we will use base—10
logarithms because the tolerance is given as a power of 10.

Since 27V < 1073 implies that log;, 27 < log;, 1073 = —3, we
have
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3

~ 9.96
logy 2

—Nlog,2 < =3 and N >

Hence, 10 iterations will ensure an approximation accurate
to within 1073,
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