
Lecture 4
chapter 2

Solutions of Equations in One Variable

One of the fundamental problems of mathematics is that
of solving equations of the form

f(x) = 0 (4)

where f is a real valued function of a real variable x. Any
number α satisfying equation (4) is called a root of the equa-
tion or a zero of f .
Most equations arising in practice are non-linear and are
rarely of a form which allows the roots to be determined ex-
actly. Consequently, numerical techniques must be used to
find them.
Graphically, a solution, or a root, of Equation (4) refers to
the point of intersection of f(x) and the x−axis. Therefore,
depending on the nature of the curve of f(x) in relation to
the x−axis, Equation (4) may have a unique solution, mul-
tiple solutions, or no solution. A root of an equation can
sometimes be determined analytically resulting in an exact
solution. For instance, the equation e2x−3 = 0 can be solved
analytically to obtain a unique solution x = 1

2 ln 3. In most
situations, however, this is not possible and the root(s) must
be found using a numerical procedure.

Bisection Technique

This technique based on the Intermediate Value Theorem.
Suppose f is a continuous function defined on the interval
[a, b], with f(a) and f(b) of opposite sign. The Intermediate
Value Theorem implies that a number p exists in (a, b) with
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f(p) = 0. The method calls for a repeated halving of subin-
tervals of [a, b] and, at each step, locating the half containing
p. To begin, set a1 = a and b1 = b, and let p1 be the midpoint
of [a, b]; that is,

p1 = a1 +
b1 − a1

2
=

a1 + b1
2

1. If f(p1) = 0, then p = p1, and we are done.

2. If f(p1) ̸= 0, then f(p1) has the same sign as either f(a1)
or f(b1).

• If f(p1) and f(a1) have the same sign, p ∈ (p1, b1). Set
a2 = p1 and b2 = b1.

• If f(p1) and f(a1) have opposite signs, p ∈ (a1, p1). Set
a2 = a1 and b2 = p1.

Then reapply the process to the interval [a2, b2]. See Figure
2.

We can select a tolerance ϵ > 0 and generate p1, p2, · · · , pN
until one of the following conditions is met:

• |pN − pN−1| < ϵ,

• |pN−pN−1|
|pN | < ϵ, pN ̸= 0, or

• f(pN) < ϵ,

When using a computer to generate approximations, it is
good practice to set an upper bound on the number of iter-
ations. This eliminates the possibility of entering an infinite
loop, a situation that can arise when the sequence diverges
(and also when the program is incorrectly coded).

Example 0.6. The function f(x) = x3 + 4x2 − 10 has a root in
[1, 2], because f(1) = −5 and and f(2) = 14 the Intermediate
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Figure 2: Produces of Bisection Technique

Value Theorem ensures that this continuous function has a
root in [1, 2].
Using Bisection method with the Matlab code to determine an
approximation to the root.

Example 0.7. The function f(x) = (x+1)2e(x
2−2)− 1 has a root

in [0, 1] because f(0) < 0 and f(1) > 0. Use Bisection method
to find the approximate root with ϵ = 0.00001.

MaTlab built-In Function fzero

The fzero function in MATLAB finds the roots of f(x) = 0 for
a real function f(x). FZERO Scalar nonlinear zero finding.
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X = FZERO(FUN,X0) tries to find a zero of the function
FUN near X0, if X0 is a scalar.
For example 0.6 use the following Matlab code:

1 clc
2 clear
3 fun = @(x) x.ˆ3+4*x.ˆ2-10; % function
4 x0 = 1; % initial point
5 x = fzero(fun,x0)

the resulte is:
x = 1.365230013414097

Theorem 0.8. Suppose that f ∈ C[a, b] and f(a)f(b) < 0. The
Bisection method generates a sequence {pn}∞n=1 approximat-
ing a zero p of f with

|pn − p| < b− a

2n
, n ≥ 1

Proof. For each n ≥ 1, we have

b1 − a1 =
1

2
(b− a), and p1 ∈ (a1, b1)

b2 − a2 =
1

2

[
1

2
(b− a)

]
=

1

22
(b− a), and p2 ∈ (a2, b2)

b3 − a3 =
1

2
(b2 − a2) =

1

23
(b− a), and p3 ∈ (a3, b3)

and so for the n step we can get

bn − an =
1

2n
(b− a), and pn ∈ (an, bn)

Since pn ∈ (an, bn) and |(an, bn)| = bn−an for all n ≥ 1, it follows
that

|pn − p| < bn − an =
b− a

2n
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the sequence {pn}∞n=1 converges to p with rate of conver-
gence of order 1

2n ; that is

pn = p+O

(
1

2n

)

It is important to realize that Theorem 0.8 gives only a
bound for approximation error and that this bound might
be quite conservative. For example, this bound applied to
the problem in Example 0.6 ensures only that

|p− p9| <
2− 1

29
= 0.001953125 ≈ 2× 10−3

but the actual error is much smaller:

|p− p9| ≤ |1.365230013414097− 1.365234375|
≈ −0.000004361585903

≈ 4.4× 10−6

Example 0.9. Determine the number of iterations necessary
to solve f(x) = x3+4x2−10 = 0 with accuracy 10−3 using a1 = 1
and b1 = 2.

Solution: We we will use logarithms to find an integer N that
satisfies

|p− pn| < 2−N(b1 − a1)

= 2−N(2− 1)

= 2−N < 10−3

One can use logarithms to any base, but we will use base−10
logarithms because the tolerance is given as a power of 10.
Since 2−N < 10−3 implies that log10 2

−N < log10 10
−3 = −3, we

have

17



−N log10 2 < −3 and N >
3

log10 2
≈ 9.96

Hence, 10 iterations will ensure an approximation accurate
to within 10−3.
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